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Abstract We describe MAUI, a user interface design tool that is based on a ma-
trix algebra model of interaction. MAUI can be used to build and
analyse designs for interactive systems, such as handheld devices. This
paper describes MAUI, its advantages and underlying mathematical ap-
proach. MAUI is implemented in Java and XML, which allows flexible
integration with other parts of the design life cycle, such as prototyping,
implementation and documentation.
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1. Introduction
Regardless of how attractive they are, many interactive systems re-

main complex and hard to use, and many result in frustration and acci-
dents. They are often built informally, and it is not obvious what their
problems are nor how to avoid them. The research field of HCI aims to
improve the user experience, but it suffers from a lack of analytic tools
that both support clear formal reasoning and support design and eval-
uation at a practical scale. The theoretical approaches that have the
formal power to specify interactive systems are technical and beyond
the reach of real designers; and the practical development tools that cre-
ate real interactive systems are so informal that systems are inevitably
developed in ad hoc ways.

This paper introduces MAUI, a matrix algebra based user interface
development and analysis tool, and which provides a simple, general and
rigorous approach to design. It is sufficiently powerful to handle many
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Figure 1. An SVG simulation of the Sanyo CDP-195 portable CD player. The
graphics are hand-coded, but the simulation code is automatically generated from
the interface design in MAUI. Viewed using the Squiggle SVG browser.

complex interactive devices and because of its simplicity raises clear and
well-defined design and research questions.

MAUI allows the designer to model an interactive device as a finite
state machine (FSM), a technique that has successfully been used in
HCI (Thimbleby, 1993). From this representation, an event algebra is
generated, essentially a decomposition of the FSM’s transition matrix
into matrices representing individual user actions (Thimbleby, 2002). We
represent the FSM in linear algebra to permit equational reasoning about
user interface events. Properties of the interface can be formally stated
as theorems of this event algebra, and checked efficiently via matrix
calculations — though a user of MAUI need not know or care about the
internal implementation technique. MAUI stands for Matrix Analysis
of User Interfaces.

There are three key ideas behind the system:

Specification Algebraic properties can correspond to usability issues.
This is explored in Sections 5 and 6. MAUI maintains an algebraic
specification which can be checked against the evolving design.

Simplicity The simplicity of the formalism means that the system can
verify and generate relevent properties automatically. Hence the
designer does not need to get involved in proof, and can gain in-
sights into the interface design from properties and inconsitencies
pointed out by MAUI.
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Figure 2. A simple FSM model of a light switch.

Integration MAUI allows integration with other design tools and pro-
cesses via XML. For example, fast prototyping with SVG (Ferraiolo
et al., 2003), an XML open standard version of Flash.

Figure 1 shows a user interface simulation in SVG. The interface design
was specified in MAUI, and automatically combined with an SVG image
to make an interactive graphical simulation.

2. FSM Models
Finite state machines (FSMs) are a simple and well understood for-

malism used throughout computer science. An FSM consists of a finite
set of states connected by labelled transitions. In this paper we assume
that the states are those of the user interface, and that labelled transi-
tions correspond to those events that change the interface’s state. Events
usually consist of user actions, but may include other influences on the
system. Examples of events are the user pressing a button, selecting a
menu item or doing nothing for two seconds. We denote events with a
box notation: Event .

Figure 2 shows an extremely simple example: an FSM model of a
light switch. It has the states On and Off, and a Switch event that flips
between them. This model is deterministic, in that every event has at
most one effect in any state. A non-deterministic version might define
Switch in the Off state so that it may turn the light on or blow the bulb.
The model in Figure 2 is also unguarded, in that every event is possible
in every state. A guarded version might have a light switch that can be
flicked Up or Down (together replacing Switch ), where Up works only in
the On state and Down only in the Off state.

Formally, an FSM is a tuple 〈S, Σ, s0, δ〉, where S is a set of states, Σ
an alphabet (of events, in this case), s0 ∈ S the initial state, δ ⊆ S×Σ×S
the transition relation. The definition is standard. In MAUI, however,
the FSM model is enhanced in two ways: with signs and state classes.
Signs allow the designer to distinguish between the interface’s state and
those features observable by the user. An interface has a collection of
signs, and each state displays some subset of them. Examples of signs are
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highlighting a menu item, displaying the time, or playing some music.
Each sign may be associated with several states. Formally, we add to the
FSM tuple a set of signs Ψ and a function ω:S → PP(Ψ), which yields
the subset of observable signs in each state.

