— e
F 34
g 1

R
¥ e o - - — - S
- . RS

B 1 el R it g A v

*What You See is What You Have Got"

— a user engineering prineiple for manipulative display?

Harold Thimbleby, Department of Computer Science
University of York, YORK, YOl 5DD. UK

Abstract
il i

"What you see is what you get" is generally treated as a technically

t is an outstanding maxim because both the user and

superficial phrase, but 1
any reasonable interpretation of it

designer understand it in the same way;
A stronger phrasing (or rather, the same

could have been implemented.
ystem design and

g more strictly applied) has wider implications for s

phrasin
retains the generative potential for users. By providing facilities for

“manipulative display”, the form of a dialogue may further direct and enhance

the users” interpretation of its contemnt.

Prologue

There are several major obstacles to designing good user inier-
faces:

(a) The standard ergonomics issue: designers tend to design for

themselves unless they are intentionally humble and consciously

aware of actual user needs.

In computing, the problem is possibly worse than in other
technologies because there is no intermediary (e.g. a

craftsman) between formalism and user interface (Thimbleby,

1982c). There is comsequently considerable confusion between
user and designer interfaces.

(b) User interface design appears to be simple.

Indeed, it is if the interface design takes advantage of
users” almost limitless capacity of adaption (and of

acceptance).

(c) People who construct interfaces have considerably more control and
understanding of them than any other class of user.
In particular, a computer scientist”s training (and
delight?) is specifically to handle complexity. This results
in system designs with an excess of technical options. Users

are not necessarily computer experts nor want to become ones by
using a system which apparently expects them to be. Users may

Teact emotionally to computer interfaces which require abstract
computing skills and experience. .

(d) What knowledge there is is multi-disciplinary and not systematised,
and thereby may be ignored in preference for necessary but more
obvious design constraints (e.g. formal properties of correctness).

i Crucially, ergonomics cannot be used inductively _ it is

notoriously hard to reason about a design except by hindsight.

Consequently there is a temptation to define human requirements

St e syl
Y £

s

& 9 e

Yet computers are very small (in
e to define “rational”

in terms of abstract metrics.
mind and etiquette) and it is nonsens
behaviour vis-3-vis the interface purely in their terms.

(e) Ergonomics is essentially experimental and case-study driven; and

the technology continues to outstrip any experimental basis.

Computer scientists are neither trained in experimental

procedures nor have the motivation. Thus computer scientists

tend to over—gemeralise from specific experimental results.

Turthermore, the innovative areas where ergonomists might have

widest influence are generally too speclalised.

(f) Social, psychological and other issues which are outside the

immediate man-machine domain are readily ignored.

As an illustration, Carroll (1982) presents the

~Adventure” metaphor: why does @ person get addicted to a game

interface (where the user takes risks and faces unkn

under-specified tasks) but is unmotivated and feels
context (e.g. the

own and
lost with a

structurally similar interface in a “work”

straight computer interface)?

(g) There is considerable confusion between legitimate design principles

and mere slogans.
Particular principles may become no more than slogans
without the backing of app

knowledge — and designer motivation.

1ied reasoning from other ergonomic
A particularly

distracting activity consists of promoting prejudice as

principle.

(h) Finally, ~the human factor” has become a euphemism for poor design.

The human user is
many of his troubles (if noted) are

the functional specification and are dismiss

perceived as a source of trouble, and
classified as irrelevant to

ed as his own

responsibility.

- 73 -

This paper is about user interface design and concentrates on the
popular maxim:

What you see is what you have got

It is a principle that has the distinguishing advantage that it can
lead both the designer and the user to have a considerable overlap in their

concept of an interactive system — 1f used with care.

The purpose of this paper is to

¢ reestablish "what you see...” as a constructive

rather than trivially descriptive principle

¢ demonstrate the utility of principles which
can be shared with the user: “true” user-

engineering principles.

