
Explaining code for publication

Harold Thimbleby∗

UCLIC, University College London Interaction Centre, London.

SUMMARY

The computer science literature discusses code and algorithms extensively, but not
always reliably. Tool support can help ensure integrity between code and explanation so
that published papers are more reliable.

A versatile, light-weight tool to support explaining code for publication is justified,
described and compared with alternatives. The tool works with Java, C and similar
languages, and provides support for publishing explanations of real code in LATEX, XML,
HTML, etc.

key words: Documentation, Java, Javadoc, LATEX, Literate programming, Loom, Publishing code,

Warp, XML.

Introduction

A basic view of how science is done is that scientists do research; they keep records in laboratory
books; they then submit selected material and reasoning to journals, which brings their key
discoveries and ideas to the attention of the rest of the scientific community. With computers,
of course, keeping and managing laboratory books and publications can be partly automated:
word processing and other tools are widely used.

Despite the possibilities of computer support, the quality of published program code in
scientific publications is often low. Numerous algorithms and code extracts published in
refereed journals and books contain errors, even to the point of not being compilable as
published. Some algorithms are published in pseudo-code, but the informality of pseudo-code
risks errors being overlooked or new errors being introduced when the pseudo-code is translated
by the readers of the papers to real programming languages.

∗Correspondence to: H. Thimbleby, UCLIC, University College London Interaction Centre, 26, Bedford Way,
London, WC1H 0AP. Email: h.thimbleby@ucl.ac.uk

2 H. THIMBLEBY

This paper surveys the relevant issues in scientific dissemination as they apply to computer
science, and the role and relevance of tools to support the explanatory process. Part 1 of this
paper, then, establishes the rationale for tool requirements and, as a side effect, should also
encourage computer scientists to take code explanation tools seriously.

Just as there is a continuum from laboratory notebooks to polished published results,
there is a continuum from explaining entire programs, as required for instance for internal
documentation, to explaining specific code and algorithms for journal publication. Literate
programming and related tools address the laboratory notebook end of code explanation,
though they can still be useful for publication. Part 2 of this paper reviews such tools.

The main practical contribution of this paper then follows. Part 3 is a discussion of the
requirements for publication tools and a comparison of two such tools. A new tool, warp, is
introduced and explained, and compared with an existing (but little known) alternative, loom.

This paper is followed by a complete stand-alone short paper, “An improved insert sort
algorithm” (by Olli Nevalainen, Timo Raita and Harold Thimbleby), presenting a new variant
of insert sort, which used the tool warp to ensure the published code is accurate and reliable.
The example is presented separately from this paper so that the value of warp can be assessed
in context without reference to the discussion of this paper interfering — publication tools
like warp must be transparent to readers who do not know or have in mind the details or the
rationale for using them. (One of the main reasons why literate programming is unsuitable for
general publication purposes is that its conventions need explaining to readers.) The paper
following this therefore looks quite unexceptional: it looks like an ordinary Software—Practice
and Experience paper. That is the point: it demands nothing new of the reader — but using
the tools described in this paper made the quality control process for its authors considerably
easier and more reliable; in turn, its readers may have more confidence in it.

The ideas expressed in this paper are not limited to explaining code reliably, though this is
the main area of concern: the approach has applications in any areas where publications include
formal text or pictures, in fields as diverse as chemistry to theorem proving, and even in papers
where the formal text is as simple as just requiring correct arithmetic. Further applications
include generating user manuals or diagrams automatically from data or processes defined in
programs.

Part 1
Publishing computer science

Science, understood most generally, is concerned with finding explanations of the universe and
its phenomena,2 and to do so it is guided by principles, such as Occam’s Razor, and a conviction
that reality is fixed. As a matter of fact, we cannot ensure reality conforms to our explanations;3

but in computer science, at least, we have an advantage. In computer science we design and
build the objects we explain, and we can change them — and perhaps we explain them again.
As computer scientists, we can in principle ensure that our explanations are correct. We can
do so by changing the explanations, changing the objects, or by establishing and maintaining
relations between objects and explanations so they remain consistent.

EXPLAINING CODE FOR PUBLICATION 3

As we know, though, there is both good and bad computer science; much computer science
suffers from poor explanation. Indeed, there is good and bad science in the real world beyond
computer science. Good science, specifically, is distinguished by being reproducible or, as John
Ziman puts it, consensible:4 its claims should be expressed clearly and precisely so that others
can either give their assent or find well-founded objections. Others should be able to build
directly on published work, with a minimum of guesswork or interpretation.

Computer scientists write programs and explain programs — whether to document them for
other programmers, to explain them in the computer science literature, or to write manuals,
or to provide help for users. As Abelson and the Sussmans put it in their classic Structure
and Interpretation of Computer Programs,5 “programs must be written for people to read, and
only incidentally for machines to execute.” Alan Perlis (who wrote the preface for their book)
wrote much earlier in 1966 of a “firm conviction that fluency in writing algorithms for one
another and reading those written is a fundamental property of a professional . . . ”6

Publishing code reliably means that people can use the code directly and benefit from
its correctness; it also means that people can independently check its correctness, efficiency,
portability and so on. Informal means of publishing code, particularly using pseudo-code, are
inadequate; errors are spread in the literature, work must be unnecessarily duplicated, and
when an error is detected one does not know whether this is caused by a fault in the original
work, a fault in authoring the paper, a fault in its printing, or a fault in understanding and
implementing its ideas. Fortunately, as this paper shows, better approaches are possible and
the process can be automated, and hence ensure to much higher standards the reliability of
published code.

Dunham,7 writing before the world wide web provided alternatives to conventional journal
publication, argued that programs should be published in full: full publication of program code
enables reproducible experiments; and the exposure of full publication encourages people to
write better programs. Conversely, without publication there can be little or no use of the
algorithms, because nobody knows exactly what they are. Furthermore, when algorithms are
stated vaguely or in informal language it disguises the difficulty of their real implementation.
We agree with his sentiments, but not that programs should necessarily be published in full:
part of the contribution of a scientific paper is the selectivity of the author in chosing the key
pieces of code to publish. Indeed, a clear fragment of code, as might usefully be presented in a
paper, is not necessarily one that is optimal or works nicely in a properly self-contained way
under a particular operating system, with error recovery, user interface, on-line help and so
on.

Surprisingly the whole enterprise of reliably publishing code in the computer science
literature has received scant attention, with perhaps only two notable exceptions. Attention
to the issues was focused during the early debates on whether the programming language
Algol 60 was appropriate to publish algorithms;6 and a renaissance of attention arose with
literate programming, which was popular over a decade ago. We will look more closely at
literate programming later in this paper.

4 H. THIMBLEBY

Publishing code

Programming and explaining are activities that involve human intervention, typically using
word processors. Since explanations of algorithms or programs often refer to code, parts of
the documentation or explanation will be similar if not exactly the same as parts of the
program. Thus there are opportunities for computer support to help explain code more reliably.
Even when paper is used (which, in fact, the current Software—Practice & Experience author
guidelines require) best practice, namely appropriate tools and procedures, can still be used
to ensure that what is printed is correct and accurately reflects the original code.

Programs are usually written in plain ASCII text, but documentation usually has a special
form. If a WYSIWYG word processor is used, program code needs editing to fix the font,
alignment, point size and so on; if a mark-up language (like XML, HTML or LATEX) is used,
then various program symbols need converting to the mark-up language’s conventions so
that they can appear properly in the published document. For example, the C programming
language symbol ‘&’ has to be edited to ‘&’ for HTML or to ‘\&’ for LATEX — and of
course this mark-up is no longer valid in compilable programs, so accurate conversion to
documentation cannot readily be confirmed with the direct help of a compiler. Even JavaScript,
a programming language designed to be embedded in HTML files, does not help: JavaScript
cannot be printed as HTML, nor is HTML-formatted JavaScript code valid JavaScript that
can be run.

The program Expect9 can be used to check whether examples generated by running programs
remain correct while the programs being explained are modified. Don Libes, the author of
Expect, notes that writing about a program forces the author to reexamine implementation
decisions: and he rewrote parts of Expect when he realised that parts of his explanation were
overly complex for no good reason.9 There are even examples where “programs for humans”
have also been improved by trying to explain them clearly: for example, shop signs explaining
discount rules were tested and improved, but greater improvements were made to readability
by changing the rules so they could be more easily explained.10 With proper tool support,
improvements to the code can be reflected in the documentation without further effort on
behalf of the author. However, without tool support, an author might be tempted to avoid
improving code because to do so would mean not just improving the code but also revising
the documentation further — a tedious process.

