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It is usually very hard, both for designers and users, to reason reliably about user interfaces. This
paper shows that ‘push button’ and ‘point and click’ user interfaces are algebraic structures. Users
effectively do algebra when they interact, and therefore we can be precise about some important
design issues and issues of usability. Matrix algebra, in particular, is useful for explicit calculation
and for proof of various user interface properties.

With matrix algebra, we are able to undertake with ease unusally thorough reviews of real user
interfaces: this paper examines a mobile phone, a handheld calculator and a digital multimeter
as case studies, and draws general conclusions about the approach and its relevance to design.
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“It is no paradox to say that in our most theoretical moods we may be nearest
to our most practical applications.” A. N. Whitehead

1. INTRODUCTION

User interface design is difficult, and in particular it is very hard to reason through
the meanings of all the things a user can do, in all their many combinations. Typ-
ically, real designs are not completely worked out and, as a result, very often user
interfaces have quirky features that interact in awkward ways. Detailed and precise
critiques of user interfaces are rare, and very little knowledge in design generalises
beyond specific case studies. This paper addresses these problems by showing how
matrix algebra can be applied to user interface design. The paper explains the
theory in detail and shows it applied to three real case studies.
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Push button devices are ubiquitous: mobile phones, many walk-up-and-use de-
vices (such as ticket machines and chocolate vending machines), photocopiers, cam-
eras, and so on are all examples. Many safety critical systems rely on push button
user interfaces, and they can be found in aircraft flight decks, medical care units,
cars, and nuclear power stations, to name but a few. Large parts of desktop graph-
ical interfaces are effectively push button devices: menus, buttons and dialog boxes
all behave as simple push button devices, though buttons are pressed via a mouse
rather than directly by a finger. Touch screens turn displays into literal push but-
ton devices, and are used, for example, in many public walk-up-and-use systems.
The world wide web is the largest example by far of any push button interface.
Interaction with all these systems can be represented using matrix algebra.

Matrices have three very important properties. Matrices are standard mathe-
matical objects, with a history going back to the nineteenth century:1 this paper
is not presenting and developing yet another notation and approach, but it shows
how an established and well-defined technique can be applied fruitfully to serious
user interface design issues. Secondly, matrices are very easy to calculate with, so
designers can work out user interface issues very easily, and practical design tools
can be built. Finally, matrix algebra has structure and properties: designers and
HCI specialists can use matrix algebra to reason about what is possible and not
possible, and so on, in very general ways. This paper gives many examples.

There is a significant mathematical theory behind matrices, and it is drawing on
this established and standard theory that is one of the major advantages of the
approach.

Matrices are not necessarily device-based: there is no intrinsic ‘system’ or ‘cog-
nitive’ bias. Matrix operations model actions that occur when user and system
synchronise. Thus a button matrix represents as much the system responding to a
button push as the user pressing the button. Matrices can represent a system doing
electronics to make things happen, or they represent the user thinking about how
things happen. The algebra does not ‘look’ towards the system nor towards the
user. As used in this paper, it simply says what is possible given the definitions; it
says how humans and devices interact . . .

Readers who want a review of matrices should refer to Appendix A. There are
many textbooks available on matrix algebra (linear algebra); Broyden’s Basic Ma-
trices [6] is one that emphasises partitions, a technique that is used extensively later
in this paper. Readers who want a formal background should refer to Appendix C.

2. CONTRIBUTIONS TO HCI

There are many theories in HCI that predict user performance. Fitt’s Law can
be used to estimate mouse movement times; Hick’s Law can be used to estimate
decision times. Recent theories extend and develop these basic ideas into systems,
such as ACT/R [3], that are psychologically sophisticated models. When suitably
set up, these models can make predictions about user performance and behaviour.
Models can either be used in design, on the assumption that the models produce
valid results, or they can be used in research, to improve the validity of the assump-

1The Chinese solved equations using matrices as far back as 200bc, but the recognition of matrices
as abstract mathematical structures came much later.
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tions. ACT/R is only one of many approaches; it happens to be rather flexible and
complex — many simpler approaches, both complementary and indeed rival have
been suggested, including CCT [17], UAN [13], GOMS [7], PUM [36], IL [4] and so
on (see [15] for a broad survey of evaluation tools). All these approaches have in
common that they are psychologically plausible, and to that extent they can be used
to calculate how users interact, for instance to estimate times to complete tasks or
to calculate likely behaviour. Some HCI theories, such as information foraging [24],
have a weaker base in psychology, but their aim, too, is to make predictions of user
behaviour. Of course, for the models to provide useful insights, they must not only
be psychologically valid but also based on accurate and reasonable models of the
interactive system itself.

Unlike psychologically-based approaches, whose use requires considerable exper-
tise, the only idea behind this paper is the application of standard mathematics.
The ideas can be implemented by anyone, either by hand, writing programs or, most
conveniently, by using any of the widely available mathematical tools, such as Mat-
lab, Axiom or Mathematica (see §8.3). Matrix algebra is well documented and can
easily be implemented in any interactive programming environment or prototyping
system. User interfaces can be built out of matrix algebra straight forwardly, and
they can be run, for prototyping, production purposes or for evaluation purposes.

An important contribution this paper makes is that it shows how interaction with
real systems can be analysed and modelled rigorously, and theorems proved. One
may uncover problems in a user interface design that other methods, particularly
ones driven from psychological realism, would miss.

The method is simple. I emphasise that throughout this paper we see ‘inside’
matrices. In many ways, the contents of a matrix and how one calculates with it can
normally be handed over to programs; the inside details are irrelvant to designers.
For this paper, however, it is important to see that the approach works and that the
calculations are valid. A danger is that this paper gives a misleading impression of
complexity, whereas it is intended to give an accurate impression how the approach
works, and how from a mathematical point of view it is routine. Conversely, because
we have presented relatively small examples, emphasising manageable exposition
despite the explicit calculations, there is an opposite danger that the approach
seems only able to handle trivial examples!

2.1 Methodological issues

This paper makes a theoretical contribution to HCI. One might consider that
there are two broad areas of theoretical contributions, which aspire, respectively,
to psychological or computational validity. This paper makes computational con-
tributions, and its validity does not depend on doing empirical experiments but
rather on its theoretical foundations. The foundations are standard mathematics
and computer science, plus a theorem (see Appendix C). The theorem, once stated,
seems very obvious but it appears to be a new insight, certainly for its applications
to HCI and to user interface design.

The issue, then, for matrix algebra is not its psychological validity but whether
the theoretical structure provides new insight into HCI. I claim it does, because it
provides an unusual and revealing degree of precision when handling real interactive
devices and their user interfaces.
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For example, one might do ordinary empirical studies of calculator use and see
how users perform. But, as I will show, there are some reasonable tasks that cannot
be achieved in any sensible way — and this result is provable.

It may be established empirically whether and to what extent such impossible
tasks are an issue for users under certain circumstances, but for safety critical de-
vices, say electronic diving aids for divers, or instrumentation in aircraft flight decks,
the ability or inability to perform tasks is a safety issue, regardless of whether users
in empiricial experiments encounter the problems. Thus the theoretical framework
raises empirical questions or raises risk issues, both of which can be addressed be-
cause the theory provides a framework where the issues can be discovered, defined
and explored.

This paper provides a whole variety of non-trivial design insights, both general
approaches and related to specific interactive products: almost all of the results
are new, and some are surprising. The real contribution, though, is the simple and
general method by which these results are obtained.

In proposing a new theory, we have the problem of showing its ability to scale
to interesting levels of complexity. The narrative of this paper necessarily covers
simple examples, but somehow I must imply bigger issues can be addressed. My
approach has been to start with three real devices. Being real devices, any reader
of this paper can go and check that I have understood them,2 represented them
faithfully in the theory, and obtained non-trivial insights. The three examples are
very different, and I have handled them in different ways to illustrate the flexibility
and generality of the approach. Also, I do everything with standard textbook
mathematics; I have not introduced parameters or fudge factors; and I have not
shied away from examining the real features and properties of the example systems.

A danger of this approach is that its accuracy relies on the accuracy of reverse
engineering; the manufacturers of these devices did not provide their formal spec-
ifications — I had to reconstruct them. Whilst this is a weakness, any reader can
check my results against a real device, its user manual (if adequate), or by enter-
ing into correspondence with the manufacturer. Of course, different manufacturers
make different products, and in a sense it is less interesting to have a faithful model
of a specific proprietary device than to have a model of a generic device of the
right level of complexity: by reverse engineering, even allowing for errors, I have
certainly achieved the latter goal.

An alternative might have been to build one or more new systems, and exhibit
the theory used constructively. Here, there would be no doubt that the systems
were accurately specified — though the paper would have to devote some space to
providing the specifications of these new devices (which the reader cannot obtain
as physical devices). But the worse danger would be that I might not have imple-
mented certain awkward features at all: I would then be inaccurately claiming the
theory handled, say, ‘mobile phones’ when in fact it only handled the certain sort
of mobile phone that I was able to implement. It would be very hard to tell the
difference between what I had done and what I should have done.

For this paper, I have also chosen relatively cheap handheld devices. Handheld
devices are typically used for specific tasks. Again, this makes both replication of

2Device definitions and other material is available at http://www.uclic.ucl.ac.uk/harold.
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this work and its exposition easier. However, further work might wish to consider
similar sorts of user interface in cars — to radios, audio systems, navigation, air
conditioning, security systems, cruise control and so on. Such user interfaces are
ubiquitous, and typically over-complex and under-specified. Computer-controlled
instruments contribute increasingly to driver satisfaction and comfort. The drivers
have a primary task which is not using the interface (and from which they should
not be distracted), so user interface complexities are more of an issue. Cars are
high-value items with long lifetimes, and remain on the market much longer than
handheld devices. They are more similar, and used by many more people. Even
small contributions to user interface design in this domain would have a significant
impact on safety and satisfaction for many people.

2.2 The theory proposed

The theory is that users do algebra, in particular (for the large class of systems
considered), linear algebra. Linear algebra happens to be very easy to calculate
with, so this is valuable for design and research. However, it is obviously contentious
to say that users do algebra! We are not claiming that when people interact with
systems that they engage in cognitive processes equivalent to certain specific sorts
of calculation (such as matrix multiplication), but that they and the system they
interact with obey the relevant laws of algebra. Indeed if users were involved in
requirements specification, they may have expressed views that are equivalent to
algebraic axioms.

Users do algebra in much the same way as a user putting an apple onto a pile
of apples “adds one” even if they do not do any sums. Users of apple piles will
be familiar with all sorts of properties (e.g., putting an apple in, then removing an
apple leaves the same quantity; or, you cannot remove more apples from a pile than
are in it; and so on) regardless of whether anyone does the calculations. Likewise,
users will be (or could well be) familiar with the results of matrix algebra even if
they do not do the calculations. Only a philosophical nominalist could disagree [5]
with this position.

The brain is a symbolic, neural, molecular, quantum computer of some sort and
there is no evidence that users think about their actions in anything remotely like
calculating in a linear algebra. Yet we can still make tentative cognitive claims.
There is no known easy way to invert a matrix. Therefore if a user interface
effectively involves reasoning about inverses, it is practically certain that users will
find it difficult to use reliably. Or: A user’s task can be expressed as a matrix;
thus performing a task/action mapping (going from the task description to how it
is to be achieved) is equivalent to factoring the matrix with the specific matrices
available at the user interface. Factorisation is not easy however it is done (although
there are special cases) — we can conclude that whatever users do psychologically,
if it is equivalent to factorisation, it will not be easy. Indeed, we know that users
keep track of very little in their heads [23], so users are like to find these operations
harder, not easier than the ‘raw’ algebra suggests.

What we do know about psychological processes suggests that the sort of alge-
braic theory discussed in this paper is never going to predict preferences, motivation,
pleasure, learning or probable errors — these are the concerns of psychological the-
ories. On the other hand, we can say that some things will be impossible and some
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a. Light with push-on/push-off action. b. Light with separate on/off actions.

Fig. 1. Transition diagrams for alternative designs of a simple two-state system. Note that the
right hand diagram does not specify what repeated user actions do: illustrating how easy it is to
draw diagrams that look sensible, but which have conceptual errors. If the right hand diagram
was used as a specification for programmers, the system implemented from it might do unexpected
and undesirable things (e.g., the diagram does not specify what doing ‘off’ does when the system
is already off).

things will be difficult; moreover, with algebra it is routine to find such issues and
to do so at a very early stage in design. We can also determine that some things
are possible, and if some of those are dangerous or costly the designer may wish
to draw on psychological theory to make them less likely to occur given probable
user behaviour. We can make approximate predictions on timings; button matrices
typically correspond one-to-one with user actions, so fewer matrices means there
are quicker solutions, and more matrices mean user actions must take longer: we
expect a correlation, which could of course be improved by using a keystroke level
or other timing model.

3. INTRODUCTORY EXAMPLES

This section provides some simple motivating examples, though it avoids dwelling
on where matrices ‘come from.’ Appendix B follows an alternative expository ap-
proach: matrices are defined by starting with finite state machines; Appendix C
defines a formal correspondence between finite state machines and matrices.

3.1 A simple two button, two state system

Imagine a light bulb controlled by a pushbutton switch. Pressing the switch alter-
nately turns the light on or off. This is a really simple system, but sufficient to
clearly illustrate how button matrices work. Figure 1a presents a state transition
diagram for this system.

There are two states for this system: the bulb is on or off. We can represent the
states as a vector, with on as (1 0) and off as (0 1). The pushbutton action push is
defined by a 2 × 2 matrix:

PUSH =
(

0 1
1 0

)
Such simple 2 × 2 matrices hardly look worth using in practice. Writing them

down seems as hard as informally examining what are obvious issues! In fact, all
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elementary introductions to matrices have the same problem.3 The point is that
the matrix principles, while very obvious with such a simple system, also apply to
arbitrarily complex systems, where thinking systematically about interaction would
be impractical. With a complex system, the matrix calculations would be done by a
program or some other design or analysis tool: the designer or user would not need
to see any details. For complex systems, the user interface properties are unlikely
to be obvious except by doing the matrix calculations. For large, complex systems,
matrices promise rigour and clarity without overwhelming detail.

Doing the matrix multiplication we can check that if the light is off then pushing
the button makes the light go on:

off PUSH = (0 1)
(

0 1
1 0

)
= (1 0)
= on

Similarly, we can show that pushing the button when the light is on puts it off,
since on PUSH = off .

It seems that pushing the button twice does nothing, as certainly when the light
is off, one push puts it on, and a second puts it off. We could also check that
pressing push when it is on puts it off, and pressing it again puts it on, so we are
back where we started. Rather than do these detailed calculations, which in general
could be very tedious as we would normally expect to have far more than just two
states, we can find out what a double press of push means in any state:

PUSH PUSH =
(

0 1
1 0

) (
0 1
1 0

)
=

(
1 0
0 1

)
= I

Thus the matrix multiplication PUSH times PUSH is equal to the identity matrix
I. We can write this in either of the following ways:

PUSH PUSH = I

PUSH
2

= I

Anything multiplied by I is unchanged — a basic law of matrices. In other
words, doing push then push does nothing. Thus we now know without doing any
calculations on each state, that PUSH PUSH leaves the system in the same state, for
every starting state.

3You might first learn how to do two variable simultaneous equations, but next learning how to
use 2 × 2 matrices to solve them further requires learning matrix multiplication, inverses and so
on, and the effort does not seem to be adequately rewarded, since you could more easily solve the
equation without matrices! However if you ever came across four, five or more variable equations
— which you rarely do in introductory work — the advantages become stark.
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From our analysis so far, we have established that a user can change the state of
the system or leave it unchanged, even if they changed it. This is a special case of
undo: if a user switched the light on we know that a second push would switch it
off (and vice versa).

In general a user may not know what state a system is in, so to do some useful
things with it, user actions must have predictable effects. For example, if a lamp
has failed (so we do not know whether the electricity is on or off), we must switch
the system off to ensure we can replace the lamp safely, to avoid electrocution.

Let us examine this task in detail now. A quite general state of the system is s.
The only operation the user can do is press the pushbutton, but they can choose
how may times to press it; in general the user may press the button n times —
that’s all they can do. It would be nice if we could find an n and then tell the user
that if they want to do a “replace bulb safely” task, they should just press PUSH
n times. If n turns out to be big, it would be advisable for the solution to the task
to be “press PUSH at least n times” in case the user misses one or loses count.