State classes are used to reduce the effort in describing interface mod-
els, and for MAUI to classify theorems. Event transitions and signs only
have to be defined once for a state class, and are inherited by all the
states that are members of the class. A state may be a member of several
state classes. Two classes are allowed to assign different transitions to
the same state and event — the model will simply be non-deterministic.
State classes are presentational and do not change the semantics.

As a modelling technique, FSMs have the advantage of being a stan-
dard, simple formalism, and therefore more accessible to the technically-
minded interface designer. They are also easy to simulate and MAUI is
platform independent: the approach is good for prototyping as well as
supporting research collaboration.

FSMs can be used in theory to model any finite, discrete concurrent or
sequential system, and so are widely applicable to user interface design.
However, FSMs also have a well known disadvantage in that they scale
badly. Because each state is represented explicitly, the size of an FSM
increases dramatically with the complexity of the modelled system — a
combinatorial explosion. This is a potential problem, as the model may
become too large for the designer to comprehend or for a computer to
store and analyse.

Fortunately, there are a number of ways in which the combinatorial
explosion can be mitigated:

Abstraction Details of the design can be excluded from the model.
Useful formal analyses can be still be carried out on abstract models.

Modularisation Large interface designs can often be broken down
into a number of distinct, independent models.

Higher-Level Formalisms Models can be built in equivalent higher-
level formalisms and compiled down to FSMs for analysis. The de-
signer need never see the underlying FSM; this is the approach of Esterel
(Berry, 1998), LTSA (Magee, 1999) and other languages.

Implementation techniques There are numerous compact imple-
mentation techniques appropriate for FSMs, including BDDs (Drechsler,
1998) and symbolic techniques.
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Pragmatism MAUI works with an event algebra that captures user
interface properties; if there is an unmanageable combinatorial explosion
then this might suggest that the user model is also extremely complex.
Thus we claim that if MAUI cannot handle the specification of the de-
vice, the designer should have a good idea of why the FSM is so complex,
how the users will cope with it, and whether this is acceptable.

3. Event Algebras
Analysis in MAUI uses a formalism consisting of states and events,

represented by vectors and matrices respectively. For example, the states
On and Off from Figure 2 are represented as vectors:

soff = (1 0) son = (0 1)

Events are represented as matrices that transform these state vectors
according to the FSM model. For example:

Switch =
(

0 1
1 0

)
Checking that these definitions conform to Figure 2 is a matter of ele-
mentary matrix multiplication:

soff Switch = son son Switch = soff

This can be read purely algebraically as a description of the light switch,
without reference to the underlying vectors and matrices. However, the
real advantage is that these matrices form an event algebra in which we
can make assertions about user actions independently of any particular
state (Thimbleby, 2002). For our toy example, we can state the following
property:

Switch Switch =
(

1 0
0 1

)
= I

where I is the identity (“do nothing”) matrix. This tells us that pressing
Switch twice has the same final effect as doing nothing! This is an
inherent property of Switch , no matter what state the system is in.

The strength of this approach is that similarly concise statements can
be made about far more complex interfaces with many states. We look
at some more interesting examples below.

Given a MAUI interface model 〈S, Σ, s0, δ, Ψ, ω〉 we formally define
its event algebra with a bijection η: {1 . . . |S|} ↔ S mapping states to
element indices; η generates a representation functionR that maps states
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and events to the vectors and matrices that denote them. For state s ∈ S
define the state vector s = R[[s]] by

si =
{

1 if η(i) = s
0 otherwise

For event E ∈ Σ define the event matrix E = R[[ E ]] by

Eij =
{

1 if δ(η(i), σ, η(j))
0 otherwise

The algebra of these vectors and matrices, equipped with multiplication
and an initial state vector R[[s0]], provides another model of the user
interface, based on the original FSM. For brevity in this paper, we write
the event E to denote the matrix E = R[[ E ]]; in general capital letters
A,B . . . denote matrices that may or may not be events or products of
events.

4. Using MAUI
MAUI’s own interface is a conventional GUI design, with windows

representing different aspects of a system’s functionality: Design, Simu-
lation, Statistics and Analysis. There are also menus for basic functions
such as opening and saving files and user help.