For writing journal papers, which typically only use very small fragments of code, the
overhead of learning or building tools may seem out of proportion to the advantages they
might provide. When one starts to write a paper — say, for a conference deadline — the
salient goal is usually to submit on schedule: thus building tools to automate a comparatively
small part of the process is an unwelcome diversion. Typically, then, a fragment of program
code is cut-and-pasted from a working program into the journal paper (if the code fragment
is small, it may even be retyped in situ). The code is then edited carefully to conform to the
documentation system’s requirements (and to the typographical requirements, particularly line
length and indentation of the journal or conference proceedings). This is rarely the end of the
matter, as the resulting explanation will be read and revised, no doubt repeatedly.

Inevitably some changes will be made, say, to improve the style of the program for the
explanation. For example, the documentation might read better if a name is changed, or some

EXPLAINING CODE FOR PUBLICATION 5

comment is added or altered . . . this is the thin end of the wedge, and a subtle threat to
integrity. The first may be a trivial change, so it perhaps isn’t worth going to the trouble of
making the corresponding change in the actual program. As time goes by, some changes will
not be made consistently and some not at all. Eventually the explanation and original code
will diverge to a point where there is no simple way to reconcile the differences.

The papers about Quine are an illustration of this problem. Quine is a system to generate
accurate documentation, and the papers were written in Quine itself to guarantee their
accuracy. Unfortunately the publishers edited the original paper11 to make it look better for
their journal, but their edits made it incorrect. The errors introduced were sufficient to justify
republication.12 This unfortunate outcome, as the republished paper noted, illustrates how the
entire process should be automated, not just the author’s part!

In comparison, using pseudo-code seems like an attractive option for explaining code, but
even that approach is not without problems. Take the Chinese Postman Problem,13 which
is closely related to the Travelling Salesman Problem, and has many applications. Many
references to it describe the algorithm in a mixture of English and mathematical steps: for
instance, the algorithm sketched in reference 14 cannot be made to work, if at all, without
very close reading of the rest of the paper, plus expertise in network flow algorithms. Some
publications (e.g., references 15 and 16) describe the algorithm entirely in English prose, so
at least there are no unexpected sources of confusion, but it is unhelpful for people who
want correct, executable algorithms. Some (e.g., 17) just sketch the main steps; indeed its
presentation is, in its own words, “rather informal.” Some (e.g., 18) provide a mixture of
mathematics and English, and provide code for most of the relevant routines, but the code
is difficult to translate into complete and correct algorithms (e.g., because what may look
like a simple variable is in fact a non-trivial dynamically bound expression). The definitive
review of the state of the art in the field,19 which has nineteen leading contributors, gives
no formal algorithms, and in one place says of certain efficient algorithms, “According to
our knowledge these very refined implementations were never materialized into machine-
executable codes . . . ” One wonders whether they would still consider them “very refined
implementations” if they tried running them!

In short, pseudo-code has become the established mode of publication for the Chinese
Postman Problem, and so even the very extensive literature on it is not an effective starting
point for getting a reliable algorithm. The algorithms that have been published can at best
be called quasi-algorithms, for they clearly fail the test of definiteness required in computing
science.20 Skiena’s comprehensive Algorithm Design Manual16 concludes that you have to do
it yourself.

Another example of the problem of pseudo-code is the case of Porter’s stemming algorithm.
Stemming is finding canonical forms of words; for instance, programmable→program,
programming→program. Porter’s algorithm was originally published using a non-
programmable notation,21 and this led to a proliferation of incorrect implementations. As
Porter himself says, “Three problems seem to compound: one is a misunderstanding of the
meaning of the original algorithm, another is bugs in the encodings, and a third is the almost
irresistible urge of programmers to add improvements. [. . .] Researchers frequently pick up
faulty versions of the stemmer and report that they have applied ‘Porter stemming,’ with the
result that their experiments are not quite repeatable. Researchers who work on stemming will

6 H. THIMBLEBY

sometimes give incorrect examples of the behaviour of the Porter stemmer in their published
works.”22

Rather than present clearly explained algorithms, it is easier to say that a program is
available (e.g., on the web); yet as Porter says, to extract an algorithmic description from
source code of a complete program is hard. The original author could save themselves much
effort and work by not preparing the algorithm for clear explanation (and hence publishes
faster). But which details of their program are essential? Which are accidental bits imposed,
say, by their implementation environment? Indeed, this was the problem with Porter’s classic
paper: providing complete source code was not an adequate explanation of the algorithm. It
takes considerable work to polish an algorithm for clear explanation. If it takes considerable
work to polish an algorithm, we need tools to make that work as easy and as reliable as
possible.

I myself have published papers in this journal and elsewhere that fail to reach the standards I
would now advocate. Taking just two recent publications of my own in this journal: I published
an algorithm in an unimplemented pseudo-code,23 and, in another paper, I used manual cut-
and-paste plus reformatting to present algorithms in Pascal.24 My experience (publishing 92
algorithm-related papers to date) is probably representative of the standards to which many
authors work. In almost every case my approach to preparing papers was relaxed — but it was
not required to be otherwise. Referees for ACM, BCS, IEEE and other peer reviewed journals
were happy with my sloppy standards. In my case the few exceptions were papers either
written in systems I myself wrote (e.g., Quine12) or were papers (e.g., reference 25) written in
Mathematica, a system that combines word processing and programming, and hence permits
the paper and the program to be more-or-less the same thing (Mathematica is reviewed below).

Even in a recent paper in ACM Transactions on Computer Human Interaction,26 which
presents the entire code relevant to the paper in an appendix, we formatted the code by hand
(manually marking it up in LATEX) to make it conform to the journal’s requirements. There is
no guarantee that the appendix is correct, other than that we proof-read it conscientiously! As
an author I made the code available on a web page, which at least avoids the risks of rekeying
for readers who wish to recover the code. The ACM journal did not require this.

Comparisons with other fields

Is this relaxed attitude to publishing programs actually a problem?
Because scientists are human and fallible, science has developed a collection of ethical

principles, including the requirement that data reported should be authentic and reliable,
that it should be obtained in ways that are described fully enough to be replicatable, and
that claims made should be clear enough to be testable by others. Different disciplines apply
these ideas in different ways: for example, the Proceedings of the National Academy of Sciences
requires authors to make unique material (specifically including computer programs) available
to non-commercial researchers.

In the field of cognitive psychology, John Anderson and Christian Lebiere promote
a “no-magic doctrine.” Their view is that the dissemination of theories in psychology
traditionally relied on a sympathetic audience to understand how the theories should be
applied in practice.27 They go on to cite some of their own past work that exploited this

EXPLAINING CODE FOR PUBLICATION 7

sympathetic culture that accepted loose descriptions of research in publications. But their
current programme of research now adheres to the no-magic doctrine. The doctrine is broken
down into six tenets, not all of which concern us here, but which for instance require that
there should be detailed and precise accounting of data. It is no coincidence that their no-
magic doctrine is enabled by the use of computer simulation in psychology: the formal nature of
computers allows experimental situations to be precisely specified and shared with the research
community. They take advantage of that fact to improve the quality of their published work.

The sciences that have reacted to the problems of reliability of published explanations are
older and more established than computer science. Of all fields, mathematics has the longest
history of publishing precise reasoning, and its notion of proof lies close to our notion of
algorithm. As in computer science, where there are some programs that are only described by
their results, and others that can be concisely explained in a short paper, mathematics has
some proofs that are too long to be understood and others where proofs are short and elegant.
Fermat’s Last Theorem and the Four Colour Theorem, to say nothing of proofs of computer
programs themselves, are examples that highlight the differing opinions on what constitutes a
reliable explanation of a proof for mathematicians.28

As in mathematics, then, and in other areas (such as weather forecasting), there are complex
computer systems that in principle cannot be explained concisely but which are, nevertheless,
useful contributions to science: we do not need to — and should not — impose the requirements
for explaining algorithms reliably on any and every publication. On the other hand, when an
algorithm seems to be presented as explicit code, every step should have been taken to ensure
the explanation is as reliable as it appears. Publication in any discipline ideally exposes to the
community an explanation that should be able to be reliably assessed for what it apparently
stands for.

