chologists and computer scientists are
t the University of York in research to
empirical user interface design practice
I methods. One purpose of this article is to
e reader to some of this research. Another
formal methods naturally encourage
nsider issues carefully, and how such
ration leads to interesting and practical

oy formalising user-engineering prin-
nce formalised, the principles may be
1nto the software engineering design pro-
nal system will be consistent with the
engineering basis and this will not only
onsistency naturally expected from formal
1t the consistency should be visible to the
er-engmeering principles chosen as the
50 be re-expressed in suitable terms for
for the user manuals and training material).
1ethod should result in more coherent and
plained systems.

cy versus curiosity

he foremost aim of formal methods is to
ad hoc decisions in programming (many of
10up as bugs anyway) by a structure that can
1i and reliably reasoned about. A good way
ructure is to devise requirements that the
satisfy. To take full advantage of the
ematical reasoning, the requirements
ssed formally. For our purposes, we are
cemned with mathematical formulations
ineering principles.
t-engineering principles cannot be
an abstract enough way to have an
¢ formal approach. For instance, a user-

uman compurter interaction
¢ interface design

engineering requirement that ‘an important error
message should be displayed in flashing red’ is about
as exciting as saying ‘30 + 1 should be larger than 30",
For each such situation there has to be a separate rule,
and (as we can plainly see from the size of existing
design rule-books) the number of useful guidelines
becomes phenomenal. Instead, more economical use
can be made of theorems like # + 1 > n, which is true
for all numbers, not just 30. An analogous, formally
interesting, user-engineering principle is ‘minimise
the number of “modes” presented to the user’. Users
can easily forget which mode they are in; the more
modes there are the less predictable the computer sys-
tem seems to become. A mode-ridden system puts a
burden on the user to remember which mode the sys-
tem is in; if the user is distracted (by a "phone call,
say) or has a break, then it may be difficult to resume
work using the system if it is not obvious what mode
it is still in. It turns out that modelessness is easy to
express formally.

All good user interfaces should permit the user to
recover from mistakes. Some enlightened systems
provide an ‘undo’ command. If the user makes a mis-
take (which they recognise as such!) they can use the
command to ‘undo’ the mistake. Again, it is easy to
express this requirement formally.

Now a surprise: modelessness and undo are incom-
patible (for non-trivial systems). There are two con-
clusions: either we have taken a too-restrictive view
of modes and modelessness above, or (I think more
likely) all systems purporting to have no modes and
an undo command must be difficult to use. In this
case the difficulties arise in precisely the context that
is supposed to help the user recover from errors. If
interactive systems are designed informally, the
designer will be unaware of the need for the resol-
ution of such problems. Resulting systems will in-
evitably contain inconsistencies (ie, bugs or plain lies
in the documentation). I have only shown a trivial
example, which will serve to introduce a more user-
centred discussion about modes below. Further for-
mal results are described i [3]. How we handle these
interaction issues for software engineering purposes

will be explained briefly later.

A user-centred view of modes

One purpose of studying modeless designs is to ex-
plore ways in which ‘mode errors’ may be avoided.
Concern for the user, beyond the initial idea that
modes generally are a bad thing, was only implicit in

Computer Bulletin September 1986 13

the preceding analysis. Users do not make mode errors
unless they have intentions that are not met by the
user interface. If the user has no particular expec-
tations then any mode-dependent result can hardly be
classified as a ‘mode error’. A user-centred definition
of mode error is required. We may define that a
mode error only occurs when the user obtains an
unintended effect, but which could have had the in-
tended effect had the computer been in a different
mode.

There are various ways in which it is possible to
design user interfaces to reduce the probability of
such mode errors. We may change the design: a) the
user interface language may be made more powerful
(so that fewer commands need multiple interpret-
ations); b) the range of functions provided by the sys-
tem might be reduced. Conversely, we may try to
change the user’s expectations: c) the system might try
to influence the user’s expectations interactively while
it 1s being used; d) the user’s training may attempt to
ensure the user’s expectations are consistent with the
system (an approach obviously facilitated by a formally-
guided design).

We have performed experiments to test our ideac),
as this approach seems to interfere least with other
factors in the design process (in general, we may be
unable to dictate the tasks or command language to
the customer). The experiment may be described very
briefly as follows. A group of people used a system
that could make different types of key click, as keys
are typed, depending on what mode the computer
was in. This was intended to help guide the user’s
expectations, and so reduce mode related errors. We
found a significant improvement [6].