We will see below (§4) that for a Nokia mobile phone, the answer to a similar
question is n = 4. Nokia, noticing that, provided a feature so that holding the
button down continuously is equivalent to pressing it four times, thus providing a
simpler way for a user to solve the task.

Back to the light system. If we want to know how to get the light off we need to
find an n (in fact an n ≥ 0) such that

PUSH
n

=
(

0 1
0 1

)
since this matrix is the only matrix that guarantees the light will be off what-

ever state it operates on. Note that the user interface does not provide the matrix
directly; instead we are trying to find some sequence of available operations that
combine to be equal to the matrix describing the user’s task. For this particular sys-
tem, the only sequences of user operations are pressing PUSH , and these sequences
of operations only differ in their length. Thus we have a simple problem, meremly
to find n rather than a complicated sequence of matrices. It is not difficult to prove
rigorously that there is no solution to this equation.

For this system, the user cannot put it in the off state (we could also show it
is impossible to put it in any particular state) without knowing what state it is
in. Clearly we have a system design inappropriate for an application where safe
replacement of failed lamps is an issue. If a design requirement was that a user
should be able to do this, then the user interface must be changed, for instance to
a two-position switch.

A two-position switch gives the user two actions: ON and OFF :

ON =
(

1 0
1 0

)
OFF =

(
0 1
0 1

)
Figure 1b presents a state transition diagram that merely resembles this system:

the diagram omits some obvious (or maybe not so obvious) transitions that are
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defined in the two matrices. We can check that ON works as expected whatever
state the system is in:

off ON = (0 1)
(

1 0
1 0

)
= (1 0)
= on

on ON = (1 0)
(

1 0
1 0

)
= (1 0)
= on

This check involves as many matrix calculations as there are states. This simple
system only has two states, so it isn’t onerous to study, but we really need techniques
that are easy to use when there are even millions of states. In general, a better
approach will be more abstract.

Here there are just two user actions (and in general there will be many fewer
actions than there are states): we have just ON and OFF . Let us consider the user
doing anything then ON . There are only two possibilities: the user’s action can
follow either an earlier ON or an earlier OFF :

ON ON =
(

1 0
1 0

) (
1 0
1 0

)
=

(
1 0
1 0

)
= ON

OFF ON =
(

0 1
0 1

) (
1 0
1 0

)
=

(
1 0
1 0

)
= ON

These are calculations purely on the matrices, not on the states. (Coincidentally,
and somewhat misleadingly, for this simple system there happen to be as many user
actions as there are states, and we ended up calling them with the same names too
confound the confusion!) The point is that we are now using the algebra to deal
with things the user does — actions — and this is generally much easier to do than
to look at the states.

In the two cases above the result is equivalent to pressing a single ON . We could
do the same calculations where the second action is OFF , and we would find that
if there are two actions and the second is OFF the effect is the same as a single
OFF . This system is closed, meaning that any combination of actions is equivalent
to a single user action. Closure is an important user interface property (it may not
be relevant for some designs or tasks): it guarantees anything the user can do can
always be done by a single action.
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This system is not only closed, but furthermore any sequence of actions is equiv-
alent to the last action the user does. Here is a sketch of the proof. Consider an
arbitrarily sequence S of user actions A1A2 . . . An for this system. (S = A1A2 . . . An

is just a matrix multiplication.) We have calculated that the system is closed for
any two operations: A1A2 must be equivalent to either ON or OFF , and in fact it
will be equal to A2. But this followed by A3 will be either ON or OFF , so that
followed by A4 will be too . . . it’s not hard to follow the argument through and
conclude that S = An. Put in other words, after any sequence of user actions,
the state of the system is fully determined by the last user action. Specifically if
the last thing the user does is switch off, whatever happened earlier, the system
will be off; and if the last thing the user does is switch on, whatever happened
earlier, the system will be on. We now have a system that makes solving the task
of switching off reliably when not knowing the state very easy. For the scenario we
were imagining, this design will be a much safer system.

None of this is particularly surprising, because we are very familiar with inter-
active systems that behave like this. And the two designs we considered were very
simple systems. What, then, have we achieved? I showed that various system
designs have usability properties that can be expressed and explored in matrix al-
gebra. I showed we can do explicit calculations, and that the calculations give us
what we expect, although more rigorously. We can do algebraic reasoning, in a way
that does not need to know or depend on the number of states involved.

3.2 Simple abstract matrix examples

Having seen what matrices can do for small concrete systems, we now explore some
usability properties of systems in general — where, because of their complexity, we
typically not know beforehand what to expect.

Matrix multiplication does not commute: if A and B are two matrices, the two
products AB and BA are generally different. This means that pressing button A
then B is generally different from pressing B then A. The last system was non-
commutative, since for it ON OFF �= OFF ON . This is not a deep insight, but it is
a short step from this sort of reasoning to understanding undo and error recovery,
as we shall see below.

In a direct manipulation interface, a user might click on this or click on that in
either order. It is important that the end result is the same in either case. Or in a
pushbutton user interface there might be an array of buttons, which the user should
be able to press in any order that they choose. Both cases are examples of systems
where we do want the corresponding matrices to commute. We should therefore
either check Click 1 Click 2 = Click 2 Click 1 by proof or direct calculation with
matrices, or we should design the interface to ensure the matrices have the right
form to commute. Just as allowing a user to do operations in any order makes the
interface easier to use [30], the analysis of user interface design in this case becomes
much easier since commutativity permits mathematical simplifications.

Suppose we want a design where pressing the button OFF is a shortcut for the
two presses STOP OFF , for instance as might be relevant to the operation of a DVD
player. The DVD might have two basic modes: playing and stopped. If you stop
the DVD then switch it off, this is the same as just switching it off — where it is
also stopped. What can we deduce? Let S and O be the corresponding matrices;
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in principle we could ask the DVD manufacturer for them. The simple calculation
SO = O will check the claim, and it checks it under all possible circumstances —
the matrices O and S contain all the information for all possible states. This simple
equation puts some constraints on what S and O may be. For instance, assuming S
is non-trivial, we conclude that O is not invertible. We prove this by contradiction.

Assume SO = O, and assume O is invertible. If so, there is a matrix O−1 which
is the inverse of O. Follow both sides by this inverse: SOO−1 = OO−1 which can
be simplified to SI = I, as OO−1 = I. Since SI = S we conclude that S = I.
Hence S is the identity matrix, and STOP does nothing. This is a contradiction,
and we conclude that if O is a short cut then it cannot be invertible. If it is not
invertible, then in general a user will not be able to undo the effect of OFF .

What not being invertible means, more precisely, is that the user cannot return
to a previous state only knowing what they have just done. They also need to know
what state the device was in before the operation and be able to solve the problem
of pressing the right buttons to reach that state.4

To summarise, if we had the three seemingly innocuous design requirements:

(1) STOP does something (such as switching the DVD off!)
(2) OFF is a shortcut for STOP OFF

(3) OFF is undoable or invertible (e.g., so ON , would get the DVD back to whatever
mode it was in before switching off — that is, where ON = OFF

−1
)

then we have just proved that they are inconsistent: if we insist on them, we
end up building a DVD player that must have bugs and must have a user manual
that is misleading too. Better, to avoid inconsistency, the designer must forego one
or more of the requirements (here, the second requirement is obviously too strict),
or the designer can relax the requirements from being universal (fully true over all
states) to partial requirements (required only in certain states). I discuss partial
theorems below, in §4.2.

We now turn from these illustrative examples to some real case studies.

4. EXAMPLE 1: THE NOKIA 5110 MOBILE PHONE

The menu system of the Nokia 5110 mobile phone can be represented as a FSM of
188 states, with buttons ∧ , ∨ , C , and NAVI (the Nokia context sensitive button:
the meaning is changed according to the small screen display). In this paper I use
a definition of the Nokia 5110, as published in full elsewhere [29].

First, we describe the user interface informally in English. The menu structure is
entered by pressing NAVI and then using ∧ and ∨ to move up and down the menu.
Items in the menu can be selected by pressing NAVI , and this will either access a
phone function or select a submenu. The submenu, in turn, can be navigated up
and down using ∧ and ∨ , and items within it selected by NAVI . The C key is
used for correction, and ‘goes up a level’ to whatever menu item was selected before
the last NAVI press. If the last press of NAVI selected a phone function, then C
cannot correct it — once a function is selected, the phone does the function and

4Or the user needs to know an algorithm to find an undo: for instance, to be able to recognise the
previous state, and be able to enumerate every state, would be sufficient — but hardly reasonable
except on trivial devices.
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then reverts to the last menu position. The phone starts in a standby state, and in
this state C does nothing.

We may hope or expect the Nokia’s user interface to have certain properties. It
may have been designed with certain properties in mind. Perhaps Nokia used a
system development process that ensured the phone had the intended properties.
Be all this as it may, I will now show that from a matrix definition of the Nokia we
can reliably deduce and check properties.

We represent the buttons and button presses by boxed icons like ∧ and C , and
we would normally represent the matrices they represent by mathematical names
like U and C, which for the present model of the Nokia are in fact 188 × 188
matrices. But the buttons and matrices correspond, and they are essentially the
same thing: we may as well call the mathematical objects by names which are the
button symbols themselves. So although our calculations look like sequences of
button presses, they are matrix algebra.

We can establish, amongst others, the following laws:

∧ ∨ = I

∨ ∧ = I

∧ C = C

∨ C = C

C
i �= C

j
for 0 ≤ i ≤ 3, i �= j

but C
i

= C
4

for 4 ≤ i

Here, as usual I is the identity matrix. These are not just ‘plausible’ laws the
user interface happens to obey or might often obey, or we would like it to obey: we
calculated these identities: they are universally true, facts that can be established
directly using the 188×188 matrices from the Nokia specification we started from (in
fact, we wrote a program to look for interesting identities — I had no preconceptions
on what to find).

Some of these identities are not surprising: doing up then down (or down then
up — one does not imply the other) has no effect; although it might be surprising
that it never has any effect, which is what the identity means.

Up or down followed by C is the same as if C had been pressed directly; on
the other hand, NAVI C is not the same as C , since when NAVI activates a phone
function the C key cannot correct it.

Finally, direct calculation shows that C
4

= C
5
, and moreover that this is the

least power where they are equal. If they are equal, they will be equal if we do the
same things to both sides of the equation, so C

4
C = C

5
C and hence C

5
= C

6
.

By induction, C
i
= C

i+1
for all 4 ≤ i, and hence

C
i
= C

4
for 4 ≤ i

The identity means that if C is pressed often enough, namely at least 4 times,
further presses will have no effect (an idempotence law). In fact, Nokia recognise
the value of this: if the C key is held down continuously for a couple of seconds, it
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behaves like C
4

— thus the Nokia 5110 also has a user action ‘hold C’ with matrix
defined by

hold C = C
4

4.1 Inverses

Matrices only have inverses if their determinants are non-zero. A property of de-
terminants is that the determinant of a product is the product of the determinants:
for any matrices A and B:

det(AB) = det(A) det(B)

In a product, if any factor is zero, the entire product is zero — zero times anything
is zero. So if any determinant is zero, the determinant of the entire product will
be zero. What this means for the user is that when they do a sequence of button
presses corresponding to the matrix product B1B2 . . . Bn, if any of them are not
invertible (not undoable), the entire sequence will not be invertible. So buttons with
matrices that have zero determinants (i.e., are singular) are potentially dangerous:
if they are used in error, there is no uniform way to recover from the mistake. The
user might have fortuitously kept a record of or memorised their actions up to the
point where they made the mistake, and then they might be able to recover using
the device’s buttons, but if so they are also having to use this additional knowledge,
something external the device cannot help with.

If a matrix cannot be inverted (because it is singular) the user cannot undo the
effect of the corresponding button, but even if a matrix can be inverted in principle,
in practice the user may not be able to undo its effect: they may not have access to
all buttons that are factors of the inverse. The user is only provided with particular
buttons and hence can only construct particular matrices. A routine calculation
can establish what the user can do with their actual buttons; a designer may wish
to check that every button’s inverse is a product of at least one other button. For
example, the determinants of ∨ and ∧ on the Nokia mobile phone are both −1,
which is non-zero, so these matrices can be inverted. The user might have broken
the ∨ button. In this case, as ∧ is still invertible as a matrix, but the user cannot
undo its effect (at least, without knowing a lot about the Nokia and the way ∧
works in each menu level).

In contrast to ∨ and ∧ , the matrices C and NAVI are both singular, which
means they cannot be inverted. In other words, there is no matrix M such that
C M = I or NAVI M = I. Since there is no matrix, there is not even a sequence of
button presses that achieves this. But if there is no matrix, there is no such product
— whatever the buttons. In user interface terms, this means that if C or NAVI are
pressed by mistake, the user cannot in general recover from the error — at least
without knowing exactly what they were doing. If a matrix is not invertible, it
means the device no longer knows what it was doing, and therefore it cannot go
back in every case.

The strong, and in some contexts over-strict, proviso ‘in every case’ motivates
the next section.
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4.2 Partial theorems

Theorems such as C
4

= C
5

can be found automatically, as can the fact that C
is not invertible. Theorems that are true, such as these, are not the only sort of
theorem that are relevant to usability.

A partial theorem is a theorem that is true for some states but not for all states.
A user may be misled by a theorem that is, say, true in 90% of states. For example,
they will use a device, and come to believe that ∧ ∨ = I, but one day they do ∧
but find to their surprise that ∨ does not get them back — that is, in this scenario
the theorem ∧ ∨ = I is a partial theorem.

A designer must be interested in finding partial theorems. In particular, a de-
signer will be interested in simple partial theorems — these are ones that a user
can easily infer and may believe to be universal; and a designer will be especially
interested in partial theorems that have safety or cost implications.

Once a partial theorem has been identified, it is then easy to find out details:

—The states in which the theorem fails can be determined. The designer can
reconsider whether the device should be designed so that the theorem is true for
these states. Many partial theorems may fail when a device is off; this is a case
that is unlikely to raise a design issue.

—The button matrices that reveal the partiality can be determined. If a theorem
is partial, it fails for some states only. The matrices that take the user to those
states therefore correspond to the user actions that would reveal the failure of the
theorem. If these actions are guarded (e.g., by physical covers, locks, passwords)
then the user will be less likely to take action to make the theorem fail. For
example, we might decide to place a flap over the OFF button so it cannot be
pressed by accident.

The discovery of theorems and partial theorems can be fully automated; we have
used Mathematica as well as our own design tool [12], which (unlike Mathemat-
ica) hides the mathematics from designers. A brief comparison of our tool and
Mathematica can be found in [32].

We return to partial theorems in §8.2, after introducing more examples.

5. PROJECTING LARGE STATE SPACES ONTO SMALLER SPACES

Although it is possible to use matrices to model entire systems, often it is undesir-
able to do so.

We may want to treat classes of states as equivalent. In a CD player, for instance,
we may not really be interested in how much of which track is playing — we might
just be interested in how playing works for any track. Or we may want to reason
closely about a few buttons, and ignore the rest of the system. In fact we did this
with the Nokia example in the last section: the Nokia mobile phone had a model of
188 states, and while this completely described the menu subsystem of the Nokia
phone it did not cover any other features, such as dialling or SMS (short message
service, for sending text messages). This was a pragmatic decision, and one that
can be justified because other buttons on the phone (such as the digit keys) are
‘obviously’ irrelevant to how the menu system works. But are they really?

We need a systematic and reliable approach to getting at the pertinent properties
of systems we are interested in. In this paper, I discuss two approaches to this



16 · H. Thimbleby

problem: matrices themselves can be used (and this technique will be used later in
this paper), discussed below in §5.1, and computer algebra systems can transform
functional specifications into matrices, discussed in §8.3.

5.1 Matrix transforms

This section shows how matrices can be used to reliably abstract out just the
features that are needed.

To project a large state vector to a smaller space, multiply by an appropriate
projection matrix. Simply, if the large state space has M states, the projection
matrix P has M rows and N columns, then the projected state space vector sP
will have N columns (or equivalently, N states). We then consider button matrices
operating on sP rather than on s: these matrices will be square N × N matrices,
possibly much smaller than the original M × M size. Suppose the fully explicit
button matrices are B and the projected matrices are B′. All we require is sBP =
sPB′ (i.e., that BP = PB′) to associate with any button matrix (or button matrix
product) B the smaller projected matrix B′.

