
.- .. ~. - -.

Delaying commitment
means keepingyour

options open, with
inventive

consequences.
Algorithms and other

techniques make
delaying commitment
an effective strate*.

HaroM Ihimbleby, University of York, England

n many disciplines the difference be-
tween amateurs and experts seems to
be that experts know how to delay their

commitments. They also know how tocon-
ceal their errors as long as possible. An ex-
pert's skill lies as much in repairing errors
before they are discovered as in knowing
how to postpone and avoid them.

Amateurs, on the other hand, try to get
things completely right the first time and
often fail because they try to solve too
many problems at once. In their anxious
desire to avoid error, they make earlycom-
mitments - often the wrong ones.

In fact, the expert's strategy of postpon-
ing firm decisions, discovering con-
straints, and then filling in the details is a
standard heuristic to solve problems.
Delayingcommitments often leads to new
insights.'

However, i t seems that most people,
when faced with a new problem, have a
tendency to make early commitments, to
prejudge. Early commitment is natural be-

78 0740-7459/88/0500/0078/$01 .CO @ 1988 IEEE

cause it tends to reduce both the number
and complexity of remaining subprob-
lems. In the context of programming,
early commitment corresponds to eager
evaluation.

Hackers, for example, typically choose
to know as much as possible about com-
puter systems and eagerly consume every
available bit of information, whether or
not they will eventually use it. To make
their all-consuming interest feasible, they
must be committed to a particular sort of
computer, operating system, or whatever
- after all, you can only learn a lot about
a few things.

The term "hacker" is often used pejora-
tively, and few want to be associated with
the extreme, addictive forms hacking
sometimes takes. Yet almost all program-
mers, when Faced with a new system to de-
sign, first of all commit themselves to cer-
tain hardware (often the fastest and most
recent). Ofcourse, there arevery practical
reasons to do so, but early commitment

IEEE Software

.~ ~ ~

Authorized licensed use limited to: SWANSEA UNIVERSITY. Downloaded on July 12,2010 at 14:52:38 UTC from IEEE Xplore. Restrictions apply.

may blind them to more creative designs.
In this article, I advocate an approach

that is unnatural to many people because
i t involves delaying commitments and
postponing decisions. In the context of
programming, delaying commitment
corresponds to lazy evaluation.

The problem
Design commitment is a ubiquitous

issue, cropping up in disciplines as diverse
as anthropology, biology, and commerce
(where premature specialization fre-
quently leads to extinction o r bank-
ruptcy). In software design, commitments
are the choices we make from all the
possible ways to satisfy some specification.
A specification calls for a certain function,
and as the design progresses the designer
maycommittoanarray,a hash table,apro
cedure, or some other structure.

Which structure you commit to depends
on effectiveness criteria: different choices
lead to different efficiencies (some are
fast, some use little memory, some are easy
to program, and so on) .At some point, the
commitments made will (hopefully) coin-
cide with specifications that are known to
be effective.

So commitment is the process of intro
ducing structure to a design by making
representational decisions that realize or
represent abstractions.' Abstraction and
commitment are inverse processes - an
abstraction is the outcome of relaxing
commitments and a representation is the
outcome of making commitments.

Design by accident. Commitments must
be made, but designers always make com-
mitments from imperfect information
and often do so too early in the design
cycle. Their commitments are often un-
consciously formed, and when design
commitments are more accidental than
deliberate, the chances of easy develop
ment at a later stage are greatly reduced.

Premature design commitment i s

May 1988

damaging because
it restricts freedom for iterative design,

which is recommended for good user in-
t erfaces,2

it increases maintenance costs,
i t exacerbates the consequences of

it makes software nonportable.
Design errors may be classified either as

the result of premature (and unfortunate)
design commitments or as the result of
transformation errors (faults in the design
process). I am concerned entirely with the

bugs, and

ladvowte an approach
that is unnatural to many

people because it
involves postponing

decisions. In
pro@amming, this

corresponds to lazy
evaluation.

former class of design error. I advocate
delaying design commitments as long as
practica1,just in case they turn out to be in-
appropriate.

The cost. Avoiding unmanageable, un-
masterable complexity is perhaps the
characteristic theme of software engi-
neering. The standard techniques (ab-
straction, encapsulation, and so on) have
this common aim.

Errors undetected at the abstract-design
level are increasingly costly to fix as repre-
sentational commitment increases. Per-
versely, errors may not be noticed until a
fair degree of representational commit-
ment has been achieved: At the extreme,
we may not know what problems there are
in a particular abstraction until we can run
a representative program.