Unfortunately, in computer science itself, as we saw above, it has become pretty routine
to describe programming ideas without publishing, let alone depositing, the relevant code,
programs or underlying algorithms for community access.

We must now ask why, and then see what can be done about it.
Partly, low publishing standards have become accepted because of the commercial value

of programs — it has become inappropriate for commercial reasons to publish code.29 Partly,
because programs are large. (Neither of these issues inhibits biologists from making data
available to the research community.) Partly, because it is easier to describe in unqualified
terms a program that, perhaps, does not quite work in the general ways implied. Partly,
because debugging is practically a permanent state of affairs, and adequate version control is a
nightmare — particularly since the relation between code and its explanation in a publication
is implicit and not addressed by automatic version control tools.†

It has become routine not to publish accurate code partly because computer science has
developed a culture where radical honesty30 is neither valued nor expected. It is actually
extremely difficult to get programs working correctly, and why bother when the essential idea
seems perfectly clear? The existing literature is now training researchers what the minimal

†Les Carr has an interesting experimental system for converting change files into unfolding explanations (which
he uses for lectures); see www.ecs.soton.ac.uk/~lac/annann.html

8 H. THIMBLEBY

levels expected are; it is not helping improve standards, and it is not helping introduce new
approaches or new tools to increase the reliability of the future literature.

Partly it is because computer science is in a hurry. In the 1960s, George Forsythe argued that
the publication of algorithms constitutes an important part of scholarship, but he warned that
the process of writing, polishing, refereeing, editing and publishing can hardly be undertaken in
less than two years.31 Even if we can work a little faster today, we still require the programming
notations we use to have a stable life of around five or so years for the final publication to have
much value — but, with few exceptions, the only stable programming languages are the ones
that are not widely implemented or widely used!

(One of the referees of this paper, perhaps noticing the opening of the previous paragraph,
said that this paper’s intended reader was “the author in a hurry.” Although good authoring
tools speed authors up, and therefore encourage authors to take less time preparing papers,
this is not the purpose. The purpose of the tools described later in this paper is to make
otherwise hard work routine and easy, and hence reliable; the purpose of this part of the paper
is to motivate authors to do the work, to use the proposed or other such tools to improve the
quality of their published work.)

A great deal of the published literature in computer science is about the commerical
applications of systems, software and hardware reviews and such like. Computer science and
business are so closely connected that the methods of science are often confused with the
methods of business, where disclosure without limitation would be unprofitable. For example,
a review of commercial Chinese Postman solutions32 says that vendors are “tight lipped” about
their algorithms. From the commercial point of view, then, there is no interest in and even a
resistance to clear exposition of algorithms.

Computer science must be unique in the continual triumph of hope over reality. Software
is unreliable. We tend to emphasise hope in tomorrow’s solutions, as exemplified by the
exponential growth of almost every performance figure, yet we forget that every new solution
bought represents a failed, obsolete solution that is unfixable because its workings are unknown
and hidden: Moore’s Law is a business, not a technical law.33 As commercial software warranties
show, customers are made responsible for fixing problems that should never occur, or which —
in any other field — should be and would be the manufacturers’ responsibility.34 Undoubtedly,
concealing and obscuring program code, regardless of its scientific hazards, is good business:
it is more profitable to sell upgrades than to admit or fix problems.

As professionals we are so inured to this continual progress that it seems perfectly reasonable
to publish code and shortly afterwards say that it does not work because the compilers have
changed, or because we have upgraded the operating system, or because the work was on a
computer that has now been replaced. Or perhaps we didn’t make a backup before we lost it?
There is a very, very fine line between publishing stuff that does not work or that cannot be
got to work because it is described vaguely, and publishing stuff that never worked, or never
worked quite so well as it has been written up. This is the computer science equivalent of
removing data points that do not agree with predictions, or worse. In the established scientific
disciplines any of this sort of behaviour would lead to outrage.35,36

If program code is not made available, how can it be tested? How can it be refereed? How can
the community develop the ideas without starting again? How can the discipline advance with

EXPLAINING CODE FOR PUBLICATION 9

confidence? In particular, if the publication itself does not provide an adequate description of
the algorithm, where are future workers to find it?

These problems are ironic because the computer itself can provide a stronger test of validity
than any that is available to other scientists in their work;37 furthermore the testing can be
automated, for instance using framework testing38 — so there is no long-term burden on the
author. And there is everything to gain.

Positive aspects of computer science publishing

Such a negative list of problems needs balancing with some undoubted successes. Certainly
there are some specialist areas, such as the ACM’s publication of numerical algorithms where
these problems have been recognised and addressed, but the sentiment is by no means universal.

Open source software (distributing program source code openly, allowing the code to be
criticised and fixed by others) has resulted in some unusually reliable programs;39 the internet
is encouraging authors to make their programs downloadable; Java applets allow authors to
publish documents that include working programs (though the source code still may not be
available).

In computer science we can make the tools to help make the necessary scientific assurances
easier to achieve. We review suitable tools later, but there are many simple and effective
approaches that are often overlooked: for example, using archives. There is a web site of
collected algorithms (http://www.acm.org/calgo/) so the source code of some algorithms
associated with refereed publications in ACM journals can be down loaded. CALGO specialises
rather on mathematical algorithms, and one wonders why algorithms more generally are not
made available, for instance for the numerous programs discussed in the Communications of
the ACM or in Software—Practice & Experience.

As noted above, being able to access complete source code, useful as it is, solves a different
problem than assuring that the published explanation of code (and examples of runs, if any)
is accurate.

Not just programs, but data too

One reason incorrect implementations of the Porter stemming algorithm proliferated is that
the original paper on the algorithm21 did not provide test data. People read the pseudo-code
description of the algorithm in the paper, and they implemented what they thought was
meant. Neither they nor the people they distributed their implementations to had any way
of checking their work against what Porter intended. Porter’s current work is now supported
with a database of test cases to avoid this problem.

Even when a paper explains an algorithm lucidly, there is a danger that a reader’s
transcription error will lead to mistakes. In particular, even though a well-defined programming
language is used in an explanation, some readers of the paper may need to translate the
program into a language that is accessible to them. If it is plausible that errors will creep
in, then there need to be mechanisms to reduce the likelihood that errors of any sort remain
undetected. Test criteria and, typically, test data should be made available (or programs that
generate test data should be made available).

10 H. THIMBLEBY

It is of course possible that the original author of a program has made a mistake in the
choice of test data, and thus their claims about their algorithm are faulty. Distributing the
test data is one way to help detect this sort of mistake.

Some fields of computer science, notably information retrieval and machine learning, have
made substantial test databases available. There are also web sites of XML data, and programs
to check XML standards conformance. There are many other examples, but it is by no means
standard practice. One wonders why the need for publishing test data (whether for pure science
or for profit) is not more widely recognised. For example, Java compilers would be more reliable
— and Java programs more portable (cf. this paper’s Acknowledgements) — if they could be
and were routinely validated against standard tests.40

The ethics of publication in computing science

When the community relies on unreliable publications, problems arise. In computer science
this is at least tedious; in medicine, for instance, lives are obviously put at risk. Medicine has
therefore developed a strong sense of appropriate ethical behaviour to be applied throughout
the publication process. The medical community has indeed detected numerous cases of
fraud and unethical publishing behaviour. It would be very strange if computer scientists
were exempt from the sorts of temptation to which medical researchers succumb — only
recently, even physicists had a chastening experience.36 Yet the ACM Code of Ethics and
Professional Conduct41 makes no mention of ethical behaviour directly relevant to maintaining
high standards in scientific publication, though “the honest computer professional will not
make false or deceptive claims about a system” (Code §1.3). Few computer professionals,
however, will be conscious of the connection between this exhortation and their own standards
of scientific publication.

There are many refereed computing science papers that “envision” work that is clearly not
yet working. Some imaginative papers do not even make their envisionment status clear. Such
papers make it hard for subsequent work to progress, as referees tend to reject later papers that
appear to repeat, test or develop prior work, even if that earlier work was purely envisionment,
as if the scientific copyright to the idea was held by prior imagination rather than by actual
fact. Taking conceptual ideas to something that really works uncovers important additional
details and qualifications that would not have been known but for the concrete effort.42 Yet
to work to these standards takes time, and risks others jumping in with outline papers that
take precedence — and then the developed work cannot (under current practice) readily be
published.