For concreteness consider a digital clock, and we will be interested in the be-
haviour of the tens of hours setting button, TENS , and the on/off arrangements.
Such clocks must display 24 hours and 60 minutes; they therefore need 24 × 60 =
1440 states just to display the time. We also need an extra state for off, when
the clock is in a state displaying no time at all. The state occupancy vector s is
therefore a vector with 1441 elements, which is too big to write down explicitly.
Our clock has four buttons to increment the corresponding digits, so that a user
can set the time. These buttons could be represented fully as 1441×1441 matrices.

We define a matrix P that projects the state space onto a smaller space, the space
we are interested in exploring in detail. Suppose we want to work in the tens of
hours space, in which case P will project 1441 states to 4 states: off, or displaying
0, 1, or 2 in the tens of hours column. Thus P will be a matrix with 4 columns and
1441 rows.

There is not space here to show P explicitly because it has 5764 elements, and
in any case that number of elements would be hard to interpret. The definition of
P depends on how states are arranged. We have to choose some convention for the
projected state space; for the sake of argument take

sP = ([off?] [displaying 0?] [displaying 1?] [displaying 2?])

where [e] means 0 or 1 depending on whether e is true — a convenient notation due
to Knuth [18]. If we assume the state vector s is arranged in the obvious way that
state 1 is off, state 2 is displaying time 0000, state 3 is time 0001, state 4 is time
0002 . . . state 60 is time 0059, state 61 is time 0100 . . . state 1441 is time 2359,
then P will look like this:
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P =



1 0 0 0
0 1 0 0
...

...
...

...
0 1 0 0
0 0 1 0
...

...
...

...
0 0 1 0
0 0 0 1
...

...
...

...
0 0 0 1



one row, for off 600 rows the same, for displaying 0

 600 rows the same, for displaying 1

 240 rows the same, for displaying 2

A possible definition of the tens of hours button matrix5 is this:

TENS =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


The TENS button leaves the clock off if it is already off, and otherwise increments

the digit displayed by the tens of hours digit. We can confirm this by explicitly
working out what TENS does in each of the four states:

(1 0 0 0) TENS = (1 0 0 0)

(0 1 0 0) TENS = (0 0 1 0)

(0 0 1 0) TENS = (0 0 0 1)

(0 0 0 1) TENS = (0 1 0 0)

If we are only interested in the on/off switch, we do not even care what digit is
displayed, and we can project the clock’s 1441 states on to just two, on and off.
A new projection matrix Q with 1441 rows and 2 columns is required, but it is
clearer and easier to define Q in terms of P , rather than write it explicitly — here
we see another advantage of projecting a huge state space onto something more
manageable.

Q = P


1 0
0 1
0 1
0 1


The clock might have an on-off button:

5To avoid typographical clutter I shall write TENS rather than TENS
′
.
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ON-OFF =
(

0 1
1 0

)
The other buttons on this clock do not change the on/off state of the clock, so

in this state space they are identities, e.g.,

TENS =
(

1 0
0 1

)
Or perhaps the clock has two separate buttons, one for on, one for off?

ON =
(

0 1
0 1

)
, OFF =

(
1 0
1 0

)
This looks pretty simple, but we can already use these matrices to make some user

interface design decisions. Suppose for technical reasons, when the clock is switched
off the digits stay illuminated for a moment (this is a common design problem: due
to internal capacitance the internal power supply keeps displays alight for a moment
after being switched off). Users might therefore be tempted to switch the clock off
again, assuming that their first attempt failed (perhaps because the switches are
nasty rubber buttons with poor feedback). It is easy to see from the matrices that
a repeated (specifically, double) use of ON-OFF leaves the clock state unchanged,
whereas any number of pressings of OFF is equivalent to a single press of OFF .
Under these circumstances — which are typical for complex push button devices
like DVD players, TVs and so on6 — we should prefer a separate off button that,
unlike the ON-OFF button, cannot be used to switch the device on by accident.

The scenario does not require an on button; what, then, about switching on? We
could arrange for all of the time-setting buttons to switch the clock on, e.g.,

TENS =
(

0 1
0 1

)
We now have a clock with five buttons. This is the same number of buttons as

one with a single ON-OFF button, and therefore the same build price. Furthermore,
it has the nice feature that if the user attempts to set a digit by pressing a digit
button (say, TENS ) that button always changes what is displayed. Pressing TENS
would change nothing to 0, change 0 to 1, change 1 to 2, and change 2 to 0. To
define this behaviour requires the previous 4 state model:

OFF =


1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

 , TENS =


0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 , and other buttons . . .

A similar approach could be used for TVs and DVD players of course.

6The JVC HR-D540EK has the additional complexity that pressing OPERATE slowly (what it calls
the button we call ON-OFF in this paper) enters a ‘child lock’ mode that disables the device.
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6. EXAMPLE 2: THE CASIO HL-820LC CALCULATOR

Calculators differ in details of their design, and so to be specific I base our discussion
on a particular calculator, the Casio HL-820LC, which is a market-leading and
popular handheld (5.5×10cm) calculator. It is a current model and can be readily
obtained: the discussion below should be easy to check if required. This section
closes with a brief comparison with some differently designed Casio calculators. A
more general critique of calculators (and a wider range of calculators) can be found
elsewhere [27].

The previous section showed how a designer can project a large system down
to a manageable size. Similarly, users have models of systems that are typically
much smaller than the actual implementation model of the systems. We start by
drawing a simple arrow diagram representing what happens to the inside state s of
the calculator when a button is pressed:

s do B−−−−−−→ sB

The user has no reasonable way of working out this because it involves under-
standing the calculator’s program or its specification, both of which are technical
documents of no interest to calculator users; after all, the whole point of the cal-
culator is to do the work! Instead users have some sort of perception of the device
and mental model, that somehow transforms something of the internal state s into
a mental state. We can call the user’s model of the state m, and the user’s model
of the button matrix B . We then obtain this diagram:

implementation: s −−−−−−→ sB�
�

user model : m −−−−−−→ m B

The vertical, down pointing, arrows represent ‘perception’ (by whatever mecha-
nism the user constructs their user model). The horizontal, right pointing, arrows
represent actions. The diagram is a commuting diagram, since however the arrows
are followed, the end result should be the same, meeting at the bottom right. The
diagram is clearer than the equivalent formula: (perception(s))B = perception(sB).
The diagram fails to commute when the user has a faulty model of the behaviour,
though the fault may lie in the design (for instance, the user cannot see enough of
s to know what state the system is in; there may be hidden modes). Later we will
see an example, when the action B is the calculator’s MRC action.

For considering the display and memory of a calculator, the user’s model of the
state m need only be two numbers, which we can represent as a vector of two
elements: (display memory). The matrices B will then be 2 × 2 matrices, that
operate on these vectors. Although a user is very unlikely to think explicitly using
matrices, an advantage of 2 × 2 matrices for this paper is we can easily show and
reliably calculate what the user can (perhaps not so reliably) work out.

For the calculator and a display/memory user model the transformation itself
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can be represented as a matrix. To show this, for simplicity imagine a calculator
that can only handle numbers 0, 1, and 2. The matrix M that represents the user
transformation of the system FSM would be something like this:

M =



0 0
0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2


This nicely transforms a 10 state implementation into a simple 2 number model

that makes more sense to the user. Here we have simply, m = sM . Note that,
for illustration purposes (to show the entire system implementation need not be
modelled by the user), we added a ‘dummy’ state 0 that the user’s model does not
distinguish from state 1. Perhaps this is the off state, or an error state, or something
else that the user is ignoring for the purposes of understanding the display/memory
issues more clearly.

In summary, for working through display/memory issues, we can represent the
user’s model of the state of the calculator by a row vector (display memory),
which we will abbreviate to (d m). We will take d and m to be real numbers, but of
course we know that any calculator will implement them using some finite binary
representation (or possibly a binary-coded decimal representation). Since we are
not going to do serious arithmetic (not even division by zero) in our analysis, the
issue of whether d and m are finite or not, what their precision is, how the calculator
handles overflow, and so on, will not arise.

Each of the calculator’s functions can be represented as a matrix multiplication,
as expected. Thus the key AC , which on the Casio HL-820LC clears the display
but does not change the memory corresponds to a matrix C where

C =
(

0 0
0 1

)
.

(This is the same matrix as shown generated automatically in Appendix 8.3 from
an implementation of the caclculator.)

Multiplying the calculator’s state by C changes it to (0 m), as can be seen by
working through the general calculation:

(d m)
(

0 0
0 1

)
= (0 m)

This is what AC does: it sets d = 0 and leaves m unchanged. Curiously, then,
the button called AC does not mean All Clear!

Many calculator users press AC repeatedly. We can see that pressing AC twice
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has no further effect:

(d m)
(

0 0
0 1

) (
0 0
0 1

)
= (0 m)

In fact, since (
0 0
0 1

)2

=
(

0 0
0 1

)
we can prove that AC

n
= AC for all n > 0; it is clear that pressing AC has no

effect beyond what can be achieved by pressing it just once (in technical terms, it
is idempotent). Users who repeatedly press the AC button seem superstitious “we
must press it once, so pressing more times will be better” — or are not certain that
the AC button works reliably. On the other hand, if users feel they need to press
AC multiple times to ensure it is definitely pressed, what does this say about the
perceived reliability of other buttons needed for a calculation?

The Casio HL-820LC has other buttons. What are their corresponding 2 × 2
matrices? Here are some definitions:

M+ =
(

1 1
0 1

)
add display to memory

M- =
(

1 −1
0 1

)
subtract display from memory

AC =
(

0 0
0 1

)
clear display

MRC =
(

0 0
1 1

)
recall memory

MRC MRC =
(

0 0
1 0

)
recall and clear memory

Other buttons on the calculator are equals, digits, and the usual operators for ad-
dition and subtraction, etc. I will not discuss them further in this paper.7 However,
for completeness we need a ‘do nothing’ or identity operation:

I =
(

1 0
0 1

)
do nothing

Anything multiplied by I is unchanged. (This standard bit of notation is useful
in much the same way that 0 is useful in ordinary arithmetic to represent nothing.)

Note that MRC MRC is defined specially by Casio; it does not mean the same as
MRC pressed twice, which we can work out:

7Over the chosen two dimensional space, some operators are not linear (division and square root
being obvious examples). Some keys require bigger matrices than we are using; see Appendix 8.1.



22 · H. Thimbleby

MRC MRC(
0 0
1 1

) (
0 0
1 1

)
=

(
0 0
1 1

)
Thus, if MRC has the meaning as we defined in the matrix, then pressing it twice

should have no further effect: the multiplication shows that apparently MRC MRC =
MRC . But on the calculator, MRC MRC is instead defined to clear the memory after
putting it in the display. Hence we defined a special matrix for it, but later we
shall see how this ambiguity creates problems for the user — which the calculations
above warn it may.

If MRC MRC does not correspond to the matrix for MRC , aren’t I contradicting
myself about the user doing matrix algebra? What it means is that our initial
understanding of the user’s model of the calculator, namely the state space (d m),
was inadequate. The state space should account for whether MRC is or is not the
last button pressed. (It is possible to extend the state space to do this, but it
becomes larger; see Appendix 8.1.) Casio seem, in effect, to think MRC MRC is a
single operation that the user should think of as practically another button: in this
sense we are justified in giving it an independent matrix (it also allows the rest of
this paper to use 2 × 2 matrices rather than larger ones). However, the calculator
does nothing to encourage the user to think of MRC MRC as a single button: pressing
MRC then waiting an arbitrary time then pressing MRC again (as might happen if
the user goes for a cup of tea) is treated as the special MRC MRC . In this case, the
user would have no sense of MRC MRC being a single ‘virtual’ button.

In short, the problems I am glossing indicate a potential design problem with the
HL-820LC: if we were designing a new calculator and had the ability to influence
the design, we would have made different decisions.

What does MRC MRC MRC mean? Since Casio define MRC MRC to mean something
special, then MRC MRC MRC could mean either (MRC MRC ) MRC or it could mean
MRC (MRC MRC ) — which is the same thing the other way around. Provided we
consider MRC MRC as a ‘logical’ button, this is an issue of commutativity. Instead,
we could consider the matrix M for MRC directly, where our calculation shows
M(MM) �= (MM)M , and this would be a failure of associativity. But matrix
multiplication is associative! Again, the problem this indicates is that M is bigger
than a 2×2 matrix, and our calculations projected onto a 2×2 matrix are incorrect
if we want to capture these idiosyncracies. Had we been designing a new calculator,
rather than reverse engineering an existing one, the formal difficulty of representing
MRC MRC as defined for this calculator might have encouraged finding a simpler
design. Certainly it highlights a design issue that needs further exploration, whether
empirical or analytic.

It would not matter if both of these alternatives had the same meaning. But as

MRC MRC MRC MRC MRC MRC(
0 0
0 0

)
=

(
0 0
1 0

) (
0 0
1 1

)
�=

(
0 0
1 1

) (
0 0
1 0

)
=

(
0 0
1 0

)
we have established that the three successive key presses MRC MRC MRC is ambigu-
ous: it could mean either (MRC MRC ) MRC or MRC (MRC MRC ) — and it matters
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which! Thus the algebraic property of associativity is closely related to modeless-
ness.8

When we look at the calculator to find out how Casio have dealt with this ambi-
guity, we find that we did not fully understand what MRC does. In fact, as one can
establish with some experimenting: MRC only recalls the memory to the display if
the memory is not zero; if the memory is zero, a single MRC does nothing. A dou-
ble MRC MRC sets the memory to zero. What MRC MRC MRC means, then, is “recall
memory to display then zero the memory”: on the Casio this means exactly the
same as MRC MRC does.

MRC =


m �= 0,

(
0 0
1 1

)

m = 0,

(
1 0
0 1

)
We now have a standard problem. The real calculator behaviour suggests we

should extend our user model to handle what it actually does: the MRC button is
not a simple 2× 2 matrix! Or if we were Casio, we could redesign the calculator so
that it has a simpler algebra — this is a route I’d prefer, but of course we cannot
now change the HL-820LC. What I will do here in this paper is be careful that
we never rely on doing MRC when the memory is zero. Since that is the simplest
course for us, it is probably also the simplest course for a user. The exception in
the button almost certainly makes the calculator harder to use. If the user is doing
some calculations and repeatedly using M+ and M- they also and additionally have
to keep track of whether the memory ever becomes equal to zero: if it does, pressing
MRC will behave unexpectedly. If the memory is m, the user expects MRC to leave
the calculator in the state (m m), including (0 0) if m = 0, but as Casio designed
the calculator it will leave it in state (d 0) in this case! Put another way, modes
are messy (as we knew), and the matrix approach makes this very obvious.

In general, we have a useful design insight: if we can’t capture a device’s semantics
easily, then possibly the device’s design is at fault. Difficult semantics must mean,
in some sense, that a device is harder to use than one with simpler semantics.

We can find some nice properties; we will look at just two.
First, MRC followed by M- sets the display to the memory and clears the memory.

It is the same as Casio’s interpretation of MRC MRC :

MRC M- MRC MRC(
0 0
1 1

) (
1 −1
0 1

)
=

(
0 0
1 0

)
This seems so simple, both equivalent solutions are the same length, so was the

idiosyncratic interpretation of MRC MRC necessary to provide?

8Matrix multiplication is always associative, of course. Modes appear when the state space is too
small, and associativity is maintained by having two or more matrices for what is a single user
action. The trade-off is rather like a user would make: if they have an accurate model (i.e., their
mental model state space is big) modes do not worry them; if they have too simple a model (i.e.,
their mental state space is missing some components), modes cause errors or erroneous reasoning.
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Secondly, M+ and M- are inverses of each other:

M+ M- =
(

1 1
0 1

) (
1 −1
0 1

)
=

(
1 0
0 1

)
= I

Matrix algebra tells us immediately that pressing the buttons in the other order
will have the same effect. We can also show this by explicit calculation:

M- M+ =
(

1 −1
0 1

) (
1 1
0 1

)
=

(
1 0
0 1

)
= I

So M+ is the inverse of M- and M- is the inverse of M+ . If you press M+ by
mistake, you can recover by pressing M- and vice versa.

By calculating determinants, it is easy to see that for the Casio calculator, none
of the buttons apart from M+ and M- can be inverted. As we showed in Section 4,
above, this means that a user cannot undo mistakes with any of the other buttons
we have defined (of course a user would end up using digit keys and other features
we have not mentioned here).9

6.1 Solving user problems: Task/action mappings

We have defined simple matrices for the memory buttons and the clear button.
The Casio calculator can obviously add to memory (using M+ ) and subtract from
memory (using M- ). The question, now, is what else would we reasonably want a
calculator like this with memory functions to do?