Typically coiiccq~tual crroi-s - socallctl
misfeatures - remain undetected right
up to field testing and must be corr-ectcd
during maintenance. R u t because of the
corisiderablr effort invested in the preced-
ing design and implementation phases,
there may be so much emotional and fi-
nancial cotntnitmcnt to the system that
the misfeatures must remain.

Advances in software engineering cat1
be expected to reduce dependence on so-
called repair maintenance as Sof'hvare be-
comes more reliable. I n conu-iist - and
not surprisingly - adaptivc niaititenancc
is becoming inore important.

Premature design coniinitnietit is a stan-
dard problem: Perhaps we do not really
knowwhatwcwant,andwhenwegetitwe
may change our minds! Indeed, sonic
argue that when we do ruddesign we can-
not know in advancewhat wc~;tnt anyway.
In other words, advances in software engi-
neering alone will not be sufficient to

avoid the consequences of unfortunate
and premature design coininiunents.

The solution. The design pi-ocess is a
search for an acceptable design from a11
indefinitely large selection. There are two
problemsin searching foradesign: (I) We
may not search very effectively and (2) we
may not recognize a good design when
one is found (or convei-sely we may inis
take a bad design for a better one).

The first problem iscaused in part by the
lack of information about the structure of
the design space, its size (the clerical and
mental overhead of keeping track of deci-
sions that may have t o be re\ised), and psy-
chological issues - particularly our natu-
ral tendency t o prefer fixing reasonable
design decisions as early as possible so we
can concentrate on concrete rather than
abstract problcins.

Delaying ~oniinitiiien t clearly addresses
the first problem (effcctivcness), but it
must have apayoff: There is no point in en-
forcing a search strategy that takes signifi-

79

...-__ . ~ ___

Authorized licensed use limited to: SWANSEA UNIVERSITY. Downloaded on July 12,2010 at 14:52:38 UTC from IEEE Xplore. Restrictions apply.

cantly longer and fails to motivate design-
ers.

Delaying commitment also addresses
the second problem (identification) since
we may be able to modify a well-known de-
sign very easily if many of its features are
uncommitted, that is, programmable.

Delay tactics
The programdesign level is not always

the most pertinent level on which to focus
attention. But in this article, I emphasize
the implications of delaying commitment
at the programdesign level only because
this iswhere the conceptsare most easilyil-
lustrated. I use the term "designer" to
cover all manner of thinkers involved in
program development, from the in-
dividual programmer, to design teams, to

management, and so on.
There are technical ways to delay com-

mitment that have inventive con-
sequenceson the overall design. In the five
boxes that accompany this article, I ex-
amine the consequences of delaying com-
mitment in operating systems (below),
compilers (p. 81) , hypertext (p. 82), dis
tributed systems (p. 83), and in life gener-
ally (p. 84).

Of course, there are many nontechnical
ways to delay commitment that I do not ex-
plore here, including de Bono's lateral
thinking approach to problem-solving.4

use malules
Suppose a system has been imple-

mented orothenvise has afullycommitted
design. A change to the specification of

0peratingsyStems:Keeping
commitmentsopen

Most conventional operating systems follow an isolated, virtual-memory process model.
Each process has its own virtual machine that makes it isolated and largely independent. This
means process crashes are independent, separated by the fire walls that handle potential in-
securities. The operating system itself also is closed; it usually cannot be modified except by
replacement (rebooting).

In contrast, open systems like Cedar' and Smalltalk let processes share code and their
scoping schemes let arbitrary operations be redefined.

Open systems have many advantages, not the least of which is enhanced productivity
brought about by code sharing rather than code copying, which is the only option in a closed
system. Also, bug fixes and revisions are global in an open system.

Conversely, fire walls mean total and early commitment to security, which programmers
may use to ensure the security of code as well as the operating system. This may restrict other

Orogrammers from copying code because they don't have permission, so they have to rein-
vent it (by reverse engineering). This encourages the introduction of new features, the re-
moval of diff icuk-to-implement features, and different (and probably more) bugs.

These problems can be avoided if commitment is delayed. Cedar, for example, achieves
security by static type checking and enforcing certain data invariants. Its openness en-
courages software reuse.

The benefits of such software reuse can be contrasted with the possibilities, and relative
restrictions, under Unix. In Unix, the process interface for programmers is generally identical
to the process interface for users. Thus grep is used by both people and processes using the
same protocols. It is ludicrous to expect a program to actually invoke a display editor and use
it itself, even though the display editor provides many features the program wants. Yet thedis-
play editor's features can only be used via a particular interface, the user interface.

In contrast, open systems separate user interfaces from program and programmer inter-
faces (because the program-level module interface is readily accessible to any program), per-
mitting more general integration of software -without compromising the user interfaces of
the original processes.