1.1 Historical aside

1 discussed an attribute of interactive system interfaces
(Thimbleby, 1979) which has significant similarity with the present topic,
but I termed it “passivity” — a phrase which is neither catchy nor,
crucially, of any intrinsic meaning to a user. [Note: A passive interface
does mot imply a passive system.] Now I suggest that a user-engineering

principle must be expressed in user~referenced terms in order to enable users

to verify its effective application for themselves — and to benefit from its

consequential generative potential.

1.2 Terminological aside

Some apparent ambiguity im “principle” versus "user model”
terminology is resolved: "what you see is what you have got” may be a
construct in the user model repertory, and the same phrase may also be taken
as a design principle to be enforced. The corresponding principle, in all
cases, is ensure the users” model (Gaines and Facey, 1975).

(A literature survey showed that no one agrees on what a user model

is anyway.)

]

= Fl =

1.3 The popular view

The principle is often more readily (and more weakly) expressed,
not in the present perfect tense, but in the present with future implications
as in "What you see is what you get". This interpretation, at its weakest,
ctates that hardcopy and display capabilities are sufficlently similar (and
reliable) to ensure that what a user can see on a display can later be “got”
on hardcopy (cf Lipkie, Evans, Newlin, Weissman, 1982; Rutkowski, 1982 etec.).
Designers often assert that something, such as a text buffer, can be
displayed "at any time": conversely, this is a case of [hopefully] "what you
get is what you see”.

Another, apparently stronger formulation, (but agaln with future
implications) is "what- you see 1s all you get". In fact, this has derogotary
connotations: maybe the system is not powerful enough to have anything else
to it than what you can see — no programming, pooT resolution hardcopy ete.
0f course, if you told a user that (truthfully), he would know considerably
more about the system than most do!

Note that both these forms assume that what the user wants to Sget”
is not a model of interaction but a tangible result (cf Spence and Apperley,
1982, p53).

Expressed in the present perfect tense as "what you see is what you
have got” however, the principle further requires the designer to ensure that
what the user has now 1s exactly what he thinks he has from what he can see.
This not only requires display integrity, and transparency to backup

procedures (and so on), but some means of encouraging the user to acquire a

valid interpretive model of what he can see. There are several ways to
facilitate him, as will be seen.

Nevertheless, "what you see is what you have got” is certainly not
such an appealing phrase expressed so pedantically: but just with such
pedantry will interfaces be acceptable (whatever their banners). A referee
of an earlier (rejected) version of this paper wrote: "Finally, the author”s
use of the present perfect temse for “What you see is what you have got” only
emphasises the tautology of the logic — of course, you do have what you see”
(my emphasis). Another referee wrote: "But the exlstence of literally dozens
of screen-based word processors for the Apple II computer, some bad and some
good, is proof that the principle by itself does not necessarily lead to a
good interface”. Views such as these illustrate the difficulty in reasoning

about the interface clearly.

2 Background review

Rarely do the designer and user share common ground, so the
designer tends to design for himself or for a small actual group of users
with similar professional skills to himself. This situation further
distances the designer from the users outside his laboratory, and generally
makes his parochially extolled system features irrelevant. [But when the
user designs a system, it is even less likely toc meet reasonable standards of
quality.]

A well defined "user model" is required which simultaneously is
user-referenced and has direct operational implications, so it can be used as
a basis for so-called user-engineering design principles. The user could
have a2 handle on the system and the designer could match the system to the
users” directed expectations. If ever verbalised, few user models are
expressed in terms which relate adequately to both designers” and users”
needs.