If the calculator’s state is the vector (d m) then plausibly we want operations to
get to any of these states:

Zero display (0 m)
Zero everything (0 0)
Zero memory (d 0)
Show memory (m m)
Store display (d d )
Swap memory & display (m d )

Most of these operations are easy to justify in terms of plausible user require-
ments. For example, solving a sum like (4 + 5) × (6 + 7) × (8 + 9) requires the
ability to save intermediate results in memory on this calculator that, like most
basic calculators, does not have brackets. The final one, ‘swap,’ which seems more
unusual, might be useful for a user who was not sure what was in the memory.
One swap will confirm what is in the memory, and used again will put it back and
restore the display as it was.

Conventionally, the problem is called task/action mapping [35]. The user’s task
is (for instance) to zero the display. Somehow the user has to map that idea of

9A careful reader will notice that the buttons I have defined do not allow the user to change the
calculator’s state from (0 0), so there is technically no problem if buttons have no inverse, because
the calculator can’t be got into other states anyway! In other words, our 2× 2 model is too small
to make all the points we’d like to from it. Even so, as designers we were able to spot the problem
(which is an advantage), and it can be fixed.
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a task into a sequence of actions; what they do is a task/action mapping. We
have the advantage over a typical user in being able to specify the task and the
actions as matrices. The task/action mapping can therefore be treated as a purely
mathematical problem, that of solving some equations. Only if the mathematical
analysis is trivial is the user interface going to be reasonably easy to use; if the
mathematics is tricky, we probably have good reason to expect the user interface
(or at least, some specific task/action mappings) will be very difficult — unless
the user interface makes some concessions to the user that the mathematics hasn’t
captured (for instance, maybe the user manual or help system can provide a direct
answer, thus avoiding the user having to do any further working out).

We can do some of the operations listed above very easily: for instance, AC
achieves zero display (without changing the memory), as we noted earlier. Showing
the memory is also done directly, but by MRC :

(d m) MRC = (m m)

because

MRC =
(

0 0
1 1

)
and

(d m)
(

0 0
1 1

)
= (m m)

To zero everything is fairly easy, since (with the special meaning of two consec-
utive MRC presses):

MRC MRC AC =
(

0 0
1 0

) (
0 0
0 1

)
=

(
0 0
0 0

)
which will take (d m) to (0 0). However, doing these operations in the other order
is not the same at all:

AC MRC MRC =
(

0 0
0 1

) (
0 0
1 0

)
=

(
0 0
1 0

)
= MRC MRC

The operations do not commute; the user has to remember the right way round
of using them. Indeed, doing MRC AC MRC is different again (as can be confirmed
by calculating the product)! One might assume that if the user has to remember
that MRC AC MRC and AC MRC MRC are different that the user interface is harder
than necessary; it certainly ignores permissiveness [30].

The remaining three operations, storing the display, zeroing the memory and
swapping, are a lot more tricky than these first few examples.

Imagine the user has the calculator displaying some number d and they want to
get it into the memory. They must effectively solve this equation to find the matrix
M , or a product of matrices equal to M if more than one button needs pressing:

(d m) M = (d d )
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How ever a user might — or might not — find a solution (by guesswork? —
though ‘trial and error’ is not feasible, since the calculator has no undo function),
it is not difficult to solve this equation using matrix algebra:

(d m)
(

M11 M12

M21 M22

)
= (dM11 + mM21 dM12 + mM22) = (d d )

so M11 = 1, M21 = 0 and so on. Putting it all together we get

M =
(

1 1
0 0

)
This is not one of the matrices we have got directly available. No button press

corresponds to M . Of course users (apart from us!) don’t solve matrix equations
explicitly, instead they will have to do some rough work and hard thinking. In
the examples here, the complexity suggests it is very likely that no users (except
mathematicians) would be able to work out how to do things — the Casio appears
to be far too complex if we think the tasks listed above are reasonable for it to
support.

Fortunately, we have the huge benefit of having a handy design notation which
makes things much easier to work out. Once we have worked out a solution, we
might say how to use it to solve the problem in the user’s manual: a user does not
need to go over all the work again. Alternatively the calculator could be redesigned
so that it had a button that did M directly: there would then be little need to
explain it in detail in the user manual (or on the back of the calculator). In this
case, of course, we’d need to be satisfied that the feature was sufficiently useful
that it was worth dedicating a button to. Another possibility (which we’ll see
again below) is that it might be possible to choose other functions on the calculator
to make working out M a lot easier.

Given that the Casio calculator design is fixed, we shall have to work M out as
a product from some or all of the matrices we already have. (If Casio had provided
a key with a corresponding matrix M things would have been trivial.) It cannot
be done with the keys we have defined so far. We need to use, for example, the
- and = keys too. We can work out (which as we have seen with MRC and other
keys, needs carefully checking by experiment as well) that

- MRC = =
(

1 0
−1 1

)
with this insight,10 we can establish with routine work (which was done by Math-

ematica [34]) that

- MRC = M+ MRC =
(

1 0
−1 1

) (
1 1
0 1

) (
0 0
1 1

)
=

(
1 1
0 0

)
10Fortuituously this particular sequence of keystrokes only requires a 2 × 2 matrix! This simple
matrix definition will fail if there is numerical overflow — because the calculator gets ‘stuck’
when there is an error, and our current two-component state space cannot model this feature.
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as required.11 If it’s so difficult — both to work out and to do — why would we
want to do it? Simple: the calculator has a memory and we might want to store
a number we have worked out, currently in the display, into the memory. Surely
that is what the memory is for?

It seems clear that the calculator should have provided a STORE key to do this
operation directly. It would then be very easy to store the display in memory. Note
that with the Casio design as it is, this sequence of operations includes matrices
that are not invertible: if the user makes a mistake, there is no way to recover
(unless the user knows what the state previous was and how to reconstruct it).
One needs to use a piece of paper to keep a record of the calculations — and if
you’re using a piece of paper, what real use is the memory?

Next, for the user to get the task represented by (m d ) done, which is just
swapping over the display and memory, we need to find factors of M in terms of
our existing matrices, where

M =
(

0 1
1 0

)
We might want a swap operation so we could work on two calculations at once,

one in the display and one ‘backed up’ in the memory. (We could be keeping track
of two tallies.) Another use of a swap is to allow the user to perform any calculation
on the memory without losing the displayed number: for example, with a swap the
user could square root the memory using the standard square root button, and no
special memory-root button would be required.

Now this M is invertible — a swap followed by a swap would leave the calculator’s
display and memory unchanged — so it cannot be a product of any of the existing
matrices except M+ or M- , which are the only invertible matrices. Since M+ and
M- commute, for any sequence of using them (with no other buttons used between
them) their order does not matter. So, to find out what an arbitrary sequence of
using them means, we can collect them together, say putting all the M- first. The
most general sequence is then

m times︷ ︸︸ ︷
M- M- · · · M-

n times︷ ︸︸ ︷
M+ M+ · · · M+ =

(
1 −1
0 1

)m(
1 1
0 1

)n

=
(

1 n − m
0 1

)
Note that M+

n
= M-

−n
a fact that we will use later. Hence M+

n
can never

be M , for any n, positive or negative; we have proved that the swap operation is
impossible on the Casio. Incidentally, as a by-product of this line of thought, we
now have a formula that enables us to find out how to do any task on the calculator
that requires a matrix (

1 n
0 1

)
for any integer n

11There are many other solutions, but this is one of the easier ones. There are shorter solutions for
the real calculator, but their derivation involves knowing undocumented details of its operation
that are beyond the scope of this paper.
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Obviously Casio could provide a special SWAP key which does what we want in
one press, but it is creative to ask what else could be done. First we prove a swap
would have to be achieved in combination with using M- or M+ , assuming no other
buttons than those we have so far defined are available.

If the new button has matrix S and it helps the user achieve a swap, then it must
be the case that there are matrices A and B such that

ASB =
(

0 1
1 0

)
This is not singular (its determinant is −1), and therefore the determinants of

A, S, and B are all non-zero. To solve the equation for S, we get:

S = A−1

(
0 1
1 0

)
B−1

A special case is that A and B are both identities, and then S is, of course, the
swap matrix itself. If A and B are not singular, then they cannot be products of
singular matrices: in short, on the Casio, they can only be composed out of M- and
M+ .

For example if we wanted a new button S that did a swap when used between
M+ and M- , we would solve this equation(

1 1
0 1

)
S

(
1 −1
0 1

)
=

(
0 1
1 0

)
so

S =
(
−1 0

1 1

)
In words, the button S (as defined here) has an English meaning, “Subtract

display from memory and display it.”
Perhaps we could try A = I and B = M- , to find the operation that when

followed by M- gives a meaning equivalent to SWAP . We then need to solve

S

(
1 −1
0 1

)
=

(
0 1
1 0

)
which gives S the English meaning, “Add the display to the memory, and display

the original memory.”
A more general approach is possible. Earlier I gave the general form for any

number of M- or M+ used together, namely M+
n

for positive or negative n. We can
solve the equation for M+

m
S M+

n
= SWAP and get

S =
(
−m 1 + mn

1 n

)
In other words, there are no forms that would give a brief and concise natural

interpretation for a new button S . Moreover, any meaning we might have liked for



User interface design with matrix algebra · 29

S can be achieved using some combination of SWAP , M- and M+ : if we have SWAP
we do not need any of these esoteric buttons.

Overall, then, it would be better to have a SWAP button, or collect persuasive
empirical evidence that users do not want a swap operation! Since there are many
calculators on the market with the same style of design (i.e., memory buttons but
no memory store button) and have been for several years, it would seem that users
find the design sufficiently attractive. This might mean that the memory buttons
are there to sell calculators, or it might mean that users do not do sophisticated
things with calculators, . . . leading us into speculation beyond the scope of this
paper.

Finally, consider the zero memory task. Here we need to find a matrix M such
that

(d m)M = (d 0)

The Casio has no key that does this directly, so — as before — we will have to
find a sequence of button presses B1 B2 · · · Bn whose matrices multiply together
to make M . If we had a STORE key, all this could have been achieved by doing
STORE MRC MRC : the STORE stores the display in memory, then the double-MRC
recovers memory and sets it to zero. We can check our reasoning:

STORE MRC MRC(
1 1
0 0

) (
0 0
1 0

)
=

(
1 0
0 0

)
and

(d m)
(

1 0
0 0

)
= (d 0)

Although the Casio does not have a STORE button, we have already worked out
a sequence that is equivalent to it, namely - MRC = M+ MRC . So to put zero in the
memory, we should follow it by MRC MRC , which would mean this:

- MRC = M+ MRC MRC MRC

but this has got that problematic sequence of three consecutive MRC presses we
examined earlier. We discovered that the Casio would treat this as meaning the
same as

- MRC = M+ MRC MRC

Coincidentally this gives the required matrix, exactly what we wanted. There is
no shorter solution.12

Earlier I claimed that the potential ambiguity of MRC MRC MRC could cause prob-
lems. Yet here it looks like Casio’s design helps. Actually, we did not know Casio’s
design decision would help — we had to work it out by doing the relevant matrix
multiplications. In other words, to find out how to perform a trivial and plausible-
sounding task, we had to engage in formal reasoning that is beyond most users.
This strongly suggests the calculator is badly designed in this respect.

12With the usual provisos. The device does have some undocumented tricks I have not exploited.
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Add display to memory M+

Subtract display from memory M-

Show memory MRC

Zero display AC

Zero memory - MRC = M+ MRC MRC

Zero everything MRC MRC AC

Store display - MRC = M+ MRC

Swap memory & display impossible

Table 1. How the Casio HL-820LC can be used to do memory operations (with shortest solutions
shown).

6.2 Summary and comparisons with other designs

Table 1 summarises our results for the Casio HL-820LC. There is no inevitablility
about these results: Casio themselves make other calculators that embody different
design decisions.

The Casio HS-8V has a change sign button, whic the HL-820LC does not:

+/- =
(
−1 0

0 1

)
change sign

Since this button is invertible, it provides more ways of attempting to factor the
swap operation. Indeed,

M+ - MRC M+ +/- =
(

0 1
1 0

)
M+ +/- MRC - = =

(
0 1
1 0

)
are swaps. This is clearly about as hard to do as storing the display in the

memory (on either the HL-820LC or this, the HS-8V), and the same design and
usability comments apply.

The Casio MS-70L does not have an MRC button, instead having an MR button.
The matrix for this is the same as a single press of the HL-820LC’s MRC :

MR =
(

0 0
1 1

)
Further, MR MR = MR : no special meaning is attached to repeated use of this

button (which is what we expect from its matrix definition above). As noted earlier
in this section, the HL-820LC’s idiosyncratic meaning for MRC MRC can be achieved
on the MS-70L by MR M- . In other words, there does not seem to be an intrinsic
reason why the HL-820LC was designed so confusingly.

The Casio MS-8V has the MS-70L buttons together with a MC as a single key,
and it has a button MU which has nothing to do with memory but is a kind of
percent key, mark up.

The different Casio designs, MS-70L and MS-8V, both have much simpler matrix
semantics than the HL-820LC or HS-8V, and one might therefore hypothesise they
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are much easier to use reliably. However, they both share with the HL-820LC the
absence of the STORE button.

7. EXAMPLE 3: THE FLUKE 185 DIGITAL MULTIMETER

In the previous examples, we considered an exact model of part of a device (the
Nokia mobile phone, Example 1), and we considered an abstract model of device
(the Casio calculator, Example 2). The abstract model of the calculator ignored
some user actions (such as the multiply function), to concentrate on the use and
behaviour of display and memory in handling numbers. We now do the opposite:
we consider every function of a device, but abstract away from the numbers it
represents for the user. If the example was a CD player, we might be abstracting
away the track number and the time playing a track, but this example is a digital
multimeter, and the values abstracted away are voltages, resistances and so on.
Unless we are interested in the legibility of the numeric display (or teaching users
to read numerals) the actual numbers are not important for device-level usability
issues13 — whereas for the calculator correctly handling specific numbers was crucial
to achieving task goals correctly.

Our final example, then, is a digital multimeter, an electrical measuring instru-
ment. The Fluke 185 has ten buttons, four of which are soft buttons with context-
sensitive meanings, and a rotary knob with seven positions. It has a 6.5×5cm LCD
screen with about 50 icons, as well as two numeric displays and a bar graph. It has
the most complex user interface of the examples considered in this paper. Further-
more, it is a safety critical device: user errors with it can directly result in death.
For example, if the Fluke 185 meter is connected to the AC mains electricity supply
but set to read DC volts, it will not warn that the voltage is potentially fatal. As
a general purpose meter, it can be connected to sensors, such as the Fluke carbon
monoxide sensor, and a misreading could lead to gas poisoning — if the meter is set
to AC volts it would read 0 whatever the DC voltage from the sensor. When mea-
suring amps the meter, cables and the device being tested could overheat and cause
a fire (or even an explosion). And so on; user/design error can lead to immediate
and possibly catastrophic physical consequences.

A multimeter should only be used by competent users, and therefore the trade-offs
between usability and interface complexity are different than general use products
(such as mobile phones). However, unlike a professional interface (such as an air-
craft cockpit), multimeters may be used by users competent in the domain but who
do not fully understand or have forgotten details of the user interface. Thus the user
interface should not have many modes, feature interactions, timeouts or other fea-
tures that are not essential in the domain; where possible it should utilise warnings,
utilise interlocks, and be self-explanatory, etc. Such issues are very important and
require careful consideration, based on a deep understanding of the domain (both
technical and regulatory) and of human error and so on. These issues go beyond
matrix algebra and this paper is silent on them, beyond noting the general point
that there is a danger that technical concerns take precedence over user interface

13If the user’s tasks were ecological, say correctly measuring resistances in a circuit, we could have
matrix elements that represented ‘correct’ and ‘incorrect’ (say) rather than the precise values.
However such considerations would take us too far from the core of the paper.
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concerns, and that user interface quality will suffer. As a case in point, the Fluke
185 conforms to seven types of safety standard and a quality standard (ISO9001),
but to no user interface standard.

7.1 Specifying the Fluke 185

Since the Fluke 185 is very complex, a thorough specification would be very tedious,
but I will show how all its various feature types can be handled using matrices.