There is certainly scope for further ethical research to develop and apply the traditions of
reliable science and reliable publication to computer science — for instance to be clear about
the dangers of fudging, trimming and cooking published code. See Resnik for a general review46

— especially if these terms are unfamiliar! However, this paper is not the place to pursue in
any greater depth a discussion of the processes and ethics of publishing; instead we turn to
pragmatic ideas to help avoid errors in the first place.

EXPLAINING CODE FOR PUBLICATION 11

Part 2
‘Laboratory book’ tools for explaining code

Literate programming and related work

Literate programming was introduced by Knuth42,43,44,45 to combine programs and their
documentation to create readable programs. Numerous programs have now been prepared
using literate programming: sizable examples include Knuth’s own outstanding books (e.g., on
graph theory algorithms55). In literate programming, there is no duplication of either code or
documentation: there is only one shared copy. Code and documentation are interleaved in a
file, and as they are adjacent in the same file it is very much easier to keep them consistent.
Reducing the obstacles for editing both together, and increasing pride in the polished results,
has an invigorating effect on programming, as well as on dissemination.

Conventional literate programming systems support the internal documentation for entire
programs. When literate programs are processed, cross referencing, tables of contents, and
indexes are generated automatically. Literate programming breaks code up into separate
‘modules’; this makes the code easier to structure, but introduces various conventions the
documentation reader must understand. The overall result, as well as a compilable program, is
essentially a book (with automatically-generated cross references, contents, indices, etc.) but
one providing unusually good internal documentation.

In the past, few people wrote literate programs using tools they had not written themselves
— because if you built your own tool, you understood its behaviour and building your own
system was easier than fathoming out the workings of someone else’s tools. Furthermore, most
tools make assumptions, and circumventing the imposed approach to fit in with a particular
project may be harder than starting from scratch. Today, only a few literate programming
tools have survived the test of time.

Despite its advantages, after almost twenty years the use of literate programming for
publishing code in the mainstream literature is now negligible. In whatever ways people may
be using literate programming internally in software development projects (in lab notebook
type uses), it is evidently not addressing the needs of the broader research community
for publication. Probably the main reason for literate programming failing to survive in
the literature is that it imposes its own styles and conventions (e.g., modules), which
adds significantly to the ‘noise’ of a paper and makes it hard to conform to journal style
requirements. Ramsey’s paper in this journal,54 for example, required a section to explain the
notation being used.

Nevertheless literate programming is certainly a ‘good thing’ and numerous variations and
alternative approaches have been developed to achieve some or all of its advantages. The
following are examples, and illustrate the diversity of useful approaches:

Autoduck56 generates documentation from program source code, generating Microsoft Rich
Text Format (RTF) text, which is presentable in WYSIWYG applications such as
Microsoft Word. If programs are to be released to customers, technical authors can add
examples and other documentation to the source code in order to generate programmer
documentation. Autoduck can be used to generate online hypertext help for programs.
Autoduck supports much more extensive documentation than Javadoc (q.v.) does, but

12 H. THIMBLEBY

it is much more complex than Javadoc; its limitations for writing about programs are
similar.

Doc57 allows TEX code to be documented in such a way that the code can be used
directly (because documentation is simply written in standard comments), but if the
documentation is wanted a ‘driver’ file is used to obtain it. Since documentation makes
files larger, and hence slower in an interpreted system like TEX, the partner system
docstrip can be used to remove documentation.

Haskell58 is a programming language with two styles: in the standard one, comments are
conventional (i.e., text on lines following a -- code, corresponding to Java’s //, is
ignored); in the converse literate-style, comments and program are ‘swapped,’ so the
documentation itself is the default, and lines of progam are ‘uncommented’ (by > codes).

Javadoc59,60 generates program interface documentation for Java: it is therefore more
specialised than literate programming, though the result is intended to be browsable
hypertext rather than printed. Javadoc uses an extended Java comment and is invisible
to Java programming tools. It is not sensible to modify the generated documentation,
and the approach is not suitable for writing about programs.

LiSP2TEX61 is one of several systems that places program code in the documentation. A
tool reads the code, evaluates it, and merges the results into the documentation. This
approach assumes that the source documentation fully defines the program.

Loom62,63 inserts named sections of program code into documentation. It is described more
fully later in this paper, in Part 3.

Mathematica64 is a combined word processor and powerful symbolic mathematics package.
There are Mathematica journals that take Mathematica articles and publish them
directly. Although documentation and code can be interleaved, it must be in the right
order for Mathematica, and it is not easy to omit code (such as initialisation) that one
may not want to write about. There are literate papers written in Mathematica,65 and
examples using concealed code, just publishing the explanation and output.66

Noweb52,53 is a simplified literate programming tool, following closely in the style of Knuth’s
approach, but which aims to reduce the learning and effort hurdles to using literate
programming. Noweb can convert a literate program into a conventional compilable
program, by putting the noweb explanation into ordinary comments: this makes the
resulting program more accessible, but unconstructively encourages programmers to edit
a copy of it, not the actual explanation. Noweb has been used for publishing programming
books, such as Dave Hanson’s book on C programming,67 and it has been used (by its
author) to publish papers in Software—Practice and Experience.54

Quine11,12 is a logic language designed to generate manuals. The language includes an
explanation mode, where text between the symbols { and } is copied directly and logic
expressions and their evaluations are formatted in HTML unambiguously. The published
papers were generated in HTML using the system to explain itself.

EXPLAINING CODE FOR PUBLICATION 13

Soap68 is mentioned here because it is a really old system: some people have been concerned
with these issues since at least 1977! Soap provides a converse to literate programming:
it could read documentation to extract compilable source code — and therefore helps
check that what documentation says is still accurate.

Warp is the main practical subject of this paper, and is described more fully below, in Part 3.

A wider review and details of the current state-of-the-art in literate programming, as well as
tools to download, can be found at www.literateprogramming.com.

Part 3
Publication tools for explaining code

Warp and loom

Published papers are edited by hand, and often go through a long and arduous life-cyle; papers
are often revised and, in some cases, have to conform to changing typographical requirements
as they are resubmitted to different journals. Equally, the program code on which a paper is
based has to conform to specific programming language, compiler and system requirements in
order to work at all.

We now summarise, after the wide-ranging discussion in Parts 1 and 2, the now self-evident
requirements for tools for supporting the reliable explanation of code for publication. Each
requirement is followed by LP, L or W, depending on whether the requirement is met well by
literate programming in general, or more specifically by the tools loom or warp (which will be
described in more detail later).

1. As a paper is revised, it is very easy for the text of the actual program to diverge from the
text of the paper: program compilers and word processors have quite different criteria,
and the author has quite different goals when working in each context. Under these
circumstances, to ensure published papers are reliable, it makes sense to share common
text automatically as much as possible. The key idea is to make it very easy to keep
together and maintain what are normally separate — and sometimes independent! —
documents: shared text should only be edited in one place. This is basically standard
good software engineering practice: don’t duplicate information unnecessarily, otherwise
discrepancies soon accummulate. The requirement is to establish and automatically
maintain a reliable relationship between parts of two or more files: the explanation will
include or refer to fragments of program text, and the program will include (as substrings
or files, or in some other way) fragments that are to be included in the documentation.
LP, L, W.

2. The shared texts (i.e., the original program code eventually appearing in the explanation)
could in principle reside anywhere: in separate files, in program files, or in documentation
files. Management will be easier if the number of files that require human attention is
reduced. Since program development tools are usually sophisticated and interactive, and
encourage the author to edit program text, all shared text should originate and reside in
the program source file, where it can be edited and used without restriction to support
all normal programming activities (e.g., testing), with no overhead. LP, L, W.

14 H. THIMBLEBY

3. More specifically, the original program source files and the documentation source files
must be or remain in their standard formats; that is, they must be able to be edited and
manipulated directly using existing development/word processing tools without affecting
the integrity of the shared material. W.

4. The tool must be light-weight and so easy to use that it does not encourage any manual
touching-up — even when starting to write a paper, when there is ‘hardly anything to
do’ and it looks seductively easy to do it all by hand! In contrast, a heavy-weight system
would tempt authors to do it all by hand because to do so would seem easy in comparison
to getting up to speed with the tool. L, W.