Reference
1. D.C. Swinehart, P.T.Zoliweger,andR.B. Hagmann,"TheStructureofCedar,"froc. SIGflanConf

Language Issues in Programming, ACM, New York, 1985, pp. 230-244.

some module of the system may be re-
quired, for one reason or another. But this
module interfaces to other modules, so if
i t is changed possibly many modules will
need revising (and they, in turn, will inter-
face with others that may have to be
changed, and so on). The initial change
has snowballed into a major task.

Then, allowing for Djkstra's exponen-
tialerror probabilitie~,~ the actual cost
could be much higher. Would it not be
more appropriate to design so that (where
possible) you ensured that the cost of
changing at implementation is com-
mensurate with changing at specification?

Had we delayed commitment to the par-
ticular design of the module we now want
to change, the modules it interfaces to
would not be so sensitive to changes in it
and we could reasonably expect com-
mensurate costs.

Of course, the rationale for using mod-
ules is precisely this advantage of informa-
tion hiding: You can change module im-
plementat ions without changing
interfaces (modules should not be com-
mitted to aparticularimplementation hid-
den in other modules). A well-known
advantage of modules is that they limit the
spread of optimizing information, thereby
limiting the commitment of the entire
program to an algorithm chosen to imple-
ment a particular module.

Use parameters
The easiest way to remain uncommitted

is to use parameters. The paradox here
(Polya's Inventor's Paradox') is that
deliberate attempts to delay commitments
may have more chance of success. For ex-
ample, try showing that

1 + 2 t 3 + ... t 10,000=50,005,000

by using numbers. It is much easier to
prove the parametric

1 + 2 + 3 + . . . + k = k (k + 1) / 2

and then set k = 10,000, even though it
seems it really ought to be harder! The ef-
fort put into the proof (delaying commit-
ment to k = l0,OOO) savesyou about 10,000
sums - and gives you a lot more confi-
dence in the result!

Experience is needed to choose a para-
metrization appropriate to the problem.
In this case, it would have been counter-

80 IEEE Software

Authorized licensed use limited to: SWANSEA UNIVERSITY. Downloaded on July 12,2010 at 14:52:38 UTC from IEEE Xplore. Restrictions apply.

productive to parametrize by the ex-
ponent

(1k+2k+3k+ ... 10,Wk)

or by the operator. Similar difficult choices
arise when parametrizing programs.

Keep it general
Take a simple example from program-

ming in Pascal. Ifwe are prepared to com-
mit ourselves to a certain representation
type for a certain value, we can arrange for
all occurrences of it to be type-checked.
We may, for instance, commit a variable s
to a Pascal set type. Pascal then ensures
that each applied use of the variable is type
checked: For instance, we could not assign
5 to s, but we could assign a set containing
5.

Suppose we later discover that amultiset
isrequiredinsteadofaset. What used tobe
supportive redundancy (the Pascal set-syn-
tax and type checking would have de-
tectedabusesofsets) ,nowseverelyhinders
correcting the program: Operations and
definitions must be changed all over the
program.

Had we first written the program choos-
ing a less-committed representation (like
an access function), Pascal could not have
provided the checking that previouslycon-
tributed to our sense of robustness. Thus
the trivial way to avoid commitment is to
leave things unspecified, but this is inse-
cure and may be inefficient (if runtime
checksare employed).

Does the solution lie in experimental (or
ex p 1 or a tory) program mi n g en vi r on -
ments? Interlisp and Smalltalk are ex-
amples of systems tha. propide unusual
freedom for the programmer from design
commitments, and have gained in popu-
larity largely for this reason.'

Rut depending on dynamic typing to
delay commitments compromises either
security or efficiency (because of runtime
checks to ensure security). Exploratory
programming environments (incremen-
tal, polymorphic type checking notwith-
standing) will not produce reliable prc-
duction systems of any complexity.

The languages available in exploratory
environments generally depart from the
conventional imperative programming
paradigms: They are functional, object-
oriented, access-oriented, rule-based, and

Compilers Acommibnenttoorder
~

Compilers are composed of phases: lexical, syntactic, semantic, optimization, code gen-
eration, more optimization, loading, and so on. Each phase (or group of phases) generally
runs to completion on program units - blocks, routines, or lines (in Basic) - before pro-
cessing the next unit. Thus, lexical and syntatic analyses are usually completed before op-
timization and code generation are attempted.

The most important forms of optimization are machine-independent and are applied before
the compiler is committed to a target machine's code. However, most compilers fix and totally
order the sequence of computation but the pairs <phase, programanit> form a partially
ordered set. Most compilers are therefore overcommitted to a predetermined computational
order.