Programmable user models

Rather than taking a psychologically-based user-
engincering principle, such as ‘reduce modes’, as a
candidate for formalisation it is possible to take a
much more abstract view. If we have a user interface
design under consideration, we might ask, ‘Are the
decisions demanded by the user interface comput-
able?’ In other words, could a (suitably programmed)
robot use the proposed system? This is a reasonable
question to ask for, surely, if the user interface
requires non-computable responses it must be exceed-
ingly hard for a person to use. With more psychological
bias we would be inclined to ask whether the user’s
responses are not only computable but are not too
hard for the user to compute.

We have noticed that interactive systems design
effort is usually concentrated almost entirely on the
computer program. But, of course, the user and com-
puter may be viewed as a pair of communicating pro-
cesses and the user interface as also being implemented
by a user program. Users obviously have to ‘program’
themselves in order to use an interactive system. What
can we discover by making the user’s programming
explicit? We have tried to imagine what a user’s pro-
gramming language would look like, and how explicit
programming with it would influence decisions the

14 Computer Bulletin September 1986

designer has to make [4]. Would designers make better
systems if, in addition to writing computer software,
they had also to write user software and demonstrate
it could (in some precise sense) operate their design?
If a designer had to program a ‘programmable user’,
perhaps as part of the proposed system’s acceptance
tests, then this would help redress the unequal balance
of attention normally loaded for the computer. It
could make designers consider the user and the user’s
needs more carefully.

The user’s program and the computer’s program
are duals of each other. They both implement the user
interface dialogue. If the two programs are strict duals
of each other, then it should be possible to derive one
from the other. Obtaining a user program from a
computer program (we already know exactly what
computer programs are, so this is an easy place to
start) is a matter of inverting the program. Do we still
need the user program? The answer is ‘yes’. Since
program Inverses are rarely unique, inversion intro-
duces non-determinism (ie, uncertainty). The non-
determinism represents the program’s (e, the
designer’s) unstated assumptions about the user’s tasks

and goals.

Design innovation

A computer system is used for problem solving, For
instance, a user may have in mind some task (such as
printing the week’s accounts) and the problem is to
express this task in the way required by the user inter-
face. Or we might consider the creative use of com-
puters as problem solving: I certainly had a few

roblems writing this article, which I solved inter-
actively! Now, people have been studying human
problem solving over the years, two notable names
being Descartes and Polya. Various heuristics have
been proposed to help people solve problems. If these
heuristics help people solve ‘real life’ problems, why
not design interactive computer systems to encourage
their successful application?

One widely advocated problem solving heuristic is
to see what happens if you treat the problem as solved
(ie, try working backwards). In a conventional user
interface, pieces of information flow in both direc-
tions between the user and the computer. However,
the user is never able to use the working backwards
heuristic to help solve the problem in hand. It would
mean saying, as it were, to the computer, “What should
I have said to make you say such-and-such’. In other
words, we might suppose an improved interface could
provide the user with an opportunity to provide infor-
mation normally provided by the computer ~ with the
intention that the computer ‘works backwards’ to
supply the missing information.

Prolog programmers will be familiar with a similar
idea: the parameters of Prolog predicates have noa
priori disposition to either direction of information
flow. Although the property is generally termed “poly-
modality’ in programming languages, we prefer the
term ‘equal opportunity’ since ‘mode’ is already over-
worked in HCI and our phraseology naturally lends

uman compuier inferacftion

itself to describing ‘opportunities’ and ‘Inequalities’ in
a productive fashion. Using equal opportunity we
have not only been able to devise innovative user
interfaces to such stable designs as four-function cal-
culators [10], but we have been able to derive (more
truthfully, rationalise) certain user-engineering prin-
ciples [7]. This, in turn, helps us to sharpen our 1deas
about formalising user-engineering principles.