The partial model "What you see is what you have got" has much to
commend it in this respect, and it is discussed in this paper. For many
graphics and screen based tasks, the principle is highly relevant. Less
obviously, the principle is applicable to robot control — indeed to any area
of interactive state display (and not exclusively to VDU display). For more

abstract applications it may be hard to define what it really is which has to
be “got” by the user. (For text editing it may simply be a fragment of the
text being manipulated; but cf Fraser 1980.) One of the major issues
attacked by "what you see is what you“ve got™ is that it is very easy to
provide a user with facilities which enable him to manipulate data (as if he
had “got” it), but to provide no uniform denotation for manipulable
objects... thus, the user may have mo cues, or even conflicting cues, as to
what he may “get”. Tt is clearly a separate question whether getting
something concrete in itself improves the user interface, except for naive or

casual users.

2.1 Robots...
Consider a robot arm which may be manoevred by keyboard commands or
programmed into a sequence of movements. A user programs a sequence of

movements which terminate with the arm at some useful location, but during

e I e S kA P9

R

|
!
8

(T ey S ““‘“““"""""’?“ e o e =

T TS o Eibiiiy

R ——

- 76 -

programming he accidentally issues a non-programmed move (which the user
interface permits) which he subsequently compensates for by a programmed
move. On replaying the program, the arm fails to reach the correct location,
because of unnecessarily programmed compensatiomn.

A the end of programming, what the user can see (namely, the
correct arm position) does not signify what the user has (namely the

incorrect program).

2.2 Menus...

Consider a five item menu, for which the selection procedure is to
type a unique prefix [plus a terminator]. To permit the user to select from
larger menus, the last item may be "Others”; so if the user selects “Others”,
upto five further items are displayed. In order to handle expert users, the
prefix has to be unique over all menu items, not just those displayed.

Thus a user may be unable to type a satisfactory prefix because

what he can see (namely five items) is not what he has got (namely a larger

menu plus an item "Others”). The expert user, on the other hand, can “see”

the other menu items in his imagination.

243 Display editors l...

-

Consider a user trying to insert an “e” at the beginning of a line
using a typical display text editor. Assume the user has positioned the
cursor in the first column of a linme, and has correctly set the editor in
“insert mode”. He types ~e”, and to his surprise finds that the ~e”
overwrites the first character on the line.

In fact, the user had pogitioned the cursor between the carriage-
return/linefeed pair at the end of that line (and so Inserts the “e” between
them) — it is not possible to deduce that he has got the curser in this

awkward position from what he can see.

2.4 Display editors 2...

An editor has a search-for-string command, and the user searches
for a literal string, "Mr. Jones". The editor fails to find "Mr. Jomes", but
finds "Mrs JONES" for the user instead. The editor tried to be helpful (or,

wom
.

rather, its designer did) and treats as a meta—character representing

s Ay S AT ot T T U

—

<any character> and ignores case. Many editors, again with the best of
intentions, allow the user to compose commands; so consider a user composing
search and delete commands to delete Mr. Jones” address! What the user can
see, namely a string-to-search-for, is not what he has “got”, namely an
expression. Hence meta-characters should be displayed in such a way that the
A user cannot confuse them with literals.

Even this is not a satisfactory solution as in many, or all, cases
it would really be better if <{space> matched any blank text. For example,
would searching for "Mr. Jones" succeed if "Mr." and "Jones" were on
consecutive lines? The problem, of course, is what does the user “see” —
what is the user”s model and how best can the implementation ensure the
user”s model is compatible?

More issues are covered by Thimbleby, 1982ab, 1983,

3 Positive comments

If we speculate that a user does not have the technical expertise
to understand how-it-works knowledge, then it is exceedingly difficult to

; enable him to construct a coherent model of a system. One way around this
’ problem is to design an interface to exercise perceptual-motor skills rather
than abstract symbol processing skills. 1In fact, speculating naivety is not
essential, for by the car-mechanic-who-is-a~bad-driver analogy (or the
computer-scientist-who-cannot-type version) we could deduce that a cognitive
grasp of an implementation does not imply that it can be used effectively (at
least for routine tasks).