It is clearly possible to perform all syntactic analysis on the entire program before any code
generation, then perform all code generation before any loading (and, indeed, before pro-
gram execution). Alternatively, it is equally valid for the compiler to perform syntatic analysis
and code generation on a per-routine basis.

An extreme example of this is Brown's interactive, dynamic program-building system,'
which delays compiling a line of a program until it needs to execute it, and even then does not
request a line from the user until it needs to be compiled. This at least ensures that the user
never enters program code that isn't executed (with obvious educational advantages)!

Butaconventional compilertotally orders the computation. With the orderdefined and fixed
in the compiler structure, it is very hard, if even possible, to modify. This limits its use (or at
least its efficiency under some circumstances).

If physical memory is small in comparison with the requirements of each phase, it is likely
more efficient to compile in phases. If the program units being compiled are larger than the
phases processing them, it is more effident to compile each unit to completion. In any case,
efficient memory management (including efficient use of memory bandwidth) is possibleonly
if you delay committing to a total ordering of the compilation process until you know the details
of the compilation. These ideas have been put into a Pascal compiler.'

Afunctional compiler lazily evaluated would readily obtain these advantages. "Motivating"
the lazy evaluator with eager diagnostic consumers (like student users) or eager executable-
program consumers (as in a production environment) would produce different total orders
consistent with the partial order.

The compilation strategy you choose also relates to the program's design-commitment
strategy, andvi~eversa.~ Suppose you want explicittype binding (strong commitmenttotype
specification) and early error detection. In this case, the compiler shouldorder computation
by phase because the earlier a program unit is cross-checked with others, the earlier global
type inconsistencies are detected. Conversely, if you want runtime binding (weak commit-
ment to type specification) and early error detection, the compiler should order computation
by program unit because the earliera unit is run, the earlier runtime type conflicts are detected.

Configuration systems for programs follow a similar paradigm. Different language proces-
sors (or different activations of processors) run by the configuration system are analogous to
the various phases of a conventional compiler. Normally, program configuration is specified
in a procedural, jobcontrol language, by imperatively speafying a total ordering for the steps
of the configuration. Because of unavoidable serialization andthe difficultyof expressing data
dependence in a general way, a secure procedural configuration chooses a predetermined
total ordering over the full set of target-program dependencies.

In contrast, declarative systems (like Unix's Make) may determine a data-dependent,
totally ordered subset consistent with the partial order (expressed in the Make file) and the
given data (in Make's case, fileage relations).

References
1. P.J. Brown, 'Tools for Amateurs," in Twls andNobns for Program Construction, D Neel, ed.,

Cambridge University Press, New York, 1982, pp. 377-390.
2. W.R. LaLonde and J. des Rivieres, "A Flexible Compiler Structure That Allows Dynamic Phase

Ordering,"Tech. Report SCS-TR-3, Computer Science School, Carleton University, Ottawa. 1982.
3. J.W. Goodwin. "Why Programming Environments Need Dynamic DataTypes," /€€E Trans. Soft-

ware€ng., Sept. 1981,pp.451-457.

May 1988 81

Authorized licensed use limited to: SWANSEA UNIVERSITY. Downloaded on July 12,2010 at 14:52:38 UTC from IEEE Xplore. Restrictions apply.

so on. Some people have argued that such
programming languages are imple-
mented in their fullgeneralitybecause the
cost of generality is marginal in compari-
son with their overall inefficiency.

In contrast, a typical imperative lan-
guage (such as Pascal) can be imple-
mented very efficiently on conventional
computers if certain compromises are
made (so that it is forbidden to return an
array from a function, for example). What
has happened is that the lure of attainable
efficiency has led the programming lan-

guage designer away from generality.
Whether this isjustified depends on the

designer's intentions (or, rather, on the in-
tentions expressed or implied in the de-
sign requirements). It isoftenjustifiable to
trade programdevelopment time for pro-
gram-execution speed. The danger is that
the designer may not consider these inten-
tions and will make arbitrary commit-
ments that turn out to be unjustifiably re-
strictive.

The solution, I believe, lies in the pro-
gress made in those imperative languages

Hypertexk Implied commitment
Text in a conventional document follows a single sequence. Each word has a unique

successor: the next word. Hypertext has multiple sequences and hierarchies. Each word may
have several successors. One may be the next word, but another successor may be a dic-
tionary definition of the word, or a cross-reference, or even adiagram illustrating a pertinent
concept.

In a typical hypertext system, the author interactively specifies relations between comp-
nents of the text. In most hypertext systems, you specify these relations explicitly.

Perhaps you use a mouse to link fragments of text. In this case, it is easy for the system to
determine a particular document structure from these relations because the user interface
enforces a consistent and simply connected arrowing at all times.