The Fluke’s rotary knob has the nice feature that its meaning depends only on
its current position. A rotation to ‘off’ can be modelled by OFF , as if it was an
independent button.

Some devices use knobs differently. If the knob was on a safe, then the security
of the safe would depend on sequences of knob positions (used to enter combination
codes), and we would need to model knob positions as pairs, such as 7→3 or (on
the meter) V→OFF if it is turned to off from the volts position. However for the
Fluke under consideration, this complexity is not necessary — and as a result of
having fewer matrices (n rather than n2 for a knob of n positions) and a smaller
state space (since there is no need to keep track of previous knob positions), the
meter is far easier to use than trying to break into a safe!

The next feature to model is that the meter can be off or on. When it is off, no
button does anything, and the knob has to be turned away from the off position to
turn it on. Assume the off state is state 1; then the state vector (1 ... 0) represents
the meter off, and the state vector (0 ... s) represents it in any state in the subvector
s other than off. (This is a partitioned state space; see Appendix A.1.)

For generality, represent any button (or knob position) other than OFF by B .
Let B represent the effect of any such button when the meter is on (so sB is the
effect of button B on state s when it is on), then the full matrix for each B that
correctly extends to an on/off meter is the partitioned matrix

(
1

....... 0.................
0

....... B

)
If the meter is in state (x ... s), this partitioned matrix transforms it to state

(x ... sB). Thus if it was off (x = 1, s = 0) it is still off; if it was on (x = 0) it is
still on and the on state s has been transformed as expected to sB. Note that no
button B embedded in a matrix of this form can switch the meter off.

The off switch takes every state to off, and its matrix would have the particularly
simple structure as follows (here written explicitly for a FSM with 6 states, including
off, which is state 1):

OFF =



1
....... 0 0 0 0 0

1
....... 0 0 0 0 0

1
....... 0 0 0 0 0

1
....... 0 0 0 0 0

1
....... 0 0 0 0 0

1
....... 0 0 0 0 0


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This takes any state (x ... s) to (1 ... 0) as required. Repeating off does not achieve
anything further; we can check by calculating OFF OFF = OFF , which is indeed the
case. Mechanically, because OFF is a knob position, it is impossible to repeat off
without some other intermediate operation: thus it is fortunate it is idempotent and
the user would not be tempted to ‘really off’ the meter! (Compare this situation
with the AC key on the calculator.) In short, the knob’s physical affordance and
its meaning correspond nicely [31].

In summary, once we have explored the meaning of OFF and the general behaviour
of other buttons whether the meter is on or off, as above, we can ignore the off state
and concentrate our attention on the behaviour of the meter’s buttons when it is
on. Partitioning is a powerful abstraction tool, and henceforth we can assume the
meter is on.

The meter has a display light, which can be switched on or off. The behaviour
of the meter is otherwise the same in either case. Introducing a two-state mode
(light on, light off) therefore doubles the number of states. If the ‘light off’ states
are 1 . . . N , then the ‘light on’ states are (N +1) . . . 2N , a simple way of organising
the state space is that switching the light on changes state from s to s + N , and
switching it off changes the state from s to s − N .

Now represent the state vector by (off ... on). The light switch can be represented
by a partitioned matrix L that swaps the on and off states:

L =

(
0

....... I...............
I

....... 0

)
The submatrices I and 0 here are of course all N × N matrices. This works as

required, as can be seen by multiplying out the effect of L on a general state vector

(x ... y)

(
0

....... I...............
I

....... 0

)
= (y ... x)

For any other operation H (such as pressing, say, the HOLD button) we want its
effect in the light off states and the light on states to be the same. Again this is
achieved using partitioned matrices, but in the following form:

(
H

....... 0...................
0

....... H

)
Here, the submatrix H in the top left is applied to the light off states, and the

submatrix H in the lower right is applied to the light on states. For example,
whatever state the meter is in with the light off, it goes to offH as required; and
if the meter’s light is on, then off = 0 and offH = 0. From this matrix, it is clear
that H behaves as intended, identically in either set of states, and in particular it
does not switch the light on or off. Thus matrices easily model the behaviour of all
buttons.

This recipe for handling any matrix H is independent of the light switch matrix.
Thus we can consider the design of the meter ignoring the light, or we can consider



34 · H. Thimbleby

the light alone, or we can do both. As before, this freedom to abstract reliably is
very powerful. Indeed, if we were trying to reverse engineer the complete FSM for
the meter, building it up from the matrices in this way for each button would be a
practical approach.

Given the partitioned structure of the meter’s button matrices, it is easy to show
that the light switch matrix L commutes with all matrices (except OFF , which
requires L to be a submatrix of itself; see also §7.2), which means a user can start
a measurement and then switch the light on, or first switch the light on — the
results will be the same. Other modes, such as measurement hold, can be treated
similarly.

At switch on, the meter allows 12 features to be tested, activated or adjusted. For
example, switching on while pressing the soft F4 key causes the meter to display its
internal battery voltage. (Because this is a switch-on feature, the soft key cannot
be labelled when the defice is off; a user would need to remember this feature.)
As so far described, this is easy to model: the meter has one extra state for this
feature, and it is reached only by the sequence OFF V F4 , where V F4 represents a
simultaneous user action, turning the knob to volts while pressing F4 . Its matrix
is routinely defined from submatrices. However, as the Fluke meter is defined, the
light button does not work in the new state: rather than switching on the light,
it exits the new state and puts the meter into normal measuring mode (i.e., the
state corresponding to the normal meaning of whatever the knob is set to). If
we are to model this feature, the elegant ‘law’ about the light matrix and other
button matrices needs complicating: another idiosyncratic user interface feature is
hard to model in matrix algebra. Although I do not have space to go into details
here, this awkwardness with matrix representation seems to be an advantage:14

had Fluke used a matrix algebra approach, they would have been less likely to
have implemented this special feature. Indeed, the meter has a menu system (with
8 functions) that can be accessed at any time: why wasn’t the battery voltage
feature put in the menu, so its user interface was handled uniformly?

The Fluke meter has a shift button, which changes the meaning of other buttons
if they are pressed immediately next. (It only changes the meaning of three buttons,
including itself, all of which anyway have extra meanings if held down continuously;
additionally, the shift button has a different, non-shift, meaning at switch on.) In
general if S represents a shift button and A any button, we want SA to be the
button matrix we choose to represent whatever “shifted A” means, and this should
depend only on A.

For any button A that is unaffected by the shift, of course we choose SA = A.
Since the shift button doubles the number of states, we can define it in the usual way
as a partitioned matrix acting on a state vector (unshifted-state ... shifted-state).
Since (at least on the Fluke) the shifted mode does not persist (it is not a lockable
shift), all buttons now have partitioned matrices in the following simple form

14It requires a 3 × 3 partitioning, and no longer has the nice abstraction property; see §7.4 for
other examples.
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(
Aunshifted

....... 0...........................................
0

....... Ashifted

)
and

S =

(
0

....... I...............
I

....... 0

)
which (correctly, for the Fluke) implies pressing SHIFT twice leaves the meter

unshifted (since the submatrices are all the same size and SS = I).
For a full description of the meter, the various partition schemes have to be

combined. For example, we start with a matrix Rbasic to represent the RANGE
button (the RANGE button basically operates over 6 or so range-related states, the
exact number depending on the measurement), and we build up to a complete
matrix R which represents the RANGE button in all contexts. As it happens R
shifted is equal to R, and we can define the shift matrix:

Rs =

(
Rbasic

....... 0..................................
0

....... Rbasic

)
Next we extend Rs to work with the light button. Again, R is the same whether

the light is on or off, so we require:

Rsl =

(
Rs

....... 0.....................
0

....... Rs

)
Now Rsl defines the subset of the RANGE button’s meaning in the context of

the additional features activated by the shift key and the light keys. Note that
Rsl = Rls (the meaning is independent of the order in which we construct it) as
expected — but see qualifications in §7.2. Next we extend Rsl so R works in the
context of the meter being on or off:

R =

(
1

....... 0...................
0

....... Rsl

)
This completes the construction of R with respect to the features of the meter

I have defined so far. Incidentally, this final matrix illustrates a case where the
submatrices are not all square and not all the same size. If Rbasic is a 6× 6 matrix,
this R is 25 × 25.

7.2 Qualifications

Sadly I idealised the Fluke 185, and the real meter has some complexities that were
glossed in the interests of brevity. The main qualifications are described in this
section.
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I claimed that the construction of the R matrix to represent RANGE was indepen-
dent of the order of applying shift and light constructions. Although this is true
as things are defined in this paper, it is not true for the Fluke 185, a fact which
I discovered as soon as I checked the claim! The light and shift buttons do not
commute on the Fluke: SHIFT LIGHT �= LIGHT SHIFT . This quirk can only make
the Fluke harder to use (it also makes the user manual a little less accurate, and it
will have made the meter harder to program).15

In fact, the RANGE button has different effects under different measurement con-
ditions, a different effect at power on, and it has a different effect in the menu and
memory subsystems, and another effect when it is held down for a few seconds. The
range feature also interacts with min/max; for example, it can get into states only
in min/max mode where autoranging is disabled. For simplicity, I ignored these
details, which would be handled in the same way (but unfortunately not as cleanly)
as the example features. Such feature interactions make the matrix partitions not
impossible, but too large to present in this paper.

Indeed, the Fluke 185 has many feature interactions. It seems plausible to con-
clude that Fluke put together a number of useful features in the meter considered
independently but did not explore the algebra of the integrated user interface. The
user interface, when formalised, therefore reveals many ad hoc interactions between
features, all of which tend to make the user interface more complex and harder to
use, and few or none of which have any technical justification.

The Fluke also has time dependencies. These can all be handled by introduc-
ing a new matrix τ that is considered pressed every second, however the result is
mathematically messy and not very illuminating. Had the designers specified the
user interface fully and correctly, they would naturally have wanted to avoid such
messiness; furthermore, I can see no usability benefits of the timeouts in this con-
text, to avoid the mathematical messiness would have improved the user interface
design.

The Fluke has a few further user interface features, such as soft buttons (the
meaning of a soft button depends on what the display panel shows). These features
provide no difficulties for matrix algebra, and three following sections (§7.3, 7.4 and
7.5) complete the example.

7.3 Reordering states

To handle the remaining features, we need to review a standard matrix technique;
the benefit is further insight into tradeoffs in user interface design.

Section 7.1 made repeated use of partitioned matrices and made claims about
the relevance of the structure of matrices to the user interface. However it is not
immediately obvious that as partition structures are combined (e.g., for on/off and
other features) that any relevant structures can be preserved, or even seen to be
preserved in the form taken by the matrix structures. This section briefly considers
this issue, and shows that it is trivial.

15If the meter’s software program is modularised, this ‘quirk’ requires wider interfaces or shared
global state, both of which are bad programming practice and tricky to get correct. If the meter’s
program is not modular, then any ad hoc feature is more-or-less equally easy to program; but this
is not good practice: because there is then no specification of the program other than the ad hoc
code itself.
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A user need not be concerned with state numbering, and in general will have
no idea what states are or are numbered as. From this perspective we can at any
time renumber states to obtain any matrix restructuring we please, provided only
that we are methodical and keep track of the renumberings. Whilst this statement
is correct, it is rather too informal for confidence. Also, an informal approach to
swapping states misses out on an important advantage of using matrices to do the
job cleanly.

Any state renumbering can be represented as consistent row and column ex-
changes in a transition matrix. For example, if rows 2 and 3 are swapped, and
columns 2 and 3 swapped, then we obtain the equivalent matrix for a FSM but
with states 2 and 3 swapped. In general any renumbering is a permutation which
can be represented by a matrix P . If M is a matrix, then PMPT is the corre-
sponding matrix with rows and columns swapped according to the permutation P .
If several permutations are required, they can either be done separately or com-
bined, whichever is more convenient: e.g., as P1P2MPT

2 PT
1 or as P3MPT

3 where
P3 = P1P2.

In short, throughout this paper, when any matrix M was presented, implicitly
a permutation P was chosen to present it cleanly: we wrote down a neat M to
represent PMPT.

7.4 Remaining major features

Consider the Fluke 185 autohold feature. Often a user cannot both look at the
meter and handle the probes. The Fluke 185 provides two features to help: a HOLD
button freezes the display when it is pressed, and the AUTOHOLD feature (holding
down the HOLD button for a couple of seconds) puts the meter into a mode where
it will automatically hold any stable non-zero measurement.

As so far described, modelling this requires a 2×2 partitioned matrix: the meter
has two sets of state, normal ones and autohold ones. The AUTOHOLD simply swaps
between the two, in the same way as the light on/off button:

Abasic =

(
0

....... I...............
I

....... 0

)
Pressing the button again gets the meter out of autohold mode, and because

both submatices are identities, returns the meter to the original state.
In fact, autohold is not available in capacitance measurements.16 There is there-

fore one state where the autohold leaves the meter in the same state, namely the
capacitance state. Introduce a permutation P so that the capacitance state is the
first state, as this allows us to write down the autohold matrix in a particularly
simple form:

16The meter may not implement autohold for capacitance possibly because the meter is unable
to measure capacitance fast enough, and incomplete readings might be confused by the meter for
stable readings. On the other hand, because capacitance measurements can be slow — they can
take minutes (because high value capacitors charged to high voltages have to be discharged safely)
— users would appreciate the autohold’s automatic beeping when the measurement was ready.
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Acapacitance = P


1

....... 0
....... 0........................

0
....... 0

....... I........................
0

....... I
....... 0

 PT

This is essentially the same matrix as before, except state 1 goes to state 1
(courtesy of the top left 1). One identity has lost a row (and column) because it
no longer takes capacitance to autohold-capacitance; the other identity has lost a
row (and column) because the model no longer has an autohold-capacitance state
to be mapped back to capacitance.

In fact, there are several states that are affected like this: capacitance has 9
ranges, covering 5nF to 50mF and an automatic range. Now let P permute the 9
capacitance states we are modelling to consecutive states 1 to 9. The single 1 of
the matrix above that mapped a notional capacitance state to itself now needs to
be generalised to an identity that maps each of the nine states to themselves. Of
course this is a trivial generalisation as the relevant states are consecutive:

Acapacitance-ranges = P


I

....... 0
....... 0........................

0
....... 0

....... I........................
0

....... I
....... 0

 PT

Here the top left identity submatrix is 9× 9. Since the permutations P — being
permutations of arbitrary state numberings — do not typically add a great deal to
our knowledge of the system, we may as well omit them, and this is what we did
elsewhere in this paper.

We can make a usability comment on this aspect of the user interface design of
the Fluke 185. The matrix Acapacitance-ranges has more information in it than the
matrix Abasic (even allowing for Abasic to range over all nine states). Understanding
the meter as designed apparently imposes a higher cognitive load on the user; also
the user manual should be slightly larger to explain the exception (in fact, the Fluke
manual does not explain this limitation). It is strange that autohold is not available
for capacitance (perhaps increasing its time constant if necessary), since on those
possibly rare occasions when the user would want it, it would presumably be both
extremely useful to have it and extremely surprising to find it is not supported.

7.5 Soft buttons

The Fluke multimeter has soft buttons, and I have now reviewed appropriate matrix
methods to handle them. The Fluke has four soft buttons, for example pressing
F1 behaves variously as VERSION , AC , BLEEP , Ω or ◦C . In some set of states, F1
means AC and in another set of states it means BLEEP , and so on.

Let P be a permutation of states that separates these sets of states. The matrix
for F1 can then be written clearly:



User interface design with matrix algebra · 39

F1 = P



VERSION.......................
AC.......................

BLEEP.......................
Ω.......................
◦C


PT

We may be interested in, say Ω alone, but it is a rectangular matrix. We can
define square matrices like

Ω = Q

(
I

....... 0...............
Ω

)
QT

and this definition of Ω effectively means the same as a Ω button that is available
at all times, but when pressed in states where (as a soft button) it would not have
been visible it does nothing, by its identity submatrix.

8. ADVANCED ISSUES AND FURTHER WORK

Matrix algebra applied to user interface design opens up many new possibilities.
This section introduces some more advanced topics, as well as new topics that
require working out: raising issues that that cannot be solved without further
research. In particular, we discuss some criticisms and possible oversights.