The Design window displays the current interface design and allows
the user to edit it. The window is split into two panels. The first lists
the various components of the design (lists of state, state classes, events
and signs). When a state is selected in the first panel, the second panel
lists the transitions defined from that state, the state classes it belongs
to, and the observable signs. Items may be added to the first panel, or
selected from the first panel and moved across to the second, or deleted
from any list.

The Simulation window shows an interactive simulator, ideal for basic
tests. The Simulation window does not aspire to be photorealistic, which
is currently handled externally by SVG and other mechanisms.

The Statistics window shows statistics that are useful for comparing
the complexity of different designs. For example, minimum, maximum
and average path length between two states (Thimbleby, 1993). Another
example is the overshoot recovery cost. A common user error is an
overshoot caused by doing an event, say E , once too often. MAUI can
calculate the overshoot recovery cost as the minimum number of events
that correct an overshoot: it determines a product of events R such that
E ER = E .
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5. User Interface Analysis in MAUI
Event algebras in themselves are simply a restatement of an FSM with

the transition function ‘broken up’ into individual events. This makes
them well-suited for making statements about how events interact with
each other, and hence for usability analysis. Crucially, matrices allow
theorems to be checked efficiently by elementary numerical calculation.

Of course, reflecting on the usability of an interface design is an ex-
tremely context-dependent process. A formal approach does not relieve
the designer of the need to think about the implications of their design,
and decide which formal properties are relevant to the user’s experience.
What event algebras provide is a well-defined language to talk about
user interfaces concisely.

MAUI allows the designer to specify a set of event algebra properties
that they wish their design to conform to. As the design evolves, the sys-
tem provides feedback on which parts of the specification are currently
satisfied.

Consider an interface button A such that A A = A , an idempotence
that tells us that if A needs pressing, it only ever need be pressed once.
The button would avoid the possibility of an overshoot error (pressing
once too often). This would be suitable for the specification of a Play

or Stop button.
Another example is undo. Allowing the user to undo their actions is

a common usability requirement. We can express the requirement that
user actions B . . . C act an an undo for action A by:

A B . . . C = AU = I

The designer may want each event to be easily undone, and so have a
short undo sequence (ideally one action) for each event A . Some events
are inherently irreversible, and so have no B . . . C that yields the iden-
tity. This can be determined by straightforward calculation (to show
the matrix is singular); the designer can specify in MAUI that an event
must be reversible, or that it must be irreversible. Further, some events
although in principle invertible, are merely irreversible for the user, as
there is no sequence of events whose corresponding matrix product is
the inverse of the event.

Another kind of usability issue the designer may be interested in is
permissivenes (Thimbleby, 2001): allowing many different sequences of
actions to achieve any given task, ones that commute or distribute, etc:

A B = B A

A B C = A B A C

A B = C D E
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A related usability concept is that efficient shortcuts should be available
for expert users: A B . . . C D = M — where, in turn, M can factored as
a product of user events, but its total cost (to the user) is less.

So far we have shown how universal statements about interface models
can be made in MAUI. In some cases a property will only be of interest
for a certain subset of states. This can be done by restricting properties
to particular state classes. For example, we can claim for a class, ‘For
C: A = B ’ if for all sη(i) ∈ C the ith row of A and B are equal. Another
use for state classes is dealing with predictable effects of actions. We
can state that event A always puts an interface into one of the states in
class C if we can show that for every non-zero jth column of A the state
sη(j) is not in C.

The designer manages the specification through MAUI’s Analysis win-
dow. This presents a list of the currently specified properties, with op-
tions to add, delete and edit them. MAUI distinguishes between three
basic types of property: equality of two event/state expressions; the re-
versibility of an individual event; and predictability of an event. These
are displayed in the property list as ‘A = B,’ ‘E is reversible’ and ‘A
results in C.’ Choosing to create or edit a property brings up an edit-
ing panel that allows these properties to be composed from the existing
events, states and state classes in a straightforward way. Predefined
events and states, like the identity and so on, are also provided. More
complicated properties can be built up in the editing panel by either
negating properties or restricting properties to a particular state class.

The Analysis window constantly monitors how the current interface
design conforms to the designer’s specification. Unsatisfied properties
are highlighted, and annotated with a percentage of how true they are,
or in which classes they are true. For an equality theorem the percentage
of states for which it holds is one such measure. The designer can also
request detailed information about why a property is not true in the
form of state transition counter-examples. A designer can ‘lock’ any
true property, so that MAUI forbids changes to the user interface that
make it false.