But a commitment-delaying design might let you imply relationships, perhaps with sym-
bolic expressions. Now it is quite possibile that the relations will not specify a total ordering.
For the system to print the hypertext document, it must choose one order from all those al-
lowed by your partial ordering.

For example, you may have specified only that section xfollow y and section zfollow y,
without specifying an explicit relation between xand z. The system may choose to print in
either order yxzor yzx. In an extensional system, you would not be permitted to place two ar-
rowsfrom xwithout giving an explicit order. If zis to be kept in the system, let alone printed, it
must have asingle arrow pointing to it (from either xoryin thiscase).

Now suppose you write some text ?between zand xand you require that tfollow z. This is
suffiaent information for the system to determine an order (yzk) without further adjustment
of the relations. In an extensional system, you would have had to adjust the arrows manually:
a tedious job if they had previously been specified in the contrary order (yxz). The problem
gets worse with examples on a realistic scale.

A hypertext system must commit itself to an order at some point. However, many hypertext
systemsforce you to specify aconsistent, total ordering of adocument'scomponentsassoon
as they are introduced into the system, even though this may not be needed until a user re-
quests a paper copy or some other tom of output.

Thechoiceof how and when totalorderis irnposeddepends on variouscriteria. Users have
(at least) three reasons to use the system: They may be composing new text; they may be
browsing interactively; or they may want hard copy (a noninteractive or less interactive form
of browsing). In each case, a different choice of order might be appropriate. Indeed, there
may not be a total order consistent with all three uses.

Usually, the designer chooses some arbitrary criteria and commits the system before it is
built. The designer probably is guided by user-interface considerations, such as a desire for
direct manipulation, which requires extensional relations. In other words, the designer avoids
the implementation problem of handling nondeterminism at runtime (and the problemsof how
to provide the user with features to handle nondeterminism) by eliminating it at design time,
thereby restricting the user.

where designers intentionally emphasize
generality and completeness (and other
language-design principles) instead of
efficiency on typical computer architec-
tures.8

Avoid sequencing
There is now a growing trend away from

procedural languages (such as Pascal,
Ada, and Smalltalk) to nonprocedural lan-
guages (such as Prolog and Miranda).
This trend grows partly out of the recogni-
tion that algorithms can often be defined
without any reliance on a specific order of
evaluation. In a procedural language, for
example, to find the maximum element of
an array the following code might be used

rnaxval := -
for i := 1 to N do

if a[i J > maxval then maxval : = a [i]

It is not immediately clear why this par-
ticular order is necessary; it would have
been as reasonable to write

fori := N down to 1 do

or do it in any other order. I t is even legiti-
mate to examine elements of the array
more than once.

If you choose a procedural language,
you must commit to one of the possible
representations of the algorithm. To make
this particular commitment youmaywaste
programdevelopment time, especially if
you begin to wonder which is more effi-
cient on the particular computer you ex-
pect to run the program on (if you are al-
ready commit ted to a particular
computer).

In such a simple case as finding a maxi-
mum, you readily draw on a set of pro-
gramming idioms (perhaps using a primi-
tive of the programming language) and
the question of wasted design time hardly
arises. But in a more complex example it
would take longer to discover if the appre
priate primitives or library routines were
available, and if they weren't i t would take
longer to devise the code.

So why not use a programming notation
that does not express sequencing? Ob-
viously this is an idealization: You must
now learn a different set of programming
idioms to program effectively. But i t is al-
most certain that (for a wide class of algo-
rithm) you will be able to program faster

82 IEEE Software

Authorized licensed use limited to: SWANSEA UNIVERSITY. Downloaded on July 12,2010 at 14:52:38 UTC from IEEE Xplore. Restrictions apply.

and more rehdbly.'
In real life, the intention of this example

would have been that some computer
eventually find the maximum element of
some array. Whether Pascal, Prolog, or
some other language is used, the com-
puter will necessarily evaluate the algo-
rithm with a particular procedure: By in-
creasing i or decreasing i or by taking
values of i in parallel, or perhaps in some
combination of these procedures. The
point is that you need not commit to thepartic-
ulur procedure eventually chosen, in this case
to find the maximum.

The freedom to choose a nonsequential
(parallel) program relies on the efficiency
of the underlying implementation. Some-
body must have shown that a parallel exe-
cution indeed works, and to do that they
will have to have made various commit-
ments that are no longer visible to the pre-
sent programmer.

Ofcourse, the parallel strategy inevitably
has commitments; otherwise i t might
never terminate, perhaps due to re-
peatedly examining a certain array ele-
ment. The advantage of the strictly serial
algorithm is that there is a simple argu-
ment that shows that every element is ex-
amined (correctly) no more than once
(efficiently).