5. The tool must scale, and not introduce fifteen or more of its own problems with larger
projects. It should work equally well with small programs and small papers, as with
large programs and long papers. In particular, the tool should be useful throughout
the lifecycle of the document, as it goes from the earliest stages of drafting to final
publication. L, W.

6. Whereas literate programming supports the documentation of an entire program,
publication requires the author to be more selective (except for the very shortest
programs). The tool must permit any fragments of code to be explained, and in any
order that suits the explanation. L, W.

7. The approach itself must not need any special explanation when used in papers or other
documents — it should simply embed fragments of code as required without imposing
any notation or conventions on the reader of the paper. (Literate programming systems
are excluded by this requirement.) L, W.

8. The tool must work with real code written in real programming languages. Ideally the
approach should be language independent. LP, L, W.

9. The tool must make all necessary translations between the programming language and
the text processing system (e.g., if the programming language is Java and the text
processing system is LATEX, then ‘{’ has to be converted to ‘\{’, etc.). LP, W.

10. Given that the world wide web is such an important tool for dissemination, the tool
should provide support for publishing on the web. Obviously most authoring systems
can generate material that can be rendered for web pages (e.g., by post-processing to
PDF or other formats47), but the tool should ideally support more flexible hypertext
authoring directly, at least in HTML and XML. W.

11. Since there are numerous programming languages and numerous text processing systems,
the tool must be extensible — and it must be extensible (e.g., by using post-processors)
in a well-defined way. L, W.

12. The tool must have a “commensurate level of complexity”: sufficient to solve the core
problems, but not having so much generality that the complexity of parameterising
and using it is a hurdle in itself. (The complexity of literate programming systems is a
significant hurdle limiting their widespread use.48) Commensurate complexity has been
widely promoted through the slogan, “make the simple easy and the complex possible.”
L, W.

EXPLAINING CODE FOR PUBLICATION 15

Such a list of requirements can be met in many ways, especially as compromises have to be
made. What is easy and effective to use depends, for the author, on their experience, the
platform they work on, and the community they work within.

Warp: An approach to explaining code reliably

Warp is a tool for supporting the reliable publication of code that satisfies the requirements
listed above. Warp works with C, C++, Java, etc, but we will explain it here using Java.
Warp is itself written in Java. Warp would need trivial modifications to work with some other
programming languages, say, Prolog or LISP: the current version of warp does not permit
programming language comment conventions to be changed.

Although warp has various features and options, we will introduce each main feature in
turn, gradually building up the complete picture. First, at its simplest, warp is run from the
command line, operating on (as it may be) a Java file:

warp prog.java

This basic use of warp outputs the program prog.java but marked up in XML, which is
a widely-used, general-purpose international standard markup language.49 Although users of
warp would probably not look at the XML, it helps understand warp to see how it translates
typical parts of Java programs:

Java fragments Generated XML
"A string" <string>A string</string>
/* comment & stuff */ <block-comment> comment & stuff </block-comment>
identifier <name>identifier</name>

Thus warp allows any program to be considered directly as XML.
The complete XML translation of the program generated by warp can now be processed

with any of the wide range of the available XML technologies. Once warp processes Java to
XML, it is then routine for tools like XSLT50 to generate explanations. The schematic below
shows how warp and XSLT together might generate a LATEX file corresponding to a source
Java file.

Java file ✲ warp ✲ XML file ✲ XSLT ✲ LATEX file

An advantage of this approach is that XSLT, which is programmable, can be used to generate
any format, not just LATEX as shown here. However, since standard XML tools (e.g., XSLT,
XPath) are complex and have a daunting learning-curve, warp has been designed so it can
do all the necessary processing itself without using them. In fact, warp can be used without
generating any XML at all. Typically, for most purposes, then, warp will be used to extract the
relevant code fragments directly, which it converts to any of various documentation formats
as required, including LATEX, ASCII and HTML. No intermediate XML files are generated

16 H. THIMBLEBY

if warp is used in this way, and the author does not need to use any XML tools; the small
disadvantage is that the author has to use warp’s fixed internal transforms (in contrast, XSLT
is fully programmable and can be set up to conform to any specific conventions the author
requires).

Java file ✲ warp -latex ✲
transforms
internal ✲ LATEX file

As far as warp has been explained so far, it has no feature to help isolate the specific parts
of a program that may be needed in an explanation. Warp therefore additionally allows a
programmer to introduce arbitrary XML into programs, and then the relevant parts of the
program can be more easily picked out by warp, XSLT or other tools. Here’s how it is done . . .

Java allows comments:

// ordinary Java comment on one line

/* or block comments
over several lines

*/

which simply get ignored by the Java compiler (and sometimes by the programmer). Warp
marks these up in XML as described above, except when the comment text is XML it gets
copied directly. So a Java comment containing XML like /* <highlight> */ is translated
to just <highlight> — the comment markers, /* and */, themselves disappear and no
<block-comment> tags are generated by warp.

XML in a comment like this could be used to highlight part of a Java program up to a
following comment like /* </highlight> */ which, matching the earlier <highlight> tag,
would end the highlighting.

Since the extra XML is introduced into programs is standard Java comment it is completely
ignored by the Java compiler and has no effect on the meaning of the program. With this
approach, warp ensures programs correspond directly to XML in a straight forward way and
that programmers can very easily introduce additional XML for any purpose, and all while
using standard Java.

Typically XML is written into comments in programs like this:

// <explain id="helloworld">
System.out.println("Hello World!");
// </explain>

The tag name (here, explain) is arbitrary and can be chosen by the author for any purpose.
The XML tags and attributes can be used by XML tools to extract and translate the
corresponding Java from the entire source file; in this simple case just one line of Java has been
defined. However it is generally easier to use warp for the whole process without involving any
XML tools: thus to pick out the Java code above and convert it to LATEX directly, warp would
be used as follows:

EXPLAINING CODE FOR PUBLICATION 17

warp id=helloworld -latex prog.java > helloworld.tex

Or to convert it to HTML:

warp id=helloworld -html prog.java > helloworld.html

In both cases, the warp parameter id=helloworld is a simple pattern (in these examples) that
matches the attribute of the <explain id="helloworld"> tag, and causes warp to extract all
text which is that tag’s content, that is, up to the matching </explain> end tag. The -latex
flag makes warp mark up that code to LATEX; in turn, the -html flag makes warp mark up
that text to HTML. In both examples above, the formatted output of warp is saved in a file,
helloworld.tex or helloworld.html respectively, for further processing.

This trivial example could be made more interesting by including further markup in the
Java program, for instance:

// <explain id="helloworld"> <h1>Hello World Example</h1>
// <p>This is now a fully self-contained example!</p>
System.out.println("Hello World!");
// </explain>

The final feature of warp to describe here extracts XML attributes that have been introduced
in comments, rather than the Java code. Warp outputs lines of text, in this case it would be
just helloworld. This mode of warp can be used to identify the code fragment or fragments
the programmer intended to be explained: that is, ones that have been marked-up with XML.
(In the short paper following this, the Java source file has four such fragments, and they all
have different attributes.) The attribute value (here, helloworld) can be chosen so it is also
a suitable file name stem, so it is quite easy to write a script that extracts every code section
and puts each in an appropriate file, or processes them in other ways.

In summary, warp is trivial to use for most of its intended applications, but the full power
and generality of XML is available for authors who wish to do complex operations.

Although warp helps explain code, it has many other uses, since XML is so versatile. Here
are some possibilities, all of which are easily supported:

• A Java program can be converted to XML using warp. Arbitrary transformations can
be performed on the XML, for instance embedding data structures generated by other
programs. XSLT can then translate the warped XML back to Java, where it can be
edited and debugged as usual. If the data structures later require updating, warp can
be used to translate the program back to XML, and then the XML tools can be used to
update the data, and so on. Thus we have the advantage of normal Java development,
and automatic insertion of correct data — a powerful generalisation of techniques used
in some Rapid Application Development tools.

• A Java program may have a complex data structure, such as a graph. Warp can extract
the data structure to an XML file, and the Java data can then be processed to display
it graphically or to check it has desired properties.