Software engineering

We have started to build a novel interactive system,
based loosely on Knuth’s literate programming ideas
[9]. The idea is to produce a program support environ-
ment which permits users to specify, program, and
document a system concurrently. We elected for a
novel user interface to help ensure that if we obtained
a ‘good’ usable system, we had indeed obtained our
results by careful formal design - if we had chosen to
redesign a conventional application (eg, for word pro-
cessing) our prior knowledge of successful word-
processing systems might have influenced what is
supposed to be formal design. When our prototype
literate programming system is working we will be
able to do experiments to test the validity of our
approach and how it impacts users. It is fairly certain
that we will obtain an effective system, for even if the
user interface rules we chose as a basis were quite
arbitrary the final result would still be consistent and
easter to document clearly. It should therefore be
easier to learn and to use. What we do not know yet
is whether users can make very effective use of
precise knowledge about interactive systems. It is cer-
tainly the case that the arbitrariness in many conven-
tionally designed systems will have innoculated most
users against believing anything that purports to be a
precise ‘rule’ of interaction!

To implement a complex system such as this, and
to retain the full advantages of formalised user-
engineering principles, we have devised a three-level
method. The first level is abstract, and is oriented
towards formal proofs, such as are needed to ensure
the various user interface requirements are met.
Reasoning about the design at this level may proceed
without worrying about implementation details. This
model is then transformed into a ‘conventional’ for-
mal specification (we happen to use an equational
method). The point is that the transformation pre-
serves the correctness of the earlier proofs. Normally,
it would be very difficult to prove such requirements
were satisfied by a concrete formal specification. At
the third level, the concrete specification is
transformed into an implementation.

As usual, there 1s a danger that such an abstract
approach to software design compromises efficiency.
We have developed a technique called ‘interface drift’
which allows us to optimise performance (specifically,
to optimise module interfaces) without compromising
correctness. The technique of interface drift is anal-
ogous to first implementing a program simply (and
correctly) and then introducing buffers and caches to
obtain improved performance. We have also intro-

duced other methods to facilitate the formal specifi-
cation of 1ssues arising in window managers. A more
complete discussion may be found 1n [1,2].

Conclusions

Formal methods in user interface design, contrary to
fears of ‘formalising away the human element’, in fact
make designers pay more careful attention to the needs
of the users than they might otherwise. The attention
to detail, and the consistency obtained through formal
methods, can also help the user form a reliable under-
standing of interactive systems.

On the other hand, there is a danger that the pre-
cision of formal methods may lead the designer to be
even more proud of the design than usual. It may be
more tempting to blame design failures on the user,
since (provably!) the design is correct and blameless!
But in our experience, formal methods bring to laght
many otherwise hidden and unstated assumptions.
Realising their significance can only instill a sense
caution into the designer: user interfaces are remark-
ably complex things. We have found the formal
approach to user interface design, contrary to the dry
school-book view of mathematics, an exciting adven-
ture. It has generated, and it still prormises to generate,
innovative and better user interface ideas.

References

1 A] Dix & M. D. Harrison (in press), Principles
and Interaction Models for Window Managers, in
People and Computers: Designing for Usability,

A. Monk & M. D. Harrison eds., Cambridge
University Press

2 A.]. Dix, M. D. Harrison & E. E. Miranda (in
press), Using Principles to Design Features of a Small
Programming Environment, in Proceedings Software
Engineering Environments, 1. Sommerville ed.,
Peter Peregrinus (pub)

3 A J. Dix & C. Runciman (1985), Abstract Models
of Interactive Systems, in People and Computers:
Designing the Interface, P. Johnson & S. Cook
eds., Cambridge University Press, pp. 13-22

4 N.V. Hammond & C. Runciman (in press), User
Programs: A Way to Maich Computer Systems and
Human Cognition, in People and Computers:
Designing for Usability, A Monk & M. D. Harrison
eds., Cambridge University Press

5 M. D. Harrison & H. W. Thimbleby (1985),
Formalising Guidelines for the Design of Interactive
Systems, in People and Computers: Designing the
Interface, P. Johnson & S. Cook eds., Cambridge
University Press, pp. 161-171

6 A. Monk (in press), Mode Errors: A User-Centred
Analysis and Some Preventitive Measures Using
Keying-contingent Sound, International Journal of
Man-Machine Studies