Don't build prototyping
tools

Rapid prototyping is sometimes sug-
gested to avoid design errors. But ifyou are
building novel applications, say novel user
interfaces, rapid prototyping is not
possible.

Prototyping only shifts the locus of the
expensive errors from the application to
the rapid prototyping tools themselves. In
other words, fourthgeneration languages
and prototyping tools may indeed make
design easier and more flexible for certain
specific classes of problems, but the issue
of design commitment still exists. Indeed,
early commitment has been shifted to a
more central position, where the effects of
unfortunate design commitments will be
wider than before, affecting all software
developed with the prototyping system.

Furthermore, prototyping tools are
generally more complex than the proto-
typed applications themselves, so the de-
sign errors in the tools are more complex

Virtual time: Brealdngcommibnents
One of the most radical approaches to delaying commitments right up to (even past!) run-

time is Jefferson's virtual time,' which is analogous to virtual memory.
With virtual memory, physical address bindings are not committed until the runtime eval-

uation of the memory mapping, and this commitment is usually transparent to the software.
Essentially, virtual time lets a process continue processing with insufficient information, as if
it could commit itself. Sometimesits hypothetical commitment will be appropriate, sometimes
not. Time warping lets a process backtrackon incorrect hypotheses in a well-organized fash-
ion.

l ime warping is best understood in the context of a distributed system, where processes
want to proceed with their computations but must wait for all pertinent messages from other
processes. How long should a process wait? It might seem that a process should be allowed
to commit itself to a particular line of computation whenever it assumes it has received all the
relevant messages. But what if relevant messages had been delayed and the computation
would have run differently had they been received?

Time warping lets a program select a computation path (obviously, a path consistent with
the messages received so far). But, if it later receives a message that should have been
processed earlier, it discards the current processing and revises its last choice, rolling back
its local clock to that earlier time. Thus, time warping is aform of look-ahead: Aprocess com-
putes ahead of received messages whenever it can. Sometimes it will have to backtrack its
look-ahead.

When may a process commit itself publicly (reclaim its backtrack stack)? Jefferson's solu-
tion is global virtual time, which is a conservative estimate of the time of all the local clocks
(and time stamps of unprocessed messages). Global virtual time never decreases, so when-
ever it exceeds the time of timestampson received messages, any processing that would be
triggered by those messages may be committed without fear of future backtrack.

This commitment is less restrictive than it appears. A process can transmit messages
before it has become committed to a computation path. When it must backtrack, it transmits
time-stamped antimessages to all its previous message targets. The antimessages will, in
turn, make the receiving processes backtrack (or cancel the effect of unprocessed mes-
sages).

With timewarping, commitment is requiredonlybeforeoutputtoaprocessoruserthatcan-
not backtrack because it is not part of the time-warping scheme.

Reference
1. D.R. Jefferson, "Virtualfime," ACM Trans. Programming LanguagesandSysfems. July 1985, pp.

404-425.

and much harder to avoid. Programmers
are likely to be less familiar with the proto-
typing tool's structure than the applica-
tion's, so the counterargument that proto-
typing tools are developed only once and
so deserve a very high investment in their
design can be dismissed. The design in-
vestment would never be amortized if the
prototyping tool is overcommitted and
must be changed.

Prototyping, rapid or otherwise, is not
an answer to delaying commitments. You
may disagree, but then uncommitted proto-
typing tools should be called compilers.

Useabstractions
Premature design commitment can be

partly avoided by using abstraction (in
SETI,, you can write "max/a" instead of
spelling out a specific maximizing algo-
rithm*). As implementation proceeds,

* There is a subtle distinction between delaying com-
mitment and letting someone else make the commit-
ment for you. Who implemented mdx?

however, inevitable biascommitsdesign in
ways that might later need to be revised.

Specification tools (proving, animating,
prototyping, and modeling) may help
enormously, but the fact remains that the
major cost of software is incurred after the
initial implementation commitments
have been firmlyfixed. This is inevitable in
systems that put a high emphasis on the
user interface because users make a signif-
icant contribution to the design only after
using a full-fledged production system. It
has been estimated that more than 60 per-
cent of maintenance costs originate from
external pressure (users) rather than in-
ternal problems (bugs) .'"

User interfaces
Ultimately all programs need a user in-

terfaces, else they can neither be used, nor
the effects of running them be known!
However, purely technical programming
decisions, such as order of computation,
often intrude into the user interface.

May 1988 83

Authorized licensed use limited to: SWANSEA UNIVERSITY. Downloaded on July 12,2010 at 14:52:38 UTC from IEEE Xplore. Restrictions apply.