18 H. THIMBLEBY

• Programmers are often unable to finish programs in one sitting, and often have to
create stubs to be completed later. Often comments get littered with notes, to remind
programmers to finish a piece of code in a particular way. Warp can be used to identify
stubs and other notes-to-programmers, which can then be extracted easily as reminders
any time in the future. For example, writing a comment /* <note>Must add error
code here</note> */ can be picked out by warp’s patterns (or by using XML tools)
along with other notes, and hence help the programmers to work more reliably.

• The opposite of explaining a program reliably might be setting an exam paper on
programming. Warp can be used to generate reliable exam questions: first with the
code, so they can be checked by examiners, then later omitting code to set the exam
paper for students; or it could highlight code from working programs that students are
expected to explain; and so on. In all cases, warp helps ensure the question is accurate,
and based on a compiled, working program.

Finally, the current version of warp is intentionally simple; it does not do parsing,
prettyprinting and many other functions that might be desirable for other purposes than
for which it is intended.

Using warp

This paper is followed by a complete example to show the results of using warp in a realistic
context, written and formatted as a typical short paper to Software—Practice & Experience.
The example was processed directly by warp (and nothing else) without using any XML tools
at all, and the resulting paper was submitted to the publishers in LATEX, so they have had
very little cause to modify it whether deliberately or accidentally.

One should note that the code published in the short paper does not constitute the entire
code of a complete program: for example, Java’s use of import statements is irrelevant for the
purposes of the paper, and therefore none appear in it; likewise, the actual program provides
a test harness (that can, amongst other things chose between two different implementations)
but none of that appears in the paper. Nevertheless, the code shown in the paper is the exact
code and it has (along with its import and other necessary support statements) been checked
by a compiler, and has been tested and run successfully.

Warp is used from the command line, and a file or files (presumed to be C, C++ or Java,
etc) are converted to XML or other specified format (ASCII, LATEX, . . .), as follows:

warp -format files . . .

Convert files to the specified format (currently implemented: -ascii, -html,
-javascript, -latex, -xhtml and -xml); the default format is XML. Case is not
significant, so purists can write -XML or -LaTeX if they wish.

Any XML comments in the files are copied directly by warp, but with the comment
symbols stripped (unless the -all option is used: see below). An “XML comment” is
any comment text (within /* . . . */, or after // . . .) starting with < (perhaps preceded
by blanks), ending with > (perhaps followed by blanks), and containing lexically correct
XML. This is a more relaxed restriction than being properly well-formed XML, since it

EXPLAINING CODE FOR PUBLICATION 19

is unnecessary to match start and end tags within the comment (though if XML’s CDATA
or <!-- tags are used these would have to be contained entirely within the program
comment).

When generating LATEX, warp ‘left shifts’ code to remove any uniform indentation,
though the original indentation can be restored if desired (e.g., by using a LATEX macro).
Thus methods and nested blocks, and so on, can be explained without their original
nesting looking inappropriate in the context of the final document.

warp -format pattern files . . .

When a pattern is specified, warp extracts, converts and concatenates all matching XML
sections of files . This is warp’s normal mode of use.

warp pattern files . . .

List all matches of the pattern in files . The output is formatted as lines of text in the
same syntax as a warp pattern, and it can therefore be reused in another run of warp
(e.g., in a shell script).

warp -format -all files . . .

Convert files to the specified format, ignoring the special status of XML comments, and
hence including comments containing XML. (The flag -all simply stops warp recognising
XML in comments.) The main purpose of -all is to help authors review complete code
within the relevant document processing system.

warp -help

Provide summary help of warp (including some details we do not cover in this paper,
including the use of XML DTDs, and a description of patterns).

Comparing loom and warp

Janet Incerpi and Robert Sedgewick’s Loom62,63 was used originally for Sedgewick’s book
Algorithms.8 Loom has no published description (there is only an example of its use62): a
detailed comparison of loom and warp is therefore justified here.

Loom extends comments by matching forms /* include name */ to /* end name */.
This defines named sections of code, and the effect is similar to warp’s XML approach, which
would be to use /* <include stuff="name"> */ to /* </include> */.

A loom documentation file then includes the named sections using %include commands:

%include file section

or

%include file section | command

which (when processed by loom) are replaced by the named section, which loom locates in
the named file. If a command is specified, the named section of code is filtered through it (the

20 H. THIMBLEBY

command is a Unix filter, and could be used possibly even to compile and run the section of
code to insert its output).

This is similar to warp, except warp writes the named section to a file and the documentation
system reads the file. Loom can transform the program text inside the documentation, by using
the command filter; in contrast, warp processes the file outside of the documentation — but
this allows the documentation to use a standard include in warp, rather than a special syntax
as loom requires. Warp can be used directly with proprietary tools such as Microsoft Word
(which can include files), whereas loom would need to be modified to parse the Word format
(and it would create two versions of the documentation file, one with and one without the
code included). Just as warp has various built-in document formats, an obvious extension to
loom would be to support various include formats.

Apart from the syntactical details, a main difference to using warp and loom is that loom
must process all files together — both program and documentation — whereas warp only
processes the program. If the author completely forgets to run loom, then the formatted
documentation will contain no code; if the author forgets to run warp, however, the code files
will not be created and there will be errors reported by the formatter (or an older version of
the code will be used if the files are still available).

Warp and loom are compared in more detail in Table I.
Neither loom nor warp will be the last word in tools for explaining code. Fortunately both

of them are small, simple programs: developing and evaluating new tools in this area will make
a worthwhile and interesting project.

Confidence

The point of using an approach like loom or warp is to increase confidence in published results;
moreover sufficient integrity has to be achieved with reasonable cost. We now discuss issues
affecting confidence a little more closely.

The opposite approach to using markup would be to use a WYSIWYG mechanism, such
as publish-and-subscribe:51 but in all commercial implementations, the design goal of “ease of
use” makes it far too easy to make changes in one place and not the other. Small edits can
lead to unnoticed and unknown consequences, particularly as a WYSIWYG system leaves no
mark up trail to show explicitly that changes have been made.

When writing internal documentation, as opposed to explaining code, an issue is to ensure
that all of the program is documented, or at least that nothing relevant is omitted from the
documentation. On their own, loom and warp, but unlike a literate programming system,
cannot make any such guarantees. However, for writing about programs, it does not matter
— indeed it is helpful — when bits are concealed.

Any process that allows explanation to take full advantage of a typesetting system is open
to abuse. One might insert hand-crafted code that looks like it has been warped, but has
none of the warranties doing it automatically achieves. Warp itself permits anything that
XML permits, which is a lot; however, when used with its internal filters, what the author
can do is more restricted (e.g., code cannot be deleted without going to unreasonable effort).
Nevertheless a high integrity version of loom or warp might closely restrict what is allowed so
that code cannot be modified.

EXPLAINING CODE FOR PUBLICATION 21

Table I. Outline comparison of warp and loom.

warp loom

Standard program code with comments. Standard program code with comments.
Standard documentation file. Special %include command in documentation.
Requires no external programs for basic use. Requires special filters for use with most text

formatters (such as LATEX).
Code can specify typographical or other
features for documentation.

Code cannot specify any typographical fea-
tures, but may be arbitrarily transformed (by
filters) in documentation.

Designed to concatenate code together from
several parts of a program.

Does not concatenate code.

Must be run before documentation is formatted
if code has been updated.

Must be run when documentation is formatted.

Main advantages
Documentation can be given to publishers
without any special instructions.
Both code and documentation files remain
standard source files that need no special
processing.

Only code remains standard.

Documentation can make full use of any multi-
file structuring facilities of formatter.
Uses XML. Code can be processed in any way if
desired. The XML is embedded in the program
code.

Ability to filter code using Unix tools. The filter
command is embedded in the documentation.

Forgetting to generate files will get error
messages from the documentation system.

Main disadvantages
Forgetting to run loom will generate no
diagnostics (and in LATEX, loom’s %include
syntax is a comment, so generates nothing).
Documentation cannot use structuring (e.g., be
a nested multi-file document).

Documentation is not a single file (but the
generated files never need editing or looking
at).

Original documentation cannot be distributed
without complete program and the program
loom.

Main technical differences
Basic use with HTML, LATEX etc built-in. Basic use limited to ASCII.
Optionally uses XML. Optionally uses Unix filters.
Relies on document processor being able to
include document files. (Since HTML does not
strictly permit file inclusion, warp can generate
equivalent JavaScript that can be included.)