Great power comes from visualisation and, as Shneiderman (1982)
points out, intuition and discovery are often promoted by visual
representation of formal systems. “What you see is what you have got” 1s an
immediately appealing phrase for describing interactive systems because it
asserts a simple property from which the user can construe realistic models
of what the interface actually provides. The user is inspired to confidence:
the system has no hidden states, and the user manipulates what he sees (not
some underlying data for which the display is a non-trivial representation).,

In particular, the user can see the consequences of errors, and does not need
to “debug”.

G R P s

_ 78 -

The user is encouraged to exercise perceptual skills with the

hence manipulative skills are naturally relevant (cf Brooks,
dually, and as

elf-

interface,
1977). Perceptual and manipulative skills can be acquired gra

the user develops skill with the interface he may speed up at a s

determined pace. Conversely, acquiring cognitive skills can be a

significantly more stressful task because decisions the interface forces on

the user may appear to require immediate response, and because of complex

social determinants.

It is notoriously difficult to document interactive systems

adequately; “interactive systems should be experienced and not talked about™

(Gaines and Facey, 1975). 1If it is obvious what has happened merely from the

appearance of a display,. nuances of interaction may be glossed over in the
A principle such as “what you see...”

f implemented properly) and reduces the

documentation (to some extent).
enhances intrinsic predictability (i

training load of new users significantly.
e, the system could not

isplayed (at least to

In each of the examples (2.1-2.4) abov

maintain an image of the system suggested by what it d

the ordinary user). This particular problem arose because the system did too

much, by trying to provide too many options,
By enforcing "what you see..." at

functions or features, or

many levels of abstraction.

providing too
ystem and its documentation is constrained to

a design stage, the s
(literally) sensible propo

than a collection of ad hoc features.

rtions which encourages an orthogonal design rather
[The arguments against simple

interfaces are reminiscent of the arguments against the ~restrictions” of

despite frequent exhortatioms to simplify user

structured programming;
the computing community encourages complexity

interfaces (e.g. Palme 1978),
and repeatedly confuses power with ease of use.]

©

4 Negative comments

"What you see is what you have got"” is actually not enough for the

erface requires additional organisation. For example, it is

designer, the int
shing

clearly inappropriate to show the user the computer console and its fla

1ights and say, "Hell, what you see is what you“ve got!"

Otherwise, the positive points above assume adequate Tepresentation

and response rate {(e.g. acquiring manipulative skills presupposes reliable
and rapid feedback). And adequate hardware capability to support this is
costly. Also, there is not much Spare capability in contemporary display
technology, sc displays tend to be specialised. Effective interaction
consequently implies device dependence: sometimes considered inelegant for
technical reasons.

"What you see...” is more often used as a purely rhetorical
statement about a system rather than an ideal which could have been achieved

(see also the comments in section 1.3). The idea is often partially

implemented and the user, not knowing what is easy to implement and what is
not, will be led into unexpected traps. Thus he may be worse off than had
the principle never been mentioned.

The user may not be looking at the display anyway — for example, if
he is copy typing or interviewing — in which case the principle is
inapplicable. Actually, there is really no problem if the user cannot pay
undivided attention to the display: if display changes are incompatible (e.g.
if the display changes without user request or cannot be changed as the user
required) the user may be notified audibly or in other sensory modalities*
which do not compete with vision.

Users may actually perform better If they use cut-down displays or
even command (keyboarded) interaction rather than pointing. The ability to
review displayed work reduces productivity (Gould, 1981); Rosinski, Chiesi
and Debons (1980) show that copy-typing performance (speed and error rates)
are unaffected by varying (1 line) window size, irrespective of typist skill.
S0, merely getting more information does not of itself improve interaction.

Users cannot cope with excess screen clutter (although how much
clutter becomes unacceptable is user- and task-referenced), so if what is
displayed is what the user "has” then the system must be simple (especially
given contemporary VDU hardware) — for example, the user interface model
should be passive (section 1.1). Yet a passive interface may seem too
constrained for scme task domains or designer environments. As mentioned
earlier, designers often have a different view of a system and consequently
design more for themselves than for actual users (cf. Shackel, 1979). 1In

Michies”s terms (1980) their required "human windows" are at different

* Terminal sounds have soclal overtones. Some thought must be given to
problems such as whether only errors are notified by a specific sound, which
everyone else can notice too.