8.1 Button modes

In order to make for a clear exposition in Example 2, we relied on a small matrix to
explore a calculator design, but occasionally I admitted the small model was inad-
equate for some details. This section makes clear that the self-imposed limitations
are avoidable.

Modes require bigger matrices, but their structure is not very illuminating if
they are based on a conventional flat FSM (as witnesss the lengthy discussions
in Example 3). Instead, as this Appendix shows, matrices can be derived from
hierarchical FSMs, where each ‘state’ of a higher level FSM represents a complete
mode of the system, so a mode is an entire FSM itself, and represents how the
system behaves within that mode.

We will illustrate how to build matrices by considering the MRC button on the
Casio calculator, which is modey. The MRC button means different things depending
on how often it is pressed. This is a typical sort of feature of many user interfaces.
In the discussion of the calculator example (2).

The digital multimeter example (3) provided the tools to construct matrices for
user actions like MRC . We now utilise the partitioning techniques to show that it
is possible to build a matrix correctly modelling MRC over a more intuitive state
space based on (display memory), that is RR2, rather than the Boolean spaces used
for Example 3.

The calculator has three high-level modes:

(1) Button MRC not used. This is the normal mode.
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(2) Button MRC pressed once. The memory is recalled to the display. Call this
button matrix M1.

(3) Button MRC pressed more than once. The memory is cleared. Since this mode
follows Mode 2, the display will continue to show the previous memory contents.
Call this button matrix M2.

The key MRC goes between the modes (specifically, 1 → 2 → 3 → 3 · · ·), and
what we might call ANY (i.e., any action other than MRC ) returns to normal mode
(· · · → 1), as well as doing whatever it does in that mode. For example, AC returns
to Mode 1 and sets the display to zero, whereas MPLUS adds the display to memory,
but also returns to Mode 1.

If we proceeded from this specification, and rigorously followed the ‘make a matrix
recipe’ we describe below, we would end up with a button matrix for MRC that was
9 × 9, but it would have three pairs of its rows equal! Rows being equal mean
that some of the states are the same. Indeed, the definition of the modes above is
misleading; what were called modes 2 and 3 are in fact the same. The description
above put meaning into the different modes (or states) but the algebraic idea is to
attach meaning to the actions — the button matrices.

A correct specification still requires the two matrices M1 and M2, but only two
modes are needed: ‘normal’ (Mode 1) and ‘MRC hit’ (Mode 2). We thus now have
a two state higher level FSM, as shown in Figure 2. The state vector will have the
2-component structure

(
Mode 1
Normal

.......
Mode 2
MRC hit

)
The abstract mode behaviour of buttons for any operation other than MRC is

captured by

(
1 0
1 0

)
since (with 1s in column 1) they keep or put the device in Mode 1. For MRC the

abstract mode action is represented by

(
0 1
0 1

)
since MRC takes the device to Mode 2 (i.e., the 1 in row 1), and keeps it there

(i.e., the 1 in row 2).
This abstract structure is now refined by replacing each ‘change mode’ element

0 or 1 with either a zero matrix or the appropriate concrete matrix that operates
within each mode. Thus if the button matrix for any action other than MRC is A
then the partitioned matrix

(
A

....... 0................
A

....... 0

)
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Fig. 2. The basic mode transitions.

represents the overall action A on the concrete two component space: it does the
same thing in either mode. If A is 2 × 2, this partitioned matrix is a 4 × 4 matrix
that effectively applies the transformation A in any mode, but always maps the
result to some state in Mode 1.

Similarly, the button matrix for MRC has partitions

(
0

....... M1...................
0

....... M2

)
Unlike the composite A matrix, this does different things in each of the modes.

This matrix effectively applies the transformation M1 in normal mode, Mode 1, and
maps the result to Mode 2. In Mode 2, however, M2 applies the second meaning
of MRC and maps the result back to Mode 2. Thus M1 is the button matrix for
MRC pressed once (after anything other than MRC ), and M2 is for MRC pressed
immediately after MRC (including any number of times).

In a simple Boolean-based state space, exactly one element of the state will
be True, corresponding to the state the device is in, and the matrices and state
space they operate on will be unambiguous. (This is how we treated partitioned
matrices in Example 3.) But if the basic state space is taken to be RR2, explicitly
showing the numbers in the display and memory, there is no way in that space
to indicate the current mode out of the choice of two modes. Thus we need to
introduce a flag to specify which mode the calculator is in. Each mode, then,
is represented by three components: 0 or 1, depending on whether this mode is
active; the display value d; and the memory value m. The explicit state vector,
in full, is then: (mode1 d1 m1 mode2 d2 m2), where mode1 and mode2 are 0 or
1 depending on whether the mode is active, and the following di mi pair is used
when the corresponding modei is 1 (and otherwise ignored).

The sub-matrices now need to be extended to handle the mode flag, and this is
a matter of putting a 1 in the appropriate place. For the two (mode-dependent)
MRC matrices M ,

Mi �→
(

1
....... 0...................

0
....... Mi

)
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For the simple (d m) space used throughout Example 2, with M1 =
(

0 0
1 1

)
and

M2 =
(

1 0
0 0

)
, we obtain a 6 × 6 matrix

MRC =


0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0


For clarity, I have drawn boxes around the two non-trivial sub-matrices. I repeat

the point (made earlier in §2) that the insides of a matrix is generally of no prac-
tical concern to designers; the purpose of showing it explicitly here is to provide
a concrete example (which any reader can check) to convince that the approach
works.

Thus we have shown that the modey MRC buton matrix can be constructed as
a matrix, and it is therefore a linear operator — everything the paper says about
matrices applies.

8.2 Modes and partial theorems

A pure modeless system might be defined as one with no partial theorems. The
previous section (§8.1) constructed a matrix to handle the mode-dependent be-
haviour of the MRC button; given this more thorough treatment of the behaviour
of MRC , it is now easy to establish (by straight forward calculation) various user
interface theorems about its action. This section reviews some theorems specific to
the MRC button (which the reader of this paper may easily check), but the ideas
are generalisable.

It is not surprising for some matrix M that M �= MM but that M i = M j

for some small i �= j. For example, as we can establish by routine calculation,
MRC �= MRC MRC but MRC MRC = MRC MRC MRC . Thus we can prove

MRC
n

= MRC
2

for all n ≥ 2

a theorem that implies that a user pressing MRC more than twice is achieving
nothing further, except being more certain that they have pressed MRC at least
twice. Note that if the MRC is unreliable (e.g., the key has got some dirt in it), and
the user therefore requires this assurance, they are on very uncertain ground since
MRC

1 �= MRC
2
.

A pair of interesting theorems, also easily checked by calculation, are that

AC MRC MRC �= MRC MRC AC

and

AC MRC MRC AC = MRC MRC AC

Thus, a user intent on zeroing the display and memory must do AC last, whether
or not they do it first. So although it is called ‘all clear,’ the user must remember
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to do a memory clear with MRC before AC . This restriction potentially creates
confusion — AC clears the display and MRC pressed twice clears the memory, but
to do both the user has to do them in the right order. Perhaps this explains why
users press buttons repeatedly to ‘make sure.’

We could define matrices for the digit actions 1 , 2 and so on, for the user
pressing digit keys (see the web site for details). We might näıvely expect for any
digit n that n MRC = MRC but this is not so as can be seen by premultiplying both
sides by MRC , thus: MRC n MRC �= MRC MRC . The meaning of the right hand side
is now obviously that of a double MRC press, whereas the left hand side ends with
a single press of MRC , so it is not surprising they are unequal — they must result
in different modes. This is an example of a ‘partial theorem’ (§4.2), partial over
actions rather than states, because any action A other than MRC makes it true that
A n MRC = A MRC . More formally

∀ A �= MRC , n ∈ {0..9}: A n MRC = A MRC

A corollary of this theorem is that n can be a sequence of digits, not just a single
digit. In fact there are many such theorems. Some certainly represent facts about
the sort of behaviour that is likely to be confusing, because they are simple theorems
(rules, equalities, involving only a few key presses) that are true most, but not all
cases (specifically, the probably rare cases when the user presses MRC multiple times
in succession). If a user generalises ‘most of the time’ to ‘all of the time’ they will
be wrong. Since the theorems represent possible confusing behaviour, the design of
the device should be appraised: can the design be changed to make the theorems
general, or are the exceptions to the theorems necessary for some tasks the device
should support? The partial theorems also beg empirical questions: in practice,
for a realistic balance of tasks, do users worry enough about the possibly rare
consequences to make a design change worthwhile?

8.3 Finding matrices from specifications

Computer algebra systems [11] are very powerful aids for doing mathematics. The
purpose of this brief section is to show what can be done, using one such sys-
tem, Mathematica [34], for concreteness. The code shown in below works fully as
described, and shows how we can go from a system implementation to a matrix
easily.

One way to implement an interactive system is to define each user action as a
function. In a computer algebra system like Mathematica, we can combine doing
algebra with programming functions directly. For example, a basic calculator with
a memory (and a display for showing the user the results of their calculations!) may
have a button AC , and we could write code such as

AC[{display , memory , stuff }] := {0, memory, stuff};
defining how AC operates on the state space: here, it simply sets the display to

zero. The ‘stuff’ are other components of the state space, such as whether the cal-
culator is on or off, what outstanding operators are (so = knows what outstanding
operation to perform), and so on. We could have state components representing
more user-oriented factors, such as the time users take. For example, we know the
position of every button and so we could use Fitt’s Law to estimate minimum times
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for the user to be able to move from pressing one button to the next: we could
have a component for time, and a component representing the co-ordinates of the
last button pressed:

AC[{display , memory , time , coords , stuff }] :=
{0, memory, time+moveTime[coords,{10,20}],{10,20},stuff};

. . . which supposes the AC button is at position 10, 20. Notice how the state has
now recorded the position of the user’s last press, namely at 10, 20, which in turn
will be used for the timing calculation for the next button press.

Definitions like these are sufficient to prototype interactive user interfaces for
on-screen simulations, and, as Mathematica provides a full programming language,
they can implement everything any device can do. The devices do not have to
be simple pushbutton type devices: it would be possible, say, to implement the
automatic suspension and enhanced braking systems of an advanced car and how
they interact with the user and driving conditions.

One way to obtain matrices from such definitions is to introduce a function proj
that projects the full state space to vector spaces that represent the features of
particular interest. We then ask Mathematica to find the matrices (if they exist)
that correspond to the operations such as AC . If the matrices do not exist, then
we have over-simplified in the projection or the generality of our assumptions. In
practice it is easy to find out what the problems are, but in this paper I shall ignore
these technical details.

For example, we can define proj to extract just the display and memory contents
from the state space:

proj[{display , memory , }] := {display, memory};
d = 6; example dimensions of full implementation state space

v = Array[Unique[], {d}]; symbolic state vector

d = 2; example dimensions of projected state

M = Array[Unique[], {d,d}]; symbolic matrix

M /. First@SolveAlways[proj[AC[v]] == proj[v].M, v]

Although the example here, to find the matrix corresponding to AC, is trivial (so
that I can show the full and complete code to solve the problem), a lot of work
can be done by the built-in function SolveAlways, which here is finding the matrix
M such that proj(AC(v)) = proj(v)M for any v. With the definition of AC given
above, this code obtains the matrix (

0 0
0 1

)
— which is one of the matrices used in §6. The code above was an illustration of

how an arbitrary function (here, AC) acting on a 6 dimensional state space could be
converted to a 2×2 matrix. We don’t always want to do this! As a general purpose
programming language, Mathematica allows the derivation to be generalised: we
can make AC a parameter, so we can find the matrix for any function, and we can
use nicer notation. We can define 〈f〉 to denote the matrix in the projected space
corresponding to any function f implementing a user interface action. We can now
directly establish homomorphisms such as
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〈f ◦ g〉 = 〈g〉 · 〈f〉
and we can use this notation to try them out in Mathematica.17 Here, if f was

the function implementing a calculator’s ‘add to memory’ button and g the function
that implements the ‘subtract from memory’ button, the homomorphism here shows
that the matrix corresponding to the functional composition of the functions for the
buttons M+ and M- is equal to the product of the two matrices corresponding to each
button individually. If this equation is typed into Mathematica (after appropriate
definition of the button functions), the answer True will be immediately obtained.
We might establish many laws of this form to convince ourselves that all matrices
we are using to analyse a user interface are correctly modelling some system we
have implemented.

I gave examples like this in the Section 6, where simple 2 × 2 matrices were
used. With Mathematica we could easily do similar calculations with possibly huge
matrices, derived reliably from real, working system definitions.

8.4 Design tools

Addressing the problems designers may have in using matrices in design is a matter
of some urgency. This paper showed that established, ‘simple’ interactive systems
that we all take for granted have non-trivial design problems. Whether these design
problems are always or sometimes actual problems for users — whether frequent,
critical, trivial or merely irritating — is another matter, but it seems plausible
that for many safety critical devices, such as electronic medical equipment and
avionics systems it would be wise to assume that avoidable design problems should
be avoided. Currently, HCI professionals are not addressing these issues, and if
interactive safety critical systems are not being designed to any higher standards,
we should worry for the HCI consequences. In many areas, I would argue that
designers (or at least some people on the design teams) have an obligation to learn
matrix algebra or an equivalent formalism to ensure that the systems they build
really do what they intend. Too often (in my opinion) the ‘HCI design’ team’s job
has been seen as instructing the programmer and other technical designers: these
people need to be involved in the HCI design, just like all the other disciplines such
as anthropology.

Modelling techniques can be made available to designers, fully automated or
partly automated: one can imagine automatic design tools that help designers do
with ease some of the sorts of analysis that in this paper have been spelt out explic-
itly and at length. Design tools can be used to generate accurate system models for
psychological modelling, and they would help reduce the gap between psychological
analysis and what a human-machine system actually does. Some initial progress
has already been achieved building matrix-based modelling tools [12].

See [26] for a wide range of design benefits from a matrix-based approach, in
particular showing concretely how a device can be simulated, analysed and have

17Details for programmers: The built-in function composition operator is defined as ◦, and the
equals operator is normally typed as == (to distinguish it from assignment, which is a single =

symbol). The size of the matrix and the choice of projection function can be defined in the usual
way by using Assuming[].
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various outline user manuals generated automatically and reliably.

8.5 Constructive use of matrices

The examples in this paper are all based on reverse engineering: if something is
already designed — indeed, an already working product — I can evidently present
its matrices, which might appear to be more-or-less pulling out of thin air. But
how useful are matrices for a constructive design process for ordinary designers,
who perhaps are not as interested in matrices as I am? Imagine a designer building
a system: how would matrices help during, rather than after building it? What
properties should be explored over unfinished designs?

In an unfinished design, we have to distinguish between partial theorems and
theorems that are tentatively partial because the design is not complete. As we
make forward design decisions, the design is not complete. This is a stark contrast to
the fully-informed hindsight that reverse engineering affords. Whilst the hindsight
of this paper could improve iterative design (e.g., if the manufacturers produce
new models based on the existing models), it is not so clear how it contributes to
innovation when less information is available.

It is not obvious that matrices can easily define all systems of interest, so any
athe research and development programme that developed a tool could anticipate
meeting a future barrier. It is possible that a designer must have some feature
(or feature interaction) that the proposed tool cannot support. This is a risk. In
contrast, if the design notation was general purpose (e.g., a programming language
like Java) rather than matrix algebra, then the research investment would obviously
be worthwhile: there are no likely barriers to progress — and certainly no self-
imposed barriers that competitors could avoid. The suggestion of §8.3 is that
some general purpose languages could support a matrix based design approach
automaticaly, but, even so, building tools for them would be a non-trivial task (and
probably pointless) because it requires implementing powerful computer algebra
engines.

To summarise: developing a good design tool for matrices will require consider-
able commitment (e.g., motivated by a safety critical design problem) and will have
to be done under assumptions of uncertain payoffs in the long run. In contrast,
and competing with such investment of effort, there are many Rapid Application
Development (RAD) environments for general purpose systems such as Java.

