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‘LITERATE PROGRAMMING' USING CWEB

be two mechanisms for specifying fonts. Again, the
combination of tools has led to arbitrary complexity in
cweb. Actually, the programmer rarely needs this feature
of cweb explicitly since cweb automatically adds font
information to all the code it generates (using the special
comment notation, in fact), which it can later pick up
again if a generated file is included elsewhere.

Cweb makes an attempt to reduce the size of generated
C code files by eliminating redundant blank space. C, like
many other languages, requires blanks to disambiguate
certain constructs. It obviously requires blanks between
adjacent reserved words and identifiers but there are less
obvious cases. I was aware that * X+ ++y’ (and even
‘X~= ~ ~~Y’) would become either ambiguous or
likely to be parsed incorrectly if cweb removed blanks
too eagerly but I have recently noticed the problems of
‘x/ *y’ (intended to mean division by ‘*y’, not
comment-out ‘Y’) and ‘X& &Y (intended to mean bit-
and with an address, not logical-and).

10. CONCLUSION

Literate programming is promising and successful, but
has a long way to go before it emerges as a mature
discipline. In the meantime, literate programming is likely
to be used more and more frequently in published
programs, and appropriate formatting standards will
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