Relies on loom parsing documentation file
format (and being restricted effectively to
LATEX without reprogramming).

Generates intermediate files. Uses Unix pipes.

22 H. THIMBLEBY

Design decisions with warp

The first version of warp used comment codes like //> file , which while neat, brief and
Unix-like, were easy to mistype, hardish to search for when editing (all the symbols used were
existing Java operators), incomprehensible to third-parties, and lacking in redundancy — many
errors in their use were undetectable (e.g., there would be no warning if you failed to shift the
> key and accidentally typed a dot instead: //. — which would be just ignored comment). In
short, they suffered from all of the problems of conventional literate programming codes, @[,
@;, @’ and so on (there are over thirty such codes, plus a collection of cryptic TEX macros,
such as \0). Indeed when Knuth and Levy say of the @’ code that “this code is dangerous”43

you know something is wrong, and to be avoided for a reliable system!
The next version of warp used mnemnonic codes (such as // $save$ filename), more like

loom, but these were still arbitrary and difficult to make powerful-enough without inventing a
whole new language. The insight, suggested by George Buchanan, was to replace warp’s codes
with XML. At a stroke, one was using a standard notation, and warp changed from being a
special purpose tool into a general purpose tool.

XML is verbose for different reasons than warp; nevertheless the overhead in typing the
extra characters should be seen in perspective. XML text can be shared, reused and checked
easily, and the savings in errors avoided can be considerable. Perhaps programmers’ habitual
preference for special characters and short cuts is, more, a symptom of poor design and the
fact that, normally, we have to repeatedly edit and re-edit things for multiple purposes — we
naturally wish to reduce the effort of repeated editing. A better way is to increase the reuse
of shared texts, as here, to multiply the impact of our work rather than to make it quicker to
edit per se: easier editing is not the goal, writing reliably is, and therefore editing less often.
With longer keywords and a stricter syntax, ultimately we do less work and we achieve our
real goals faster — which is much the same rationale for using high level languages instead of
assembler.

Generalised explanations of code

Literate programming and the other approaches described here explain programs to people
who are interested in their operation. Future research should find better and more reliable
ways of explaining programs to their non-specialist users as well, perhaps by automatically
taking advantage of some comment scheme, and perhaps by generating reliable interactive help.
Programmers would then become a bit closer to the explanatory needs of their programs’ end
users. This might encourage programmers to make their programs easier to understand.

Elsewhere we have discussed writing better manuals for users12,69,70 (user manuals being
explanations of programs for users, rather than for computer scientists); we have also discussed
the useful impact of quality explanation on programming language design71 and on physical
device design.72

Of course, programming, writing and explaining are vast areas in their own right; see
reference 73 for explanation by visualisation, reference 74 for a review of annotation,
reference 75 for a proposed approach to multiple-use documents, and reference 51 for a
summary of commercial linking, embedding, and publish-and-subscribe technologies.

EXPLAINING CODE FOR PUBLICATION 23

Conclusions

Programming can be undertaken for many reasons, but if the purpose is to advance computer
science by publishing, then we should work at least to the same scientific standards that have
been found appropriate for other disciplines. In the conventional sciences there are many forms
of documentation, from laboratory books through to refereed publications. In computer science,
a range of tools support managing the internal documentation of the lab book, through to
supporting the reliable publication of code. Although there are overlaps, literate programming
mainly supports the laboratory book end of the spectrum, and tools like loom and warp mainly
support the journal publication end.

Compared to literate programming both loom and warp are much simpler for the author,
for the reader, and for the publisher. Their simplified approaches avoid the intellectual and
typographical hurdles conventional literate programming approaches impose. The approaches
are ideal for explaining algorithms, which typically requires code extracts, rather than for
writing complete readable programs, which remains conventional literate programming’s forte.
Both loom and warp are extensible; both can be used simply for the basic authoring, and yet
can accommodate sophisticated requirements.

Unlike loom, warp treats programs as XML documents, and it does so with such a light
touch that the programs being explained can still be edited and developed as normal, using
existing editors and programming tools. Although XML can be processed in many ways, warp
also provides a simple scheme for extracting sections of code and for transforming them into
LATEX, XML or other formats for processing in other documents, in particular for ‘stand alone’
documents such as journal publications. Warp is probably the simplest possible scheme, yet
remains enormously versatile thanks to its optional use of XML.

In an ideal world, it might not be necessary to have any separation between code and
published explanation. Even though some tools, such as Mathematica, make them almost the
same, this is the exception — and the awkwardness of working with “almost the same” rather
than “exactly the same” is a great impediment for reliable writing, because the author is
continually either compromising or using work arounds — for example Mathematica does not
allow an author to change the order of code or to quote code fragments to explain them better.
Unless we want to publish code in ‘toy’ languages designed specifically for the purpose, we will
probably achieve no fundamentally better solutions than those discussed in this paper.

Knuth writes that “Science is what we understand well enough to explain to a computer.”76

This paper argues, further, that science — including computer science — will progress better
when those programs are explained more reliably to the scientific community, and that tools
such as warp are a very good way to do this.

Warp can be obtained from http://www.uclic.ucl.ac.uk/harold/warp

Acknowledgements

Ann Blandford, Roland Backhouse, George Buchanan, Paul Cairns, Anthony Finkelstein,
Michael Harrison, Matt Jones, Peter Ladkin, Gary Marsden, Norman Ramsey and Russel

24 H. THIMBLEBY

Winder made constructive comments on this work. Graham White solved a Java system bug by
compiling warp on another system that behaved differently (and hence revealed the cause of the
bug) — so much for Java being portable! The author would also like to thank the anonymous
referees for their contributions to this paper. Harold Thimbleby is a Royal Society-Wolfson
Research Merit Award holder.

Since this paper is intended to stimulate further development, the author also acknowledges
future contributors to warp-like tool technologies.

REFERENCES

1. D. E. Knuth, “Literate Programming,” Computer Journal, 27(2):97–111, 1984.
2. D. Deutsch, The Fabric of Reality, Penguin, 1997.
3. N. Cartwright, How The Laws of Physics Lie, Oxford University Press, 1983.
4. J. Ziman, Reliable Knowledge, Canto ed., Cambridge University Press, 1991.
5. H. Abelson, G. J. Sussman & J. Sussman, Structure and Interpretation of Computer Programs, First

Edition Preface, MIT Press, 1985.
6. A. J. Perlis “A New Policy for Algorithms?” Communications of the ACM, 9(4):255, 1966.
7. C. B. Dunham, “The Necessity of Publishing Programs,” Computer Journal, 25(1):61–62, 1982.
8. R. Sedgewick, Algorithms, Addison-Wesley, 1983.
9. D. Libes, “Writing a Tcl Extension in Only 7 Years,” Proceedings of the Fifth Annual Tcl/Tk

Workshop’97, 14–7, 1997.
10. P. Underhill, Why We Buy: The Science of Shopping, Texere, 2000.
11. P. B. Ladkin & H. Thimbleby, “From Logic to Manuals,” Software Engineering Journal,

11(6):347–354, 1997.
12. P. B. Ladkin & H. Thimbleby, “From Logic to Manuals Again,” IEE Proceedings Software

Engineering, 144(3):185–192, 1997.
13. Kuan (Kwan or Guǎn) Mei-Ko, “Graphic Programming Using Odd or Even Points,” Chinese

Mathematics, 1:273–277, 1962.
14. Y. Lin & Y. Zhao, “A New Algorithm for the Directed Chinese Postman Problem,” Computers and

Operations Research, 15(6):577–584, 1988.
15. G. Chartrand & O. R. Oellermann, Applied and Algorithmic Graph Theory, McGraw-Hill, 1993.
16. S. Skiena, The Algorithm Design Manual, Springer Verlag, 1998.
17. D. Jungnickel, Graphs, Networks and Algorithms, Algorithms and Computation in Mathematics, 5,

Springer, 1999.
18. R. K. Ahuja, T. L. Magnanti & J. B. Orlin, Network Flows: Theory, Algorithms, and Applications,

Prentice-Hall (Simon and Schuster), 1993.
19. M. Dror, ed., ARC ROUTING: Theory, Solutions and Applications, Kluwer Academic Publishers, 2000.
20. D. E. Knuth, The Art of Computer Programming, 1, 3rd. ed., Addison-Wesley, 1997.
21. M. F. Porter, “An Algorithm for Suffix Stripping,” Program, 13(3):130–137, 1980.
22. M. F. Porter, “Snowball: A Language for Stemming Algorithms,”

http://snowball.sourceforge.net/texts/introduction.html, 2001.
23. H. W. Thimbleby, “An Efficient Equivalence Class Algorithm with Applications to Autostereograms,”

Software—Practice & Experience, 26(3):309–325, 1996.
24. H. W. Thimbleby, “Using Sentinels in Insert Sort,” Software—Practice and Experience, 19(3):303–307,

1989.
25. H. W. Thimbleby, “Specification-led Design for Interface Simulation, Collecting Use-data, Interactive

Help, Writing Manuals, Analysis, Comparing Alternative Designs, etc,” Personal Technologies,
4(2):241–254, 1999.

