
Computer Algebra in Interface Design Research

Harold Thimbleby
UCL Interaction Centre (UCLIC)

University College London
31-32 Alfred Place

London WC1E 7DP, UK

h.thimbleby@ucl.ac.uk

Jeremy Gow
UCL Interaction Centre (UCLIC)

University College London
31-32 Alfred Place

London WC1E 7DP, UK

j.gow@ucl.ac.uk

ABSTRACT
Tools to design, analyse and evaluate user interfaces can
be used in user interface design research and in interface
modelling research. This demonstration shows two work-
ing systems: one in Mathematica that is mathematically
sophisticated, and one as a ‘conventional’ rapid application
development environment, where the mathematics is hid-
den, and which could form the basis of a professional design
tool — but which is based rigorously on the same algebraic
formalism.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—User Interfaces; I.6.0 [Simulation and Model-
ing]: General; G.2.3 [Mathematics of Computing]: Dis-
crete Mathematics—Applications

General Terms
Design, Human Factors

Keywords
Computer algebra, matrix algebra, Mathematica, MAUI

1. INTRODUCTION
Finite state machines (FSMs) can in principle represent

any finite discrete process, including concurrent systems such
as graphical user interfaces. FSMs support the definition
and analysis of many standard user interface concepts, such
as reachability and shortest paths, which can be naturally
expressed in them. Various techniques, notably statecharts
and process algebras, have been proposed, and successfully
used, to manage the models.
FSMs can be partitioned into matrices, based on the tran-

sition matrix, such that each labelled transition has its own
matrix. Operations on the state are now represented as ma-
trix multiplications. This gives us an algebra of user actions
and states.
The main advantages of this algebraic approach are that:

1. Properties of the user interface are now readily ex-
pressed as algebraic theorems, and their scope and va-
lidity is easily calculated using elementary matrix op-

Copyright is held by the author/owner.
IUI’04, January 13–16, 2004, Madeira, Funchal, Portugal.
ACM 1-58113-815-6/04/0001.

erations. The scope and value of doing this is a subject
of our research.

2. Matrices can be compressed. There are good grounds
to think that this could suggest techniques for improv-
ing user interfaces.

3. A matrix representation lends itself to modelling and
simulation. We have built a tool MAUI to do this [1].

4. Matrix algebra is a standard mathematical concept; no
new notation or ideas need to be introduced. Matrix
calculation and algebraic methods are well supported
by numerous tools, including computer algebra tools,
such as Mathematica [2].

This paper illustrates these last two points.

2. DEMONSTRATION
The demonstrations show our research working in two

ways: Mathematica [2] simulations (here, of a Casio cal-
culator) and our tool MAUI (here, simulating a Sanyo CD
player). The simulated devices are familiar and need lit-
tle further explanation; they show how the approach can
support research (e.g., into modelling and formal issues in
HCI), and are suggestive that the approach can scale up to
many other sorts of interactive device: the demonstrated
simulations are accurate, and our approach has not taken
any unnecessary ‘short cuts’ in its favour.

2.1 Example 1: Mathematica
Our first example is developed in Mathematica, a widely

used computer algebra system. Mathematica represents an
enormous resource in mathematics: e.g., it allows a researcher
to write papers and mathematics together, with Mathemat-
ica evaluating and doing routine calculations. It can also be
programmed and hence extended.
In our case, a small amount of programming supports our

matrix approach. (In practice a Mathematica user would
include a package, and this sets up Mathematica to work as
described here.)
A fairly complete specification of a Casio HS-8V handheld

calculator was written in Mathematica (it does not handle
numerical errors as the Casio does, and it does not have
an auto power-off). The style of specification is executable,
from which Mathematica generates a fully working simula-
tion (which can record user events for later analysis). A
picture of such a simulation is shown in Figure 1. The fig-
ure is not very exciting — it is pretty similar to the Casio

366



Figure 1: Interactive Mathematica simulation of a
calculator

itself — but that is the point: the simulation is realistic and
functionally accurate.
The specification of the calculator in Mathematica is es-

sentially unrestricted, and the simulation can be tested on
users, etc. The package further defines utility routines that
convert such arbitrary specifications into matrix form (if
possible — the conversion process will highlight modes and
other design issues that may have been overlooked).