These decisions might be in the form of
limitations that are inexplicable to the
user who does not have thorough knowl-
edge of the implementation (and perhaps
of the sequence of design decisions). The
decisions that cause many such limitations
are in fact quite arbitrary, but they place a
significant intellectual load on both the

designer and the user.
The following calculator example il-

lustrates one benefit of delaying commit-
ment for user interface design. Interactive
systems are often designed by first decid-
ing the nature of their required inputs and
outputs. This involves making an early
commitment - one that may be prema-

Commitments in life: A matter of style
Any approach to solving problems in programs can be used more widely: As an approach

to program design and to the wider problems of life. Delaying commitment is related to lazy
evaluation; early commitment to eager evaluation. Delaying commitment also corresponds
to breadth-first search; early commitment to depth-first search.

In life, a problem-sober often wants to take action on the workl as the search for a s o b
tioon progresses. This makes backtracking costly and sometimes impractical. Of course, you
hope that lots of backtracking will not be necessary, and that you can safely use pruning to
narrow the options. Depth-first search and eager evaluation are often easier because fewer
alternatives and partial results need be kept track of.

Just as programs are typically designed with some computational strategy in mind, so
people tend to solve problems with their favorite strategy. Aperson who tends toward eager
evaluation is said to be a judging type and aperson who tends toward lazy evaluation is aper-
ceiving type.'

Ajudging person looks for goals in life; a perceiving person is interested in processes. It's
atrade-off betweenmeansandends:Ajudgingpersonemphasizestheends('rhe endsjustify
the means") - he wants a system he can get results from. Aperceiving person emphasizes
the process and might never make the decision necessary to attain his goals - he wants a
system he can enjoy using.

There are trade-offs in each personality type, depending on the situation. Judging people
may waste time making plans, making early commitments for situations that never arise. Per-
ceiving people may be overtaken by events that they had not planned for.

Balanced people may approach each situation in a way that is appropriate for them in that
situation, neither strategy habitually prevailing. But most people facing new problems have a
tendency to makeearlycommitments, toprejudge. Early commitment isa natural stategy be-
cause it tends to reduce both the number and complexity of the remaining, and likely unfamil-
iar, subproblems.

Because real design is necessarily tackling new problems, designers naturally tend toward
early commitments, with the consequences the article highlights. Indeed industrial pressures
and the goals of financial rewards further encourage early commitment.

Furthermore, few programming systems provide support for delaying commitments. Most
interactve systems are written in imperative languages and a judging style of design follows
naturally. Ajudging styleisexhibitedwhenallchoicesinthedesignarefixedand must beeval-
uated in the same order as the program expects them (that is, eagerly).

The result of early commitment is an inflexible system that may not be appropriate for in-
teraction with people. The user might wish that the designer (and system) had delayed a m -
mitmenttothestuctureimposed. Thisisthecentral problem identified by Suchman.*DeIaying
commitment is a solution, both when it can be supported by computational strategies and in
the design process itself (where there may be less algorithmic support).

References
1. I.E. Meyers and P.B. Meyers, Gifts Differing, Consulting Psychologists Press, Palo Alto, Calif.,

1980.

2. L.A. Suchman. Plans and Situated Actions: The Problem of Human-Machine Communication,
Cambirdge Univ. Press, Cambridge, England, 1987.

ture, particularly for highly interactive sys-
tems.

Of course, you must distinguish between
the user's input to the computer and the
computer's answers to the user, but de-
signers often make this distinction too
early in the design process and therefore
fail to perceive various reasonable, and
often powerful, possibilities.

The design heuristic (or design feature)
of delaying specific input/output distinc-
tions is called equal opportunity."

Calculator example. An example where
these distinctions can be delayed right up
tothe time that thesystemisusedisanovel,
interactive four-function calculator. A typi-
cal four-function calculator will require
the user to enter an arithmetic exprmion
andwillin turn calculateandoutputan an-
swer.

One obvious, powerfulwaytoavoidapri-
o n distinctions - and syntactic commit-
ments - between input and output is to
use variable names. However, variables
greatly extend the power of the calculator
(because the user could enter polynomial
fractions) and the calculator would have
to use numerical techniques to solve them.
But let's at least commit to one require-
ment: We are only considering the design
ofa simple, four-function calculator.

Suppose we eliminate variable names
and use some anonymous symbol like ? to
represent a number slot in the user's
input. (The conventional four-function
calculator design is committed to requir-
ing this symbol to always delimit the end of
the user's input.) But now notice that the
? symbol is not really necessary, since the
system can error-repair the user's input.
For example, if the user inputs 4 t = 5 the
system can repair the syntax error and
simultaneously provide 1 as output (in the
appropriate position).