Continued on page 18

Computer Bulletin September 1986 15

will be willing to contribute to the discussion. It might
also be argued that such meetings would take ages to
come to any firm decisions about anything. This reser-
vation is not borne out in practice and there are
methods available of curtailing discussion or asking
for a vote at some juncture (although better facilities
for formalising and structuring meetings are certainly
essential). It is not the case that electronic meetings
must be seen as a substitute for face-to-face meetings,
there are some matters that, because of their nature,
or the speed with which a decision 1s required, can
only be resolved by people sitting round a table.
However there are many more mundane meetings
which could be adequately converted to an electronic
equivalent without any loss of quality or timeliness to
the decisions reached. CBMS do have certain advan-
tages for group working, as Kerr and Hiltz [5] observe,
the medium
a) Increases (virtually to infinity) the size of the com-
mon ‘information space’ that can be shared by com-~
mmunicants (and provides a wider range of strategies
for communicants to intermpt and augment each
other's contributions). s -
b) Raises the probability of discovering and developing
latent consensus. ‘ s
It has been found that groups communicating in this
way tend to exhibit a high degree of personal inter-
action, involvement and group cohesiveness; some-
thing which my own experiences certainly bear out.
With the next generation of communications soft-
ware will come a widening of the varieties of groups
that will choose to communicate via this medium. The
December 1985 edition of Practical Computing, for
example, printed a list of over 20 new bulletin boards
run mostly by enthusiasts. The next generation of
users will not be interested in building their own
modems or getting more out of their micro’s comms
package. They will be interested in communicating
with people for reasons totally unconnected with the
medium 1tself. The first such groups are likely to be
communities of professionals whose communications
costs are met by their companies. Specialists in all
sorts of fields from medicine to archaeology to phil-
osophy could group together and exchange views much
more easily and more readily than at annual con-
ferences and other formal occasions. The Usenet
community in the USA and UK is already a vast net-

work where people subscribe and contribute to many
different newsgroups. This is currently a specialised
community made up of a high proportion of academics,
it has still to reach the man in the street — but it will.

Human factors has an extremely important role to
play in all this. The provision of facilities embedded
in communications software that will allow the allo-
cation of roles, the use of tools and structuring of the
individual’s communications environment are all areas
that need a well thought out, user centred approach.
just how to get the most from groups Communicating
via a CBMS will require considerable knowledge
about how humans communicate in general, how
groups are formed and led, and how such attributes as
trust, honesty, frankness and equality can best be
engendered between people that meet via their com-
puters. The human factors expert ought to be the per-
son that systems designers turn to when decisions
about such matters need to be made. I believe that in
many ways human factors is the axis upon which the
next generation of communications that will see Man
into the 21st century hinges. In order really to take
advantage of the synthesis of communications and
computing technologies we need to make sure that
representatives of these technologies, at all levels, are
aware of the role that human factors can and must
play in the successful design of such systems.

References

1 Wilbur, S., Rubin, T. and Lee, S. 1986. A Study
of Group Interaction over a Computer—Based
Message System. In press. Proceedings of HCI
86, University of York, Sept. 22-26, 1986.

2 Carey, J. 1980. Paralanguage in Computer
Mediated Communication. Proceedings of the
Association of Computational Linguistics.

3 Keisler, S. 1986. The hidden messages in com-
puter networks, The Harvard Business Review,
January-February 1986.

4 Maude, T. I, Heaton, N. O., Gilbert, G. N.,
Wilson, P. A. and Marshall, C. J. 1984. An
Experiment in Group Working on Mailbox Sys-
tems. Interact ‘84 — First IFIP Conference on
‘Human-Computer Interaction’, London.

5 Kerr, E. B. and Hiltz, S. R. 1982. Computer-
Mediated Communication Systems, Academic
Press.

L e TR R T A AR DR R M S R T A AN S AT G RO Ry

User interface Continued from page 15

7 C. Runciman & H. W. Thimbleby (1986), Equal
Opportunity Interactive Systems, YCS 80, Depart-
ment of Computer Science, University of York

8 H. W. Thimbleby (1984), Generative User-
Engineering Principles, in Proceedings INTERACT
'84, B. Shackel ed., North-Holland, pp. 661~
666

9 H. W. Thimbleby (1986), Experiences of ‘Literate
Programming’ Using Cweb (A Variant of Knuth's
WEB), Computer Journal, 29(3), pp. 201-211

18 Computer Bulletin September 1986

Acknowledgements

The work reported here was done by Alan Dix, Nick
Hammond, Michael Harrison, Eliot Miranda,
Andrew Monk, Colin Runciman, Harold Thimbleby,
and Paul Walsh under a SERC/ALVEY grant. The
original idea for ‘programmable users’ comes from as-
yet unpublished work by Thomas Green and Richard
Young, Additional details may be obtained from Dr
M. D. Harrison, Department of Computer Science,
University of York.