One feature that makes MAUI stand out as a design tool is its ability
to suggest to the designer properties of the interface model. At the de-
signer’s request the system can automatically generate true theorems not
already in the specification, as well as ‘near-theorems’ — non-theorems
of the equality type that are true for a high percentage (e.g., > 95%)
of states. The value of near-theorems is that they represent properties
which the designer could choose to make universal, for a more clear and
consistent design.
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The automatic suggestion mechanism currently works by enumerating
all identities up to a certain complexity, including those involving state
class matrices. In order to manage the amount of suggestions generated
by MAUI, the designer can vary both the theorem complexity level and
the percentage threshold for near-theorems.

6. Examples
The MAUI suggestion mechanism was used to analyse the design of a

portable CD player, the Sanyo CDP-195. The 29 state model captured
the behaviour of four events: Play , Stop , P-Mode and Wait (for 6 seconds).
The P-Mode button selects one of seven play modes (Normal, Random,
Intros, . . . ). The suggestion mechanism generated the following 97%
near-theorem:

P-Mode
7 = I (1)

Reflecting on why this is almost universally true, we found that the
P-Mode button cycled through the seven play modes and returned to the
original state, irrespective of whether the player was at rest, playing or
paused — except for in one state. In this state the display gave the CD
information, but P-Mode

7 took the user to an equivalent state with no
display except ‘--’. Merging these two states would have no effect on the
functionality of the interface, but would make (1) true and, we suggest,
the device more understandable to the user. MAUI’s suggestion for a
design property thus leads to a simpler and more consistent interface
design.

As a second example, the Nokia 5510 mobile phone menu system
(Thimbleby, 2002) can be specified by 5 event matrices, over 188 states.
We can automatically (and quickly) find theorems including:

Up C = C

Down C = C

C
4 = C

5

Up Down = I

7. Design Integration via XML
MAUI can store user interface designs in an XML format. This is ideal

for integrating the formal analysis done in MAUI with other stages of the
design cycle: prototyping, documentation, implementation, alternative
analysis tools etc. For proof-of-concept, so far we have written XSLT
stylesheets to convert designs to:
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Graphviz Visualisations of interface state graphs were produced by
converting XML designs into AT&T’s Graphviz format (Gansner
and North, 2000).

HTML+Javascript HTML simulations are a simple, portable way to
share designs with other people over the web.

SVG+Javascript For a more sophisticated graphical simulation, pieces
of hand-coded were added to the MAUI-generated XML, and au-
tomatically transformed into SVG+Javascript (Ferraiolo et al.,
2003). We intend to adapt an existing SVG editor to integrate
a graphical design editor with MAUI, to avoid the need to write
the SVG graphical elements by hand, as at present.

Mathematica In the hands of an expert user, Mathematica could do
larger and more complex analyses than are done in MAUI, al-
though it is far less accessible than our system, both in terms of
ease of use and price (MAUI is free).

Reusing the design data in each stage means there is no need reimple-
ment the design several times, with the possibility of errors occuring
at each stage. Figure 3 shows fragments of XML describing the Sanyo
CDP-195 mentioned in Section 5. The XML was generated by MAUI,
except for the hand-coded form element which contains the graphical
design. It was automatically transformed to the graphical simulation
shown in Figure 1.

8. Further Work
In developing MAUI our highest priority is to apply it to more real-

world case studies. We have argued for the generality of MAUI’s design
methodology, and given some examples. However, further work with a
wider range of examples is needed to establish the scope of the method,
both in terms of types of system and types of usability analysis.

MAUI is a research tool, but a separate question is how accessible
we could make our formal methodology to designers or HCI researchers.
The real questions here is ‘which ones?’ MAUI’s approach to formal
analysis is an attempt to be simple enough for more technically-minded
designers to grasp and to still be useful. Any further development will
need to consider more about the abilities and requirements of designers
and/or HCI researchers.

Sometimes a user will follow a detour to achieve some straightforward
goal, as in AB . . . CD = AD, etc. An interesting future development
might be to make some of MAUI’s analyses available to end users, not
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<fui>
<name>Sanyo CDP-195</name>
<event id="play"/>
<event id="mode"/>
...
<form width="600" height="250">

...
<signs>

<text id="track" ... x="260" y="195">01</text>
<text id="time" ... x="320" y="195">0:24</text>
...