The social model of the calculator is now
more like student and teacher cooperat-
ing on correcting and solving a common
arithmetic task, rather than the conven-
tional model of the computer doing every-
thing. Again, this design delays commit-
ment to distinctions between input and
output right up to the time of use, and
then only needs to distinguish input and
output byachoice ofcolororfontforclar-
ity.

a4 IEEE Software

Authorized licensed use limited to: SWANSEA UNIVERSITY. Downloaded on July 12,2010 at 14:52:38 UTC from IEEE Xplore. Restrictions apply.

Using the calculator. Consider the task
of converting centimeters to inches. The
conversion factor is 2.54. If the user types
2.54 x = , the system will repair this to 2.54
x 1 = 2.54 (boldface is the computer’s out-
put; an actual system could use colors).

If the user now enters 100 (one meter),
the system can repair the expression to
2.54 ~39 .37 = 100. Now suppose the user is
interested in how many feet is in one
meter. The user enters x 12 on the left side
of the equation (by moving left and insert-
ing text like in a text editor). This obtains
2.54 x 12 x 3.28 = 100. So one meter is 3.28
feet.

To convert that into feet and inches, the
user can use 2.54 x 12 x + 2.54 x = 100 or, to
take greater advantage of the error repair,
2 . 5 4 ~ (1 2 ~ + = lOO.Ineithercase,thereare
two slots for the system to compute feet
and inches. The system need not choose
an integral numberoffeet, ofcourse! The
userfindsthatameterisjustover3feetand
he can edit the expression so that it a p
pears in error-repaired form as 2.54 x (12
x 3 + 337) = 100. Thus, one meter is 3 feet,
3.37 inches (to this precision). Spelling it
out makes it look complex, but try doing
the conversion on an ordinary, four-func-
tion calculator!

This technique of interactive error re-
pair can be generalized to syntaxdriven
program editors to lessen some of the over-
commitment problems normally associ-
atedwith them. Forexample, although the
user may be experimenting with a pro-
gram, conventional systems require the
user to be committed to a rigid syntax.

How we overcommit
The most common way we fail to delay

commitments is by pushingsemantics into
syntax, then pushing syntax into the lexi-
cal commitments.

In other words, we often decide what
functions to provide in a system by decid-
ing howwewant toexpress thosehnctions
(or howwe want the user to express them).
If i t turns out that the chosen notation
(command language, programming lan-
guage, and so on) cannot express certain
functions, then of course the imple-
mentation need not provide any support
for those functions. Thus when a change
to the design is required later (perhaps to
add an omitted operation) itwill come as

a complete surprise - and it will be awk-
ward to implement because the syntax (or
lexical vocabulary) is too inflexible.

A very common, trivial example is when
system functions are given single-letter
names. Later, the commitment to this lexi-
cal form leads to embarrassment when
function names conflict or become over-
loaded as the system is extended.

Many terminals and printing devices
suffer from designs that provide for - are
committed to - a fixed set of features,
such as certain display styles, movement of
the printing position, and so on. If an a p
plication requires something slightly
different than the designers of the device
anticipated, it’s possible that nothing can
be done. The designers of the Postscript
picturedescription language realized this
and built a printing device that has an ex-
tensible language. If an application calls

Paradoxicallly, some
commjfmenfs arise
becausedesigherrr

strived to avoid them.
Unix’s portability led to
many implemenations,

which made itdlfffcutt to
portprogtams amongits

many versions.

for a feature the hardware can provide, it
can be programmed into the device as a
new feature. The designers need not anti-
cipate it.

The design of Telidon, the Canadian
videotex system, illustrates an interme-
diate approach to commitment. Telidon
uses a nonextensible language of picture-
description instructions. Picture descrip
tions are transmitted parametrically as
lines, arcs, and so on, parametrized by size,
position, orientation, color, and so on.
The receiving terminal then draws the a p
propriate object to its best resolution. In
contrast, Prestel, the British videotex sys-
tem, was committed to a resolution that
was alreadyrestrictivelylow by the time the
system waswidely available.

Why we overcommit
A design may be overcommitted be-

cause:
The designer was ignorant or made

poor design decisions. A more positive ex-
planation does not blame designers but
recognizes that design is an extremely
complex business and the human brain is
computationally limited. Commitment is
necessary, overcommitment inevitable -
but it need not be done thoughtlessly.

OThedesignerwantedbetter system per-
formance. There may be safety, security,
and real-time constraints that can only be
met (or provablymet) byasuitably limited
design.

The designer wanted better design
performance. The designer may want a
good-enough design rapidly; inventive-
ness may be unnecessary or too risky.

The designer made decisions that were
later shown to need revision. Of course,
later evidence may have been theoretically
unavailable until the wrong design was
fully implemented