2.2 Example 2: MAUI
Whilst Mathematica is undeniably powerful and flexible,

it is only suitable for research and exploratory development.
For more practical use a different approach is necessary. In
our second example, then, we show how the matrix alge-
bra approach can be accessed via a fairly conventional GUI
user interface, much like a rapid application development
environment.
The MAUI system [1] was built to automatically support

the kind of algebraic analysis that one might carry out in
Mathematica, but in the context of a practical design or
modelling tool. A model of a user interface can be built up in
MAUI via a series of editing commands, then simulated and
analysed (using matrix algebra techniques). MAUI makes a
useful subset of the computer algebra techniques accessible
without the need to explicitly program it (or Mathematica).
Of course, we thereby loose a vast amount of mathematical
sophistication: MAUI restricts the model to being a (possi-
bly non-deterministic) FSM.
MAUI was used to build a model of the play/pause/rest

modes of a Sanyo portable CD player (see Figure 2), con-
sisting of 29 states and 4 user actions. As well as checking
the model against an algebraic specification of actions and
states, MAUI generates suggestions for algebraic properties
that are true or ‘nearly always true’. Designs can often
be improved by making properties universally true — this
makes the user experience simpler and more consistent. This
ability to generate ‘nearly always true’ theorems is appar-
ently unique in a design tool that could in principle be used
by professionals (particularly in safety critical domains).

3. EXAMPLE RESULTS
The two examples in this paper are very different, but

both raised some interesting design issues, which are easily
represented as algebraic theorems. To illustrate:

• A user cannot easily store the calculator’s displayed
number in memory unless the memory is already zero.
It is provably non-trivial to zero memory when the
display is non-zero.

Figure 2: Interactive SVG simulation, generated
from MAUI XML.

• Most of the time the CD player’s Mode button cycles
through seven play modes. In order to help the user
two identical states could be merged, making it true all
of the time. MAUI identifies the almost true theorem.

Matrix algebra has the potential to be used to explore a
much wider range of usability issues than we can illustrate
here. Determining the scope and applicability of such meth-
ods is the subject of further research.

4. CONCLUSIONS
We have shown that matrix algebra is a rich source of

research and development ideas in user interface design.
Matrices are well known, efficient and easily implemented.
They can be manipulated in standard programs (e.g., Math-
ematica) or in special purpose programs (e.g., MAUI). Math-
ematica is an expensive tool — MAUI, in contrast, is a free,
open-source program written in Java.
Mathematica is enormously flexible, and there are surpris-

ingly few limitations on an algebraic approach in the hands
of a skilled user. On the other hand, MAUI shows that very
practical — but rigorous — development can be done in a
standard GUI environment, and that this route is perfectly
adequate for some crucial stages of conventional interactive
device design. Using XML, MAUI integrates well with other
open source tools (including Mathematica).
It would be nice to see this research embedded in some

ways into conventional design tools, though obviously the
practical requirements of design are different from the re-
quirements of research. Current design tools (Flash being an
example) emphasise generality rather than precision, so ret-
rospectively introducing formality would be pointless. How-
ever, the benefits are significant, and we can look forward
to flexible and rigorous research tools like MAUI inspiring
future development systems.

5. ACKNOWLEDGMENTS
Harold Thimbleby is a Royal Society Wolfson Research

Merit Award Holder. Jeremy Gow is funded on the award.

6. REFERENCES
[1] J. Gow and H. Thimbleby. MAUI: Matrix Analysis of

User Interfaces, Project Homepage, 2003.
http://www.uclic.ucl.ac.uk/usr/jgow/maui/

[2] S. Wolfram. The Mathematica Book. Wolfram Media,
2003.

367