26. H. W. Thimbleby, P. Cairns & M. Jones, “Usability Analysis with Markov Models,” ACM
Transactions on Computer Human Interaction, 8(2):99–132, 2001.

27. J. R. Anderson & C. Lebiere, The Atomic Components of Thought, Lawrence Erlbaum Associates,
1998.

28. D. MacKenzie, Mechanizing Proof, MIT Press, 2001.

EXPLAINING CODE FOR PUBLICATION 25

29. T. D. Sterling & J. J. Weinkam, “Sharing Scientific Data,” Communications of the ACM,
33(8):112–119, 1990.

30. R. P. Feynman, “Cargo Cult Science,” in Surely You’re Joking Mr. Feynman! R. Hutchings ed.,
Vintage, 1992.

31. G. E. Forsythe, “Algorithms for Scientific Computation,” Communications of the ACM, 9(4):255–256,
1966.

32. R. W. Hall & J. G. Partyka, “On The Road to Efficiency,” OR/MS Today, 24(3):38–47,
http://lionhrtpub.com/orms/orms-6-97/Vehicle-Routing.html, 1997.

33. J. S. Brown & P. Duguid, The Social Life of Information, Harvard Business School Press, 2000.
34. H. W. Thimbleby, “You’re Right About the Cure: Don’t Do That,” Interacting with Computers,

2(1):8–25, 1990.
35. R. Park, Voodoo Science, Oxford University Press, 2000.
36. D. Adam & J. Knight, “Journals under pressure: Publish, and be damned . . . ,” Nature,

419(6909):772–776, 2002.
37. H. A. Simon, The Sciences of the Artificial, MIT Press, 3rd. ed., 1996.
38. K. Beck & E. Gamma, JUnit, http://www.junit.org/, 2001.
39. E. S. Raymond, The Cathedral & The Bazaar, O’Reilly, Revised Edition, 2001.
40. H. Thimbleby, “A Critique of Java,” Software—Practice & Experience, 29(5):457–478, 1999.
41. ACM Code of Ethics and Professional Conduct, http://www.acm.org/constitution/code.html, 1992.
42. H. W. Thimbleby, “Experiences with Literate Programming Using CWEB (A Variant of Knuth’s

WEB),” Computer Journal, 29(3):201–211, 1986.
43. D. E. Knuth & S. Levy, The CWEB System of Structured Documentation, Version 3.0,

Addison-Wesley, 1994.
44. D. Mall, http://www.literateprogramming.com, 2001.
45. N. Ramsey & C. Marceau, “Literate Programming on a Team Project,” Software—Practice and

Experience, 21(7):677–683, 1991.
46. D. B. Resnik, The Ethics of Science, Routledge, 1998.
47. M. Goossens & S. Rahtz, The LATEX Web Companion, Addison Wesley, 1999.
48. C. J. Van Wyk, “Literate Programming: An Assessment,” Communications of the ACM,

33(3):361&365, 1990.
49. R. Harold & W. S. Means, XML In a Nutshell, O’Reilly, 2001.
50. D. Tidwell, Mastering XML Transformations: XSLT, O’Reilly, 2001.
51. Microsoft Corporation, Getting Started: Microsoft Office, Document No. OF64076-0295, 1992–1994.
52. N. Ramsey, “Literate Programming Simplified,” IEEE Software, 11(5):97–105, 1994.
53. N. Ramsey, http://www.eecs.harvard.edu/~nr/noweb/, 2002.
54. N. Ramsey, “A simple solver for linear equations containing nonlinear operators,” Software—Practice &

Experience, 26(4):467–487, 1996.
55. D. E. Knuth, The Stanford GraphBase, Addison-Wesley, 1993.
56. E. Artzt, Autoduck, http://www.literateprogramming.com/autoduck.pdf, 2001.
57. F. Mittelbach, The doc and shortvrb Packages, Technical Report, Gutenberg Universität Mainz, 1997.
58. S. Peyton Jones & J. Hughes, eds., L. Augustsson, D. Barton, B. Boutel, W. Burton, J. Fasel,

K. Hammond, R. Hinze, P. Hudak, T. Johnsson, M. Jones, J. Launchbury, E. Meijer, J.
Peterson, A. Reid, C. Runciman & P. Wadler, Haskell 98: A Non-strict, Purely Functional
Language, http://haskell.org/onlinereport, 1999.

59. K. Arnold, J. Gosling & D. Holmes, The JavaTM Programming Language Second Edition, 3rd. ed.,
Addison-Wesley, 2000.

60. L. Friendly, “The Design of Distributed Hyperlinked Programming Documentation,” in S. Fräıssé,
F. Garzotto, T. Isakowitz, J. Nanard & M. Nanard (Eds.), Hypermedia Design, Proceedings of the
International Workshop on Hypermedia Design (IWHD’95), pp.151–173, Springer, 1996.

61. C. Queinnec, Literate Programming from Scheme to TEX, Université Paris 6 & INRIA-Rocquencourt,
2000.

62. D. R. Hanson with C. J. Van Wyk (moderator) & J. Gilbert (reviewer), “Literate Programming,”
Communications of the ACM, 30(7):594–599, 1987.

63. D. R. Hanson, “loom — weave fragments together,” loom.1 in
ftp://ftp.cs.princeton.edu/pub/people/drh/loom.tar.gz, 1987.

64. S. Wolfram, The Mathematica Book, 4th. ed., Addison-Wesley, 1999.
65. H. W. Thimbleby, “Specification-led Design for Interface Simulation, Collecting Use-data, Interactive

Help, Writing Manuals, Analysis, Comparing Alternative Designs, etc,” Personal Technologies,

26 H. THIMBLEBY

4(2):241–254, 1999.
66. H. W. Thimbleby, “Analysis and Simulation of User Interfaces,” BCS Conference on Human-Computer

Interaction, S. McDonald, Y. Waern & G. Cockton, eds., XIV:221–237, 2000.
67. D. R. Hanson, C Interfaces and Implementations, Addison-Wesley, 1997.
68. R. S. Scowen, “Some Aids for Program Documentation,” Software—Practice & Experience,

7(6):779–792, 1977.
69. M. A. Addison & H. Thimbleby, “Intelligent Adaptive Assistance and Its Automatic Generation,”

Interacting with Computers, 8(1):51–68, 1996.
70. P. B. Ladkin & H. Thimbleby, “A Proper Explanation When You Need One,” in M. A. R. Kirby,

A. J. Dix & J. E. Finlay eds., BCS Conference HCI’95, People and Computers, X:107–118, Cambridge
University Press, 1995.

71. H. W. Thimbleby, “Java: A Critique,” Software—Practice & Experience, 29(5):457–478, 1999.
72. H. W. Thimbleby, “Calculators are Needlessly Bad,” International Journal of Human-Computer

Studies, 52(6):1031–1069, 2000.
73. B. Braune & R. Wilhelm, “Focusing in Algorithm Explanation,” IEEE Transactions on Visualization

and Computer Graphics, 6(1):1–7, 2000.
74. I. A. Ovsiannikov, M. A. Arbib & T. H. Mcneill, “Annotation Technology,” International Journal of

Human-Computer Studies, 50(4):329–362, 2000.
75. T. A. Phelps & R. Wilensky, “Multivalent Documents,” Communications of the ACM, 43(6):83–90,

2000.
76. D. E. Knuth, Foreword, in M. Petkowvšek, H. S. Wilf & D. Zeilberger, A = B, A K Peters, 1996.