_ 80 -

implementation levels: the programmer-designer would find a good system for
non computer experts “shallow” (but generally fast).

Finally, the application system may structure what the user can see
in a special way (for specific task purposes) which restricts the user from
manipulating the data in an “obvious” fashion. For example, a program editor

which is designed to make editing program text easier (or certainly less

error prone), may enforce syntactical constraints during interactive editing
which will almost certainly prohibit certain “obviously trivial” (e.g.

textual) changes to the program.

5 Discussion

Principles like "what you see is what you have got™ (properly
interpreted) are operational, unlike the vogue terms “user friendly", "fluid
dialogue™, “ease of use”, "natural” etc. They can be used to form design
guidelines AND as user-oriented explanations. Thus the designer is
encouraged to think in user-referenced terms. Since the user is not
necessarily a computer expert and therefore cannot explain (or understand, or
accept, or accommodate to) system behaviour in terms of implementation, 1t is
crucial to follow user—engineering principles to extreme limits and to pay
nit-picking attention to detail. The designer”s extreme concern, like common
sense, will often appear utterly trivial later (which is another reason why
“simple” interfaces are never made).

In the absence of suitable guidance from the designer how a system
should be conceptualised (via the system, colleagues or documentation), users
will invent their own modelé (e.g. Nickerson, 1981), and without assurance
that these models are appropriate. Experiments by Gaines (1976) show that
this sort of intuited model is over—complex and difficult to genmeralise (the
user therefore expends considerable effort in frequently revising their
model). The designers” intended model and the users” actual models may be at
such variance that there is little mutual understanding, and little
possibility of system improvement. There is therefore considerable advantage
to be had by presenting the user model (or axioms) to the user before any
other aspects of tﬁe system (cf Mayer, 1981).

Because we require essentially immediate feedback, display updates

e il i, T o Aot P el ol e

- ¥y

i LA e W R

»

Sl LN e

PR g

YR PO S Ty 0 S U VR 1

S T . T

e e e e S £ty b . e g gt

may be best achieved locally, without resort to backing store, distributed
resources or (often time-shared) application processes (Baeker, 1980, pl38);

_ 81 -

if feedback is achieved locally, the feedback will be simpler and more

consistent (as it must be independent of detailed task semantics).

Morse (1979) outlines a number of designer principles for the

effective use of displays.
6 Conclusion

"What you see is what you have got" is easily ﬁnderstood by both

user and designer, and is expressed in such terms that

++.the principle

Having once suggested a specific user model, the designer is under

an obligation to

design, which should maintain the user model as understood by the user — this

approach alsc entails evaluation.

The model can be understood and is
readily memorised by the user without

prior system experience.

The user may generalise his knowledge.
The user is confident as to what has
happened (e.g. after an error), and does

not need debugging skills.

The user is encouraged to employ
perceptual-motor skills fully. This
is especially motivating.

The designer can use the principle to
meet clearly defined user expectations

with specific techniques.

is simple, general and natural.

ensure its effective implementation through careful system

R R R T T

[# . A <t tas R T M AN S, ¥ e g

.
g - 82 -
]
I

6.1 Generative principles...

Any principle which can be shared with the user so that the
designer can “implement expectations” (derived by the user from the
principle), could be classified as “generative"”. We must search for similar
generative user-engineering principles for other areas of man-machine
dialogue, especially in tasks where there is a large assumed context with
respect to the man-machine interface bandwidth (e.g. in expert systems).

Obvious relatives of "what you see is what you have got™ include

K e A R, S, &

"what you do is what you get", and — to emphasise predictablity — "you can
use it with your eyes shut” (which implies non-visual diagnostics).
Finally, we need more understanding of why and when guidelines

are valid.

