
An improved insert sort algorithm

Olli Nevalainen,1 Timo Raita1† and Harold Thimbleby2∗

1 Department of Computer Science, University of Turku, Turku, Finland.
2 UCLIC, University College London Interaction Centre, London.

SUMMARY

A simple and efficient insert sort algorithm is presented in Java, and is presented in
stable and unstable variants. The usual double test of insert sort can be avoided by
using a sentinel, but sentinels create minor problems — such as choosing an appropriate
value and requiring extra memory. The insert sort here avoids both problems.

key words: Insert sort, Java, Quicksort, Sentinels, Warp.

Introduction

Many algorithms involve a search, and they typically require two types of test: one test
checks for the element being searched for, and another test is required to check the search
remains within the bounds of the data structure being searched. Both of these tests can be
combined into one by using a so-called sentinel. In particular, sentinels can be used in insert
sort algorithms to make them more efficient, effectively halving the number of tests in a loop.
An insert sort suggested by Thimbleby,1 which has the advantage of neither requiring extra
memory nor a special value (such as MAX VALUE) that cannot be sorted, however repeatedly
re-computes a sentinel value, an operation which itself incurs a time penalty.

Since the sentinel value for insert sort is an extremal element, one can be found and placed
in position in linear time, and this need only be done once. Using this idea, this paper gives
Java code to sort a given array a into increasing order. Algorithms are presented for both
stable and (the more efficient) unstable sorts.

Note. This document is a supplement to the previous paper (Software—Practice & Experience, Vol.XX,
No.XX:pp.XX–XX, 2003). It illustrates how an automatic code inclusion technique, warping, can be used
to produce a free standing paper with reliable code.
∗Correspondence to: H. Thimbleby, UCLIC, University College London, 26 Bedford Way, London, WC1H 0AP.
Email: h.thimbleby@ucl.ac.uk
†Professor Timo Raita died in April 2002.

2 O. NEVALAINEN, T. RAITA & H. THIMBLEBY

The new algorithm takes three steps to sort an array a: (1) determine the sentinel; (2)
insert it into the array; and (3) finally perform an efficient insert sort on the rest of a.

Note that in Java an array a has bounds from 0 to a.length-1 inclusive. Although the
algorithm can sort arrays of integers and other simple values directly, we use the Java
Comparable interface to make it more versatile: as written here, any array of a class that
supports the Comparable interface can be sorted. Otherwise for simple values, whether in Java
or other languages, expressions written here as a[i].compareTo(v) < 0 may be rewritten as
a[i] < v.

A full analysis of the algorithm can be found elsewhere:3 a possibly useful advantage of
the new algorithm is that its analysis is simpler than Thimbleby’s algorithm.1 There are of
course various implementation-specific optimisations (e.g., depending on the relative costs of
assignment and comparison), and which we will not consider here: see Knuth for the classic
reference on sorting.4 The algorithm’s steps are as follows:

1. Identify sentinel position and value in the array

int sentinel position = 0;
Comparable sentinel value = a[sentinel position];
for(int i = 1; i < a.length; i++)

if(a[i].compareTo(sentinel value) < 0)
sentinel value = a[sentinel position = i];

A common application of insert sort is as the final phase of quicksort.2 In this case, insert sort
is applied to a partially sorted array, and we know that the sentinel element will be found in
the lowest k elements (where k is some implementation-dependent constant, typically around
16, generally much less than a.length, as here). For use in quicksort, the code would need
to be rewritten to take advantage of this fact, but the time taken by the first step could be
improved in speed by a factor of O(a.length/k).

2. Insert sentinel into correct position in the array

The sentinel could in principle be inserted at either end of the array; it is however more efficient
to insert it at a[0]. There are two ways to place the sentinel in its proper position, depending
on whether an unstable or a stable sort is required.

For the more efficient unstable sort (one where elements that compare equal may have their
relative order changed), positioning the sentinel value takes just two assignments:

// unstable sort
a[sentinel position] = a[0];
a[0] = sentinel value;

For a stable sort the order of elements that compare equal must be preserved; this is achieved
by shuffling all the elements a[0] to a[sentinel position-1] up one, then inserting the
sentinel value at a[0]. Note that the sentinel was chosen to be the minimum element with the
smallest index, and therefore its assignment to a[0] will preserve the order of elements that
compare equal to it.

IMPROVED INSERT SORT 3

// stable sort
for(int i = sentinel position; i > 0; i--)

a[i] = a[i-1];
a[0] = sentinel value;

Stable sorts are required when wanting to preserve an existing order if objects are resorted
without determining their full value, as when comparing only one of several object fields —
as when sorting people, having first sorted by name, one might want to preserve the ordering
of names for people of the same age when subsequently sorting by age. When sorting simple
values, such as integers, an unstable sort is always sufficient.

3. Insert sort the rest of the array

Given that a[0] is now a minimal element of the array (namely the sentinel), the next step of
the algorithm, the insert sort itself, can therefore: (i) avoid any bounds check in its inner loop
test, since the current item to be inserted, v, is guaranteed to be inserted within range; and
(ii) start its outer loop at i = 2, since as a[0] is the sentinel the first two elements (namely,
a[0] and a[1]) of the array must be in correct sorted order already.

The final step of the algorithm is stable: thus the complete algorithm is stable provided the
previous step (2) chosen for the algorithm is the stable alternative.

for(int i = 2; i < a.length; i++)
{ int j = i;

Comparable v = a[j];
while(a[j-1].compareTo(v) > 0)
{ a[j] = a[j-1];

j--;
}
a[j] = v;

}

The two statement body of the while loop can be written more concisely and possibly faster
as, for instance, a[j] = a[--j], but this short-cut may be ill-advised in some languages as
it depends on the order of evaluation of the left and right hand sides (e.g., it does not work
in Mathematica). Clarity is more important, and it is generally better to leave such trivial
optimisations to compilers.

The source code used here is available at http://www.uclic.ucl.ac.uk/harold/warp.

REFERENCES

1. H. W. Thimbleby, “Using Sentinels in Insert Sort,” Software—Practice and Experience, 19(3):303–307,
1989.

2. R. Sedgewick, Algorithms, 3rd. edition, Algorithms in Java, III: Sorting, Addison-Wesley, 2002.
3. O. Nevalainen & T. Raita, “Insertion Sort with a Static or Dynamic Sentinel?” Technical Report,

Department of Computer Science, University of Turku, Turku, Finland, 1990.
4. D. E. Knuth, The Art of Computer Progamming, 3 (Sorting and Searching), Addison Wesley, 2nd. ed.,

1998.

