


























Downloaded from http://comjnl.oxfordjournals.org at University of Wales Swansea on July 12, 2010



‘LITERATE PROGRAMMING' USING CWEB

be two mechanisms for specifying fonts. Again, the
combination of tools has led to arbitrary complexity in
cweb. Actually, the programmer rarely needs this feature
of cweb explicitly since cweb automatically adds font
information to all the code it generates (using the special
comment notation, in fact), which it can later pick up
again if a generated file is included elsewhere.

Cweb makes an attempt to reduce the size of generated
C code files by eliminating redundant blank space. C, like
many other languages, requires blanks to disambiguate
certain constructs. It obviously requires blanks between
adjacent reserved words and identifiers but there are less
obvious cases. I was aware that * X+ ++y’ (and even
‘X~= ~ ~~Y’) would become either ambiguous or
likely to be parsed incorrectly if cweb removed blanks
too eagerly but I have recently noticed the problems of
‘x/ *y’ (intended to mean division by ‘*y’, not
comment-out ‘Y’) and ‘X& &Y (intended to mean bit-
and with an address, not logical-and).

10. CONCLUSION

Literate programming is promising and successful, but
has a long way to go before it emerges as a mature
discipline. In the meantime, literate programming is likely
to be used more and more frequently in published
programs, and appropriate formatting standards will

REFERENCES

1. R. Baecker and A. Marcus. On enhancing the interface to
the source code of computer programs. Proc. ACM
Conference, CHI 83, Boston: Human Factors in Computing
Systems, pp. 251-255 (1983).

2. V. Donzeau-Gouge, G. Kahn, B. Lang and B. Mélese,
Document structure and modularity in Mentor. In Proc.
ACM SIGSOFT/SIGPLAN Software Engineering Sym-
posium on Practical Software Development Environments,
pp. 141-148. Pittsburgh, Penn. (1984). (ACM SIGPLAN
Notices, 19; ACM Software Engineering Notes, 9.)

3. S. Feiner, S. Nagy and A. van Dam, An experimental
system for creating and presenting interactive graphical
documents, ACM Transactions on Graphics 1, 59-77 (1982).

4. N. Hammond, M. D. Harrison, A. Monk, C. Runciman
and H. W. Thimbleby, Mechanisms for Specification, Imple-
mentation and Evaluation of Interactive Systems. Alvey/
SERC Grant GR/D/02317 (1984).

5. B. W. Kernighan and R. Pike, The UNIX Programming
Environment. Prentice-Hall, London (1984).

6. B. W. Kernighan & D. M. Ritchie, The C Programming
Language. Prentice-Hall, New Jersey (1978).

7. D. E. Knuth, The WEB. System of Structured Documenta-
tion, Department of Computer Science, Stanford University
(1982).

8. D. E. Knuth, Literate programming. The Computer Journal
27, 97-111 (1984).

9. D. E. Knuth (translated by T. Kurokawa), Literate pro-
gramming, bit 17, 426-450 (1985). (Publisher: Kyoritsu
Shuppan, Tokyo.)

10. P. A. de Marneffe and D. Ribbens, Holon programming.

evolve. The current format used by cweb is not sufficient
for all tastes and it is also very disappointing how long
it takes to specify a new style with troff. At some stage
literate programming systems will develop as purely
language-independent notations, interactive structure
editors, or properly integrated into new languages.

It is surprising how badly some software is designed
when itsinputis expected to be human-generated: the text
formatter used by cweb is terribly inconsistent and
extraordinarily difficult to drive by program. Perhaps it
was never formally considered. I believe Knuth is wrong
when he asserts that a WEB system is easy to implement
(Knuth, 1984) —a basic one is easy — but aesthetic
considerations of presentation are not easy to anticipate
nor formalise, and it is difficult to contain the resultant
system complexity.

In restrospect it seems obvious, but ‘integration’
cannot be retrofitted to fixed software tools without
introducing hacky features. The major problem here
has been the interaction and poor specification of lexical
and quoting conventions in the various languages. Less
severe problems arise from overloaded tools whereby a
single software tool provides several unrelated features:
cweb and other integrated systems may need more than
one feature of that same tool concurrently. There is much
more promise in interactive ‘constructive’ integrated
systems, but some functionality must be sacrificed.

International Computing Symposium, edited A. Giinther
et al., pp. 67-71 (1974).

11. D. C. Oppen, Prettyprinting. ACM Transactions on Pro-
gramming Languages and Systems 2, 465-483 (1980).

12. B. K. Reid, Scribe: A Document Specification Language and
its Compiler. Ph.D. Thesis, Carnegie-Mellon University,
Department of Computer Science (1980).

13. S. R. Smith, D. T. Barnard and I. A. Macleod, Holophras-
ted Displays in an Interactive Environment. International
Journal of Man-Machine Studies 20, 343-355 (1984).

14. R. Spence and M. Apperley, Data base navigation: an office
environment for the professional. Behaviour and Information
Technology 1, 43-54 (1982).

15. H. Sugaya, J. Stelovsky, J. Nievergelt and E. S. Biagoni,
XS-2: Anintegratedinteractive system, Report KLR 84-73C,
Brown, Boveri Research Centre, Baden, Switzerland.

16. R. D. Tennent, Principles of Programming Languages.
Prentice-Hall, London (1981).

17. H. W. Thimbleby, Literate Programming in C; Manual and
Small Example. Department of Computer Science Report,
University of York, U.K. (1984).

18. E. Towster, A convention for explicit declaration- of
environments and top-down refinement of data. IEEE
Transactions on Software Engineering, SE-S5, 374-386
(1979).

19. G. M. Weinberg, The Psychology of Computer Program-
ming. Van Nostrand Reinhold, New York (1971).

Note. Further details of the cweb system may be obtained from

Mrs Jenny Turner, Department of Computer Science, Univer-
sity of York, York, YOI 5DD, U.K.

THE COMPUTER JOURNAL, VOL. 29, NO. 3, 1986 211

0TO0Z ‘2T AINC uo easuems sajepn 1o Alsianiun e 6o sfeulnolpiopxo’juliody/:dny woly papeojumoq


http://comjnl.oxfordjournals.org