References

R. Baeker (1980), Towards an effective characterisation of graphical
interaction, IFIP Workshop on Methodology of Interaction, Seillac II, 127-
147, North Holland, Amsterdam.

F. P. Brooks, Jr. (1977), The computer "scientist” as toolsmith - studies in
interactive computer graphics, Proceedings IFIP Congress, Information
Processing 77, (ed.) B. Gilchrist, 625-634, Toronto.

J. M. Carroll (1982), The adventure of getting to kmow a computer, IEEE
Computer, 15, no. 11, 49-58.

C. W. Fraser, A generalised text editor (1980), Communications ACM, 23,
154-158.

LAl Qs B o Sy Gy s e B 2 e e - Bt A T

,

B. R. Gaines (1976), On the complexity of causal models, IEEE Transactions on
Systems, Man & Cybernetics, SMC-6, 56-59.

N ke de e e o L

iy L

Y

o

4

1

P

T e L L e e I

B. R. Gaines & P. V., Facey (1975), Some experience in interactive system
development and application, Proceedings IEEE, 63, 894-911.

J. D. Gould (1981), Composing letters with computer—based text editors, Human
Factors, 23, 593-606.

D. E. Lipkie, S. R. Evans, J. K. Newlin, R. L. Weilssman (1982), Star
graphics: An object-oriented implementation, ACM Computer Graphics, 16, no.
3, 115-124.

R. E. Mayer (1981), The psychology of how novices learn computer programming,
ACM Computing Surveys, 13, 121-141.

D. Michie (1980). Problems of the conceptual interface between machine and
human problem—solvers, Experimental Programming Report, 36, Machine

Intelligence Research Unit, University of Edinburgh.

A. Morse (1979), Some principles for the effective display of data, ACM
Computer Graphics, 13, 94-101.

R. S. Nickerson (1981), Why interactive computer systems are sometimes not
used by people who might benefit from them, International Journal of Man-
Machine Studies, 15, 469-483.

J. Palme (1978), How I fought with hardware and software and succeeded,

Software — Practice and Experience, 8, 77-83.

R. R. Rosinski, H. Chiesi & A. Debons (1980), Effects of amount of visual
feedback on typing performance, Proceedings of the Human Factors Society, 24,
195-199, Los Angeles.

- B4 -

C. Rutkowski (1982), An introduction to the Human Applications Standard

Computer Interface, Part 1: Theory and principles, BYTE, 7, 291-310.

B. Shackel (1979). The ergonomics of the man-computer interface, Infotech
State of the Art Report on Man/Computer Communicatiom, 2, 299-324.

B. Shneiderman (1982). The future of interactive systems and the emergence

of direct manipulation, TR-1156, Department of Computer Science, University .
of Maryland, MD 20742. ¢

R. Spence & M. Apperley (1982), Data base navigation: an office environment
for the professional, Behaviour and Information Technology, 1, 43-54.

H. W. Thimbleby (1979), Interactive techmology: the réle of passivity, »

Proceedings of the Human Factors Society, 23, 80-84, Boston. ’

H. W. Thimbleby (1982a), Character level ambiguity: comsequences for user
interface design, International Journal of Man-Machine Studies, 16, 211-225.

H. W. Thimbleby (1982b), Basic user engineering principles for display
editors, Proceedings ICCC"82, London, 537-542.

H. W. Thimbleby (1982c), Interactive systems design: a personal view,
Proceedings IEE International Conference on Man|Machine Systems, Manchester,
118-122.

H. W. Thimbleby (1983), Guidelines for “manipulative” text editing, To

appear, Behaviour and Information Technology.

'{’%'W*WWUMFMWTVHHCMmuw\-nv\‘"w i et = R CR N S

e R R SRR Ltk A Sl e e T e ey o e e e T