8.6 Model checking and other approaches

Model checking and theorem proving are standard techniques for establishing that
system specifications have desired properties. Typically they require expertise be-
yond basic matrix algebra, but the tradeoffs are very different — both approaches
are very well supported with sophisticated (though specialised) tools. Useful refer-
ences to follow are [8] for model checking, and [9] for theorem proving applications
in HCI contexts. Unlike the simple matrix algebra approach, promoted by this
paper, making effective use of either model checking or theorem proving requires
learning the particular notations used by tools that support the approaches, as well
as having a sophisticated understanding of the underlying mathematical logics.
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8.7 Modes and the ordering states

The text of the paper explained how partitioned matrices can be used to handle
modes and subsystems well. We gave the impression that any system can be han-
dled by partitioning. A partition is a partial ordering of states; for example, if a
system has two modes A and B, then we could partition the button matrices on the
assumption that all states in mode A are numbered less than all states in mode B.
Then we can easily write down a partitioned matrix. A different pair of modes, say
B and C, may impose a different partial ordering, and in principle it is possible for
there to be no consistent total ordering of states for all three modes. At first sight,
this problem does not matter, since if M is a partitioned matrix separating modes
A and B, we might use a matrix N such that M = PNPT to deal with modes B
and C. (See §7.3.)

We can thus handle ‘inconsistent’ modes with more than one matrix (in this
example, M and N , but M �= N even though they represent the same button
matrix). Is it ever the case that a user needs to understand all inconsistent modes at
once? If so, there can be no single partitioned matrix that represents this situation.
A counter argument is that if there is no such matrix, then we can claim the system
is badly designed. If it really is the case that such a system is ‘bad’ (for some senses
of ‘bad’), then a design notation that avoids such problems is to be welcomed. On
the other hand, it is possible that some tasks require inconsistent modes for good
usability reasons — and as this is a case that would be awkward to handle using
matrices we might take it as an argument against matrix algebra in user interface
design.

I know of no such examples, but finding any would either help sharpen the
boundaries of matrix algebra as applied to user interface design, or perhaps would
completely undermine the whole enterprise.

8.8 Complexity theory

The set of button matrices defining a system are (in an important sense) a complete
interaction definition. The matrices often have structure that can be exploited to
make more compact definitions. In general, a set of matrices can be compressed
depending on the Kolmogorov complexity, which is therefore a measure of the formal
complexity of the interactive system. If a user is to learn how to use a system in
detail they have to know the matrices or equivalent (and anything equivalent has
the same Kolmogorov complexity), so this complexity is a theoretical low bound
on the cognitive resources the user needs: how hard this knowledge is to acquire,
remember and recall for use.

Kolmogorov complexity is not the only measure of complexity. Fisher complexity
is based on a notion of observation: this might be relevant here, as we are concerned
with the complexity of the user model given that users observe system transitions
and their effects. Finding a complexity metric that is well defined and has some
or all of the appropriate cognitive properties would be a major but worthwhile
research project.

8.9 Pseudo inverses

If a matrix is singular it has no inverse, but this is a strict criterion that may have
little relevance to a user (see §4.2): if a user can undo an operation almost all of
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the time, rather than all of the time, this may be sufficient. For example, a button
may have an effective inverse except when the device is off — which means a user
would probably not have tried the action that had no inverse!

A more realistic criterion if A is singular is to find a matrix B such that AB ≈ I
within some specified accuracy, perhaps weighted with known or guessed probabil-
ities of users having the device in certain states. Of all the matrices B that satisfy
this, to find one that is ‘most’ relevant to users is a challenge: for example the
easier B is to factorise in terms of existing button matrices the easier a user will
be able to undo the action A .

There are standard generalised inverses, which exist even when a matrix is sin-
gular. For example, the Moore-Penrose pseudo inverse of A, written A(−1), satisfies
AA(−1)A = A. (In the special case that A is invertible, then A(−1) = A−1.) This
equation has various user interface design readings, for instance: doing any se-
quence of actions that are equivalent to A

(−1)
after first doing A can be undone

by doing A again; or it can be read as: if a user does A and changes their mind
(perhaps because A was thought to be a slip), they can do B , and if they change
their minds back (perhaps because doing A was not a slip — doing A was in fact
correctly intended) then they need only do A again. The Moore-Penrose pseudo
inverse is defined to minimise the sum of the squares of all ‘errors’ in AA(−1) − I,
so this is a form of partial theorem, AA(−1) ≈ I.

The pseudo inverse suggests new avenues of research, including the following:

—Given a partial theorem, find a design (from a matrix) that minimises some mea-
sure (in the Moore-Penrose, minimise the sum squared error). What measures
are effective?

—How should the measure be weighted from empirical data of user behaviour?

—The partial theorem here, namely interpretations of ABA = A, is clearly one of
a class of interesting theorems, some of which may more closely fit use scenarios,
particularly in representing forms of error recovery. Defining an effective reper-
toire of theorems, together with the conditions under which they are applicable,
would be very fruitful.

—and what other concepts from matrix algebra can be recruited to address user
interface design issues?

9. CONCLUSIONS

Standard matrix algebra gives detailed and specific insight into user interface design
issues. Our use of matrix algebra in this paper reveals persuasively that some
apparently trivial user interfaces are very complex. I suggest that the arbitrary
complexity we uncovered in some systems is a sign of bad design (it certainly is
bad engineering, if not bad user interface design), and that the arbitrary complexity
begs usability questions that should be addressed by employing empirical evaluation
methods.

This paper raises a question:
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If some user interface design issues are so complex they are only understandable
with the help of algebra (or other mathematical approaches), how can ordinary
usability evaluation methods (which ignore such formalisms) reliably help?

In areas of safety critical systems, this is a very serious question. At least one
response is to design systems formally to be simpler, so that there are plausibly
no such overwhelmingly complex usability issues to find, fix or palliate. Another
response is to use formal approaches, such as matrix algebra, to support design so
that designers know what they implementing: the results of usability evaluations
can then be used to help fix rather than disguise problems. Even where formal
methods appear not to be applicable, at least the designers would know, and they
would then take extra precautions, whether in their design processes or in the design
of the user interface features.

Reasoning about user interfaces at the required level of detail is usually very
tedious and error prone — and is usually avoided! Matrices enable calculations to
be made easily and reliably, and indeed also support proofs, of both general and
detailed user interface behaviour.

Very likely, as suggested in the box above, the extreme complexity of doing some
tasks (such as stoing to memory) are why users, designers and usability professionals
have all but ignored the poor usability of some devices. They are far too hard to
think about! The intricacy and specificity of feature interactions (as in the digital
multimeter) apparently encourage problems to be overlooked, or, more likely, never
to be discovered.

For the time being it remains an unanswered empirical question whether the
apparently unnecessary complexities of the Casio calculator or the Fluke 185 make
them superior designs than ones that we might have reached driven by the æsthetics
of matrix algebra. However, it is surely an advantage of an algebraic approach that
known (and perhaps rare) interaction problems can be eliminated at the design
stage, and doing so will strengthen the validity of any further insights gained from
employing empirical methods. Certainly, in comparision with informal evaluations
(e.g., [25], which comments on other Fluke instruments), a matrix algebra approach
can provide specific insights into potential design improvement, and ones moreover
that are readily implemented. There is much scope for usability studies of better
user interfaces of well-defined systems, rather than (as often happens) studies of
how users cope with complex and poorly defined interfaces.

Many centuries of mathematics have refined its tools for effective and reliable
human use — matrix algebra is just one example — and this is a massive resource
that user interface designers should draw on to the full.

Acknowledgements

Harold Thimbleby is a Royal Society-Wolfson Research Merit Award Holder, and
acknowledges their support. The author is also grateful for very constructive com-
ments from David Bainbridge, Ann Blandford, George Buchanan, Paul Cairns,
George Furnas, Jeremy Gow (who suggested partial theorems), Michael Harrison,
Mark Herbster, Tony Hoare, Matt Jones and Peter Pirolli.



50 · H. Thimbleby

REFERENCES

[1] M. A. Addison & H. Thimbleby, “Intelligent Adaptive Assistance and Its Automatic
Generation,” Interacting with Computers, 8(1), pp51–68, 1996.

[2] J. L. Alty, “The Application of Path Algebras to Interactive Dialogue Design,” Behaviour
and Information Technology, 3(2), pp119–132, 1984.

[3] J. R. Anderson & C. Lebiere, The Atomic Components of Thought, Lawrence Erlbaum
Associates, 1998.

[4] A. Blandford & R. M. Young, “Specifying User Knowledge for the Design of Interactive
Systems,” Software Engineering Journal, 11(6), pp323–333, 1996.

[5] J. R. Brown, Philosophy of Mathematics, Routledge, 1999.

[6] C. G. Broyden, Basic Matrices, Macmillan, 1975.

[7] S. K. Card, T. P. Moran, & A. Newell, The Psychology of Human-Computer Interaction,
Lawrence Erlbaum Associates, Hillsdale, NJ, 1983.

[8] E. M. Clarke, Jr., O. Grumberg & D. A. Peled, Model Checking, MIT Press, 1999.

[9] P. Curzon & A. Blandford, “Detecting Multiple Classes of User Errors,” M. Reed Little &
L. Nigay, editors, Engineering for Human-Computer Interaction, LNCS 2254, pp57–71,
Springer Verlag, 2001.

[10] A. Dix, J. Finlay, G. Abowd & R. Beale, Human-Computer Interaction, 2nd. ed., Prentice
Hall, 1998.

[11] J. von zur Gathen & J. Gerhard, Modern Computer Algebra, Cambridge University Press,
2003.

[12] J. Gow & H. Thimbleby, “MAUI: An Interface Design Tool Based on Matrix Algebra,”
ACM Conference on Computer Aided Design of User Interfaces, CADUI IV, edited by
R. J. K. Jacob, Q. Limbourg & J. Vanderdonckt, pp81–94 (pre-proceedings page
numbers), 2004.

[13] H. R. Hartson, A. Siochi & D. Hix, “The UAN: A User Oriented Representation for Direct
Manipulation Interface Designs,” ACM Transactions on Information Systems, 8(3),
pp181–203, 1990.

[14] I. Horrocks, Constructing the User Interface with Statecharts, Addison-Wesley, 1999.

[15] M. Y. Ivory & M. A. Hearst, “The State of the Art in Automating Usability Evaluation of
User Interfaces,” ACM Computing Surveys, 33(4), pp470–516, 2001.

[16] S. C. Johnson, “Yacc: Yet Another Compiler-Compiler,” UNIX Programmer’s Manual, 2,
Holt, Rinehart, and Winston, New York, NY, pp353–387, 1979.

[17] D. Kieras & P.G. Polson, “An Approach to the Formal Analysis of User Complexity,”
International Journal of Man-Machine Studies, 22(4), pp365–394, 1985.

[18] D. E. Knuth, “Two Notes on Notation,” American Mathematical Monthly, 99(5),
pp403–422, 1992.

[19] L. Lamport, “TLA in Pictures,” IEEE Transactions on Software Engineering, 21(9),
pp768–775, 1995.

[20] B. Myers, “Past, Present, and Future of User Interface Software Tools,” in J. M. Carroll,
editor, Human-Computer Interaction in the New Millenium, Addison-Wesley, 2002.

[21] W. M. Newman, “A System for Interactive Graphical Programming,” Proceedings 1968
Spring Joint Computer Conference, 47–54, American Federation of Information
Processing Societies, 1969.

[22] D. L. Parnas, “On the Use of Transition Diagrams in the Design of a User Interface for an
Interactive Computer System,” Proceedings 24th. ACM National Conference,
pp379–385, 1964.

[23] S. J. Payne, “Display-Based Action at the User Interface,” International Journal of
Man-Machine Studies, 35(3), pp275–289, 1991.

[24] P. Pirolli & S. K. Card, “Information Foraging Models of Browsers for Very Large
Document Spaces,” ACM Proceedings Advanced Visual Interfaces, AVI’98, 83–93, 1998.

[25] J. Raskin, The Humane Interface, Addison-Wesley, 2000.



User interface design with matrix algebra · 51

[26] H. Thimbleby, “Specification-led Design for Interface Simulation, Collecting Use-data,
Interactive Help, Writing Manuals, Analysis, Comparing Alternative Designs, etc,”
Personal Technologies, 4(2), pp241–254, 1999.

[27] H. Thimbleby, “Calculators are Needlessly Bad,” International Journal of
Human-Computer Studies, 52(6), pp1031–1069, 2000.

[28] H. Thimbleby, P. Cairns & M. Jones, “Usability Analysis with Markov Models, ACM
Transactions on Computer Human Interaction, 8(2), pp99–132, 2001.

[29] H. Thimbleby, “Analysis and Simulation of User Interfaces,” Human Computer Interaction
2000, BCS Conference on Human-Computer Interaction, edited by S. McDonald,
Y. Waern and G. Cockton, XIV, pp221–237, 2000.

[30] H. Thimbleby, “Permissive User Interfaces,” International Journal of Human-Computer
Studies, 54(3), pp333–350, 2001.

[31] H. Thimbleby, “Reflections on Symmetry,” Proc. Advanced Visual Interfaces, AVI2002,
pp28–33, 2002.

[32] H. Thimbleby & J. Gow, “Computer Algebra in Interface Design Research,” 2004
ACM/SIGCHI International Conference on Intelligent User Interfaces, IUI 04, edited
by N. J. Nunes & C. Rich, pp366–367, 2004.

[33] A. I. Wasserman, “Extending State Transition Diagrams for the Specification of Human
Computer Interaction,” IEEE Transactions on Software Engineering, SE-11(8),
pp699–713, 1985.

[34] S. Wolfram, The Mathematica Book, 4th. ed., Cambridge University Press, 1999.

[35] R. M. Young, “Surrogates and Mappings: Two Kinds of Conceptual Models for Interactive
Devices,” D. Gentner & A. L. Stevens (eds.), Mental models, pp35–52, Hillsdale, NJ:
Lawrence Erlbaum Assoc, 1983.

[36] R. M. Young, T. R. G. Green & T. Simon, “Programmable User Models for Predictive
Evaluation of Interface Designs,” ACM Proceedings CHI’89, pp. 15–19, 1989.

APPENDIX

A. SIMPLE MATRIX ALGEBRA

Matrices are rectangular arrays of elements, usually numbers (but see §A.1), that
can be added and multiplied. If M is a matrix, then mij is the conventional way to
refer to the element of M on row i and column j. A matrix with the same number
of rows as columns is a square matrix.

Matrices are usually shown between round brackets, hence

M =
(

m11 m12

m21 m22

)
for a two-by-two matrix. Matrices need not be square, but they must be rect-

angular, and they can be of any size or dimension, from 1 × 1 up to infinity. One
of the advantages of using matrices is that a single concise letter, such as M , can
refer to the thousands or millions of numbers that are the elements of M . This is
a great aid to comprehensibility.

Matrices are equal when they are the same size and all their corresponding ele-
ments are equal.

Matrices are added together by adding their corresponding elements, but mul-
tiplication is more interesting. To calculate a matrix product AB = C of two
matrices A and B, each element of row i of A is multiplied by each element of
column j of B. The individual products are added together to make element cij .
For small two-by-two matrices, the calculation is not too onerous:
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(
a11 a12

a21 a22

) (
b11 b12

b21 b22

)
=

(
a11b11 + a12b21 a11b21 + a12b22

a21b11 + a22b21 a21b21 + a22b22

)
Thus the product of two matrices A and B, written AB, is very convenient

notation for a complex operation.
Square matrices can be raised to powers: Mn means the matrix M multiplied by

itself n times. Thus M1 = M , M2 = MM , M3 = MMM and so on.
The special case of a matrix with one row or one column is called a vector . A

vector v is conventionally written in bold or (especially when written by hand)
with a bar, as in v. Multiplying vectors and matrices follows the same rules: rows
get multiplied point-wise by columns and added together. In this paper, all vectors
happen to be row vectors. The multiplication works as follows:

vM = (v1 v2)
(

m11 m12

m21 m22

)
= (v1m11 + v2m21 v1m12 + v2m22)

Notice that all four elements of the matrix M are required to specify the two
elements of the product vM . From the rules of multiplication, it follows that
multiplying a vector by a matrix (in that order) requires a row vector, whereas
multiplying a matrix by a vector (in that order) requires a column vector.

The identity matrix is usually written I, and is a square matrix that consists of
zero elements except on the leading diagonal, where all elements are 1. The 3 × 3
identity matrix looks like this:

I =

 1 0 0
0 1 0
0 0 1


Any matrix or vector multiplied by the identity matrix (of appropriate size) is

unchanged. Although matrices can be any size, we usually do not bother to specify
what size the identity matrix is: it has to be square, and it has to be the same size
as the matrices it is being used with — so its size is always implicit in the equations
where it is used. Any square matrix raised to power zero is the identity matrix (of
the same size): thus for any M , M0 = I.