</signs>
</form>
<function>

<initial ref="StandBy"/>
<state id="StandBy">

<change event="play" to="PlayNorm" />
</state>
<stateclass id="PlayState">

<change event="stop" to="NoAction" />
</stateclass>
<state id="PlayNorm" class="PlayState">

<change event="play" to="PauseNorm" />
<change event="mode" to="PlayRepeat" />
<sign ref="track"/>
<sign ref="time"/>

</state>
...

</function>
</fui>

Figure 3. XML description of the Sanyo CDP-195 portable CD player generated
by MAUI, except for the contents of the form element, which are hand-coded SVG.

just designers. “Would you like to know a better way to do what you
have just done?” In Hyperdoc (Thimbleby, 1993), the end user could ask
the system to find event sequences that set signs to particular values.

There are many techniques for compressing matrices. In MAUI, an
interesting possibility to explore would be to compress matrices and
hence help a designer determine tighter class definitions and nearly (or
completely) redundant transitions, as well as transitions that if changed
might reduce the model.

MAUI’s statistics could be extended in many ways, such as incorpo-
rating expectations based on Markov models (Thimbleby et al., 2001).
MAUI could constrain design changes to maintain statistics, as it cur-
rently does for theorems.

9. Conclusions
We have described MAUI, a design tool in which formal models of user

interfaces can be built and analysed. Design specifications are expressed
and easily verified using event algebras, with the novel feature that the
system can suggest to the designer properties that are true or nearly true.
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Integration with other design processes, especially graphical prototyping,
is achieved using XML.

MAUI can be compared to a range of more complex systems, from
LTSA (Magee, 1999) to the Play-Engine (Harell and Marelly, 2003), all of
which, by aiming for comprehensiveness, lose sight of clarity in usability
and effective use by typical mathematically näıve designers. Usability
itself is a very complex field, and we feel that the interaction between
usability research and various schemes for combining rapid prototyping
and modelling are not best helped by the usual goals of universality.

We imagine that as a body of design and usability related theorems
is developed (e.g., that many pairs of actions, such as Up and Down ,
should be inverses), these will be embedded into MAUI, thus making it
a convenient tool for designers and researchers not only to build, simulate
and generate prototype interactive systems, but to check a wide range
of their properties.

Acknowledgements Harold Thimbleby is a Royal Society Wolfson
Research Merit Award Holder. Jeremy Gow is funded on the award. We
are grateful to Paul Cairns for constructive comments.

References
Berry, G. (1998). The foundations of Esterel. In Plotkin, G., Stirling, C., and Tofte,

M., editors, Proof, Language and Interaction: Essays in Honour of Robin Milner.
MIT Press.

Thimbleby, H., Cairns, P. and Jones, M., (2001). Usability analysis with markov
models. ACM Transactions on Computer Human Interaction, 8(2):99–132.

Drechsler, R. (1998). Binary Decision Diagrams: Theory and Implementation. Kluwer.

Ferraiolo, J., Jackson, D., and Jun, F. (2003). Scalable vector graphics (SVG) 1.1
specification. Recommendation, W3C. http://www.w3.org/TR/SVG11.

Gansner, E. and North, S. (2000). An open graph visualization system and its appli-
cations to software engineering. Software Practice & Experience, 30(11):1203–1233.

Harell, D. and Marelly, R. (2003). Come, Let’s Play: Scenario-Based Programming
Using LSCs and the Play-Engine. Springer Verlag.

Magee, J. (1999). Behavioral analysis of software architectures using LTSA. In Pro-
ceedings of the 21st International Conference on Software Engineering (ICSE‘99),
pages 634–637. ACM.

Thimbleby, H. (1993). Combining systems and manuals. In Alty, J. L., Diaper, D.,
and Guest, S. P., editors, People and Computers VIII, HCI‘93, pages 479–488.
Cambridge University Press.

Thimbleby, H. (2001). Permissive user interfaces. International Journal of Human
Computer Studies, 54(3):333–350.

Thimbleby, H. (2002). User interface design with matrix algebra. Available online at
http://www.uclic.ucl.ac.uk/usr/harold/matrixweb/.