The zero matrix 0 is a matrix with all elements zero. The zero matrix behaves
like zero in other algebraic systems: 0M = 0 (multiplying by zero is zero), and
0 + M = M (adding zero leaves unchanged).

The inverse of a matrix M is a matrix written M−1 and is such that M times
M−1 is the identity matrix; or in formula form: MM−1 = I. It is easy to show
that the inverse of a matrix is unique, but not all matrices have inverses. A matrix
with no inverse is singular.

There is a special function of matrices, called the determinant, which has the
property that the determinant of a matrix is zero exactly when the matrix has no
inverse. So if detA = 0 (the determinant is also written detA = |A|) then there is
no matrix B = A−1 such that AB = I or BA = I.

In general, it is quite tricky to calculate the inverse of a matrix, even if there is
one. See §4.1 for a discussion of the relevance of inverses to button matrices.

The transpose of a matrix M is written MT and has the rows and columns of M
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swapped. Thus

MT =
(

m11 m21

m12 m22

)
which swaps the off-diagonal elements m12 and m21. The elements on the diag-

onal are not changed when a matrix is transposed.

A.1 Partitions

Matrices are normally considered as arrays of numbers; in fact any values can be
used, provided they can be ‘added’ and ‘multiplied.’ Matrices themselves have these
properties, and therefore matrices can be built up, or partitioned, out of elements
that are themselves matrices, or submatrices. Consider a matrix M partitioned into
four submatrices:

M =

(
M11

....... M12...........................
M21

....... M22

)
Partitioned matrices are sometimes called block matrices, as their elements form

blocks. In this paper, I use dotted lines like ............. to visually clarify the structure
of a partitioned matrix. The dotted lines have no mathematical significance.

The submatrices, M11 etc, need not all be the same size, though they must
conform (i.e., be the right size) for the operations required of them. Thus if this
partitioning of M is used to multiply a state vector s, partitioned as (s1

... s2), then
the number of columns of s1 must equal the number of rows of M11 etc. If s and
M conform in this way, the partitions can be multiplied out:

(
s1

....... s2

) (
M11

....... M12...........................
M21

....... M22

)
=

(
s1M11 + s2M21

....... s1M12 + s2M22

)
Mathematically this is necessarily correct, regardless of the structure of the FSM

and buttons we might be describing.
We can see, for example, that if M21 is zero, the complete behaviour of the s1

component of the system can be understood even ignoring the s2 component:

(
s1

....... s2

) (
M11

....... M12...........................
0

....... M22

)
=

(
s1M11

....... s1M12 + s2M22

)
Whether a user fully understands s1 or not (they may understand a subparti-

tion of it), no knowledge of s2 need interfere with their understanding. Whatever
befalls the s2 component, we can abstract the properties of s1 and M11 indepen-
dently. Similarly we can understand the s2 component of the system completely
even ignoring the s1 component provided M12 is zero, and so on. Since it seems
desirable to design user interfaces where users can understand parts of the sys-
tem independently, designing systems with zero submatrices is a powerful design
heuristic. In fact, it is not just a design heuristic but a heuristic for calculation: if a



54 · H. Thimbleby

matrix can be factored into partitioned matrices with ‘big enough’ zero blocks, mul-
tiplication, as a calculation, can be speeded up. Whether this means that button
matrices with large zero blocks are ‘easier to think about’ is an interesting question
for investigation.

A.2 Algebraic properties

Algebra looks at the properties of matrices, rather than how calculations are done
with them — this is why algebra is an appropriate approach to user interaction: we
are interested in the properties of interaction, which matrix algebra defines. We are
not interested in how the user thinks, but we have a convenient way to calculate
with matrices (which is not available to the typical user).

Here are a few basic algebraic properties:

—Any matrix M times the identity is itself: MI = IM = I.
—The inverse of a matrix M is written M−1, and MM−1 = M−1M = I. The

inverse of a matrix is unique. Not all matrices have inverses, however. Inverses
are closely related to undo; see §4.1.

—Matrix multiplication does not commute. In general, AB �= BA, although for
some matrices AB = BA. For any matrix M , MI = IM .

—Matrix multiplication is associative: (AB)C = A(BC), hence we can write ABC
without ambiguity. Associativity is closely related to modelessness; see §6.

—If a matrix has numerical elements, its determinant is a number. If the determi-
nant of M is zero, det M = 0, then M is singular.

—The determinant of a matrix product is the product of the determinants: detAB =
detA detB.

—Matrices do not support division; A
B makes no sense, since in general AB−1 �=

B−1A.
—Transposition reverses the order of multiplication: (AB)T = BTAT. Other laws

for transposition include IT = I, and for any matrix MTT = M .

B. FROM FINITE STATE MACHINES TO MATRIX ALGEBRA

Finite state machines (FSMs) are a basic formalism for interactive systems. Fi-
nite state machines have had a long history in user interface design, starting with
Newman [21] and Parnas [22] in the 1960s, and reaching a height of interest in
user interface management systems (UIMS) work [33]; see [10] for a textbook in-
troduction with applications of FSMs in HCI. FSMs can handle paralleism, non-
determinism, and so forth (many parallel reactive programming languages compile
into FSM implementations).

Now the concerns of HCI have moved on [20], beyond any explicit concern with
FSMs — a continual, technology-driven pressure, but one that tends to leave open
unfinished theoretical business.

FSMs are often drawn as transition diagrams. A transition diagram consists of
circles and arrows connecting the circles; the circles represent states, and the arrows
represent transitions between states. Typically both the circles and the arrows are
labelled with names. A finite state machine is in one state at a time, represented
by being ‘in’ one circle. When an action occurs the corresponding arrow from that
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state is followed, taking the machine to its next state. Figure 1 illustrates two very
simple transition diagrams, showing alternative designs of a simple system.

A FSM labels transitions from a finite set. Labels might be button names, ON ,
OFF , REWIND , say, corresponding to button names in the user interface. In our
matrix representation, each transition label denotes a matrix, B1, B2, B3 . . . , or in
general Bi. Buttons and matrices are not the same thing: one is a physical feature
of a device, or possibly the user’s conception of the effect of the action; the other
is a mathematical object. Nevertheless, except where confusion might arise in this
paper, it is convenient to use button names for matrices. In particular this saves us
inventing mathematical names for symbolic buttons, such as ∨ . (See Appendix C
for a formal perspective on this convenience.)

The state of the FSM is represented by a vector, s. When a transition occurs,
the FSM goes into a new state. If the transition is represented by the matrix Bi,
the new state is s times Bi, written sBi. Thus finding the next state amounts to a
matrix multiplication.

If we consider states to be labelled 1 to N , then a convenient representation of
states is by unit vectors, es, a vector of 0s of length N , with a 1 at the position
corresponding to the state number s; under this representation, the matrices B will
be N × N matrices of 0s and 1s (and with certain further interesting properties
we do not need to explore here). Now the matrix multiplication esBi = et means
“doing action i in state s puts the system in state t,” and several multiplications
such as esBiBj = et means “doing action i then action j starting from state s puts
the system in state t.”

Instead of having to draw diagrams to reason about FSMs, we now do matrix
algebra. However big a FSM is, the formulas representing it are the same size:
“sB1B2” could equally represent the state after two transitions on a small 4 state
FSM or on a large 10 000 state FSM. The size of the FSM and its details are
completely hidden by the algebra. Moreover, since any matrix multiplication such
as B1B2 gives us another matrix, a single matrix, say M = B1B2, can represent any
number of user actions: “sM” might represent the state after two button presses,
or more. The algebra can represent task/action mappings too; suppose, as a simple
case, that a user wants to get to some state t from an initial state s. How can
they do this? However they as ordinary users go about working out how to solve
their task, or even using trial and error, their thinking is equivalent to solving the
algebraic problem of finding a matrix M (possibly not the entire matrix) such that
sM = t, and then finding a factorisation of M as a product of matrices B1, B2, etc,
that are available as actions to them, such as M = B1B2, meaning that two actions
are sufficient: sB1B2 = t. Putting the user’s task into matrices may make it sound
more complicated than one might like to believe, but all it is doing is spelling out
exactly what is happening. Besides, most user interfaces are not easy to use, and
the superficial simplicity of ignoring details is deceptive.

B.1 Aren’t FSMs too restricted?

Many elementary references in HCI dismiss FSMs (e.g., [10]). Since button algebras
are formally isomorphic to FSMs it is worth exploring some of the issues:

FSMs are large. FSMs for typical devices often have thousands of states, if not
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more. The size of a FSM is not a concern for this paper, though obviously it
would be a serious problem if one wanted to draw the corresponding transition
diagram (though [19] provides a solution). No finite state machines have been
or need to be drawn for this paper (though I drew two in the Figures for purely
explanatory purposes).

FSMs are unstructured. FSMs are indeed unstructured. Matrices, however,
can be partitioned; Example 3 in this paper and the handling of the MRC but-
ton (in §mrcap) shows how a hierarchical definition can be constructed using
matrices, and hence how a very large system can be modelled.

FSMs are finite. FSMs are finite and therefore formally less powerful than infi-
nite computational models such as push down automata (PDAs). A calculator
using brackets is readily modelled as a PDA, and therefore one might think it is
not a FSM. However all physically realisable digital devices are FSMs, whether
or not it is convenient to model them explicitly as such. The matrix approach
can be used to model finite PDAs.

FSMs are not relevant to users. Certainly, FSMs are mathematical structures
and they do not exist in any concrete form for users. Users need not be expected
to reason about the behaviour of FSMs: they are typically far too big, and as
a formalism they are so versatile that they have no structure that really helps
thinking about them. Obviously some FSMs will have interesting structure
(e.g., ones designed using Statecharts [14]), but in these cases it is easier to
think about the structure than the FSM itself. What the user can see, however,
is buttons and their effects. This paper shows that each button is a matrix; it
thus turns out that users — whether they know it or not — are doing matrix
algebra when they press buttons.

Systems are not implemented as FSMs. Most systems are implemented in ad
hoc ways, and determining any model from them is hard if not impossible.
In this sense, FSMs suffer from problems no different from any other formal
approach. Better, one would start with the formal model and derive (preferably
automatically) the implementation.
FSMs and their button matrices are sparse. There are many techniques for rep-
resenting them in a compressed form, and many of these techniques (e.g., black
box linear algebra [11]) are equivalent to conventional program implementation
techniques where the FSM structure is not explicit.

FSM models are impossible to determine. On the contrary, if systems are
developed rigorously it is not hard to determine finite models of user interfaces
from them: it is a routine application of a computer algebra system — see §8.3
for further details.

Overall, there is a balance to be had. It may not be possible to represent all aspects
of a system in a clear way using matrix algebra. But representing how components
of state are manipulated by the user can nevertheless reveal complications in the
way the device works, complications that may perhaps cause problems for users,
and will certainly highlight issues designers should consider. Indeed, we can talk
about user actions and their algebra without referring to state, and thus, at least
algebraically, we can hide the state size issues. Further arguments can be found
in [28].
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C. FORMAL DEFINITIONS AND BASIC PROPERTIES

It perhaps helps some readers to give at least one formal definition — there are
many ways and styles to formalise the approach.

A FSM is a tuple F = 〈S, Σ, S0, δ〉, where S is a set of states, Σ an alphabet
(e.g., actions, buttons), S0 ⊆ S the set of initial states, δ ⊆ S×Σ×S the transition
relation. The definition is standard.

This is a mathematical definition; we are not (in this Appendix) concerned with
what F is or how it is realised, only with its formal properties. We may think of
F as a box with buttons and electronics in it, but it could equally be a human, a
robot, or a horse, or any finite discrete system where we are interested in its actions
and their laws.

For some issues of human computer interaction, we might want to introduce
refinements to the FSM definition, such as representations for states. For example,
the user can see an image of the state i(s) on most systems (on simple systems i
may be a bijection, otherwise users cannot be certain of the state).

Choose n: 1..|S| ↔ S, a bijection, taking numbers to states.
Let B: Σ → M give the button matrix an action denotes. Specifically, for the

action σ ∈ Σ the button matrix B = B
[[
σ
]]

over Booleans is defined by the charac-
teristic function of the transition relation:

bij = δ(n(i), σ, n(j))

So for action σ, B is a matrix of Boolean values, with True elements when the
FSM has a transition for the action.

Analogously we define an intial state vector v:

vi = n(i) ∈ S0

Theorem. A FSM is isomorphic to a set of button matrices {B
[[
σ
]]
:σ ∈

Σ} equipped with matrix multiplication together with an initial state
vector v.

Matrices can have elements over any ring, Booleans, integers, reals, and so on.
It is briefer to write 0 and 1 instead of False and True, a convention we adopt. We
take the ring to be implicit from the context. In the body of the paper, explicit
use of B was avoided; hence by convention, for a button ∨ we simply denote
the corresponding button matrix ∨ instead of B

[[
∨

]]
; thus avoiding typographical

clutter.
Two important properties can immediately be stated.

—A deterministic action is one that has no more than one 1 in each row of its
matrix. If a FSM is deterministic, then the initial state S0 is a singleton (i.e.,
there is exactly one initial state), and the transition relation δ is a function
S × Σ → S. The paper only considers deterministic FSMs.

—An unguarded action is one that has at least one 1 in each row of its matrix.
Normally we are interested in deterministic, unguarded actions. A guarded action
is one that cannot be attempted in some states: this is unusual, but can happen
when systems have protections or guards that stop users reaching some buttons.
Normally, of course, a user can try to do actions whether or not the designer
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intended those actions to do anything: if the user can actually do the action, it
is unguarded and its meaning in all states must therefore be defined (so there
must be at least one 1 in each row of its matrix).

There are two extreme cases of button matrices. The null matrix, 0, is all zeroes
and is therefore guarded: but it is guarded in every state and therefore cannot
be used under any circumstances. It is a button (or lever, etc) that could be
removed from the user interface without changing the functionality of the design.
The identity matrix, I, has 1s down its diagonal (so for a matrix I, Iii = 1 and
Iij = 0 for all i �= j); it is not guarded but achieves no change in any state. The
action can always be done by the user, but the action does not change the state. In
both cases, null and identity, removing the ‘useless’ (merely decorative?) buttons
might improve the user’s performance, as the interface would be simplified.

It is trivial to check these properties. For exampl, the two matrices that can be
written down directly from the diagram in Figure 1b are guarded, thus indicating
either that there is an error in the system specification or that the designer has
assumed the actions are guarded by some shield, safeguard, lockout or other pro-
tection. A borderline possibility is covered by affordance [31], in that the physical
design of the system may sufficiently discourage the user from trying the action: as
an example, consider a toggle switch with on and off actions. When it is in its ‘on’
position, it is or should be ‘obvious’ that it cannot be switched even further on; or
instead of a toggle switch, there may be two buttons, which each press in and stay
in for their actions ‘on’ and ‘off.’ Once either button has been pressed in, it isn’t
possible to press it in further. In this case, the actions are guarded, and some rows
of the corresponding matrix will be zero.

If a button is non-deterministic, pressing it may achieve unpredictable results for
the user — this is generally undesirable, and a designer should check that button
matrices are deterministic. However, although we are certain what a button does,
we may not be sure what the user will do: which button will they press? If pi is
the probability that action Σi is undertaken by a user, then

∑
pi = 1 (since with

probability 1 the user will do something), and

∑
i

piB
[[
Σi

]]
is a stochastic probability matrix, which can be analysed to obtain statistical in-
formation about the user or about the design of the user interface. Such statistical
models are explored in detail in [28].

For 0/1 integer matrices

M = max(B1, B2, B3, . . .)

is the conventional FSM transition matrix, which has many simply-stated us-
ability properties. For example, Md gives, for all pairs of states, the number of
ways of reaching any state from any other in exactly d steps. The higher (Md)ij ,
then, in some sense the easier a state j is to reach from state i. In particular, if
any element of M |S| (or any larger power of M) is zero, a user will find it impos-
sible to reach some states. Unreachability is a generally undesirable user interface
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property. These two examples are provided as simple illustrations of the way that
formal methods can make different types of claim: either plausible or precise usabil-
ity claims. In the case of a user finding some tasks ‘easier’ the higher some elements
of Md, this in general will depend on the particular user interface and other concrete
issues. Thus this claim raises an empirically testable question for any particular
human/system configuration or task scenario. On the other hand, if a system has
unreachable states, all users will find certain tasks impossible regardless of specific
circumstances — and knowing this requires no empirical testing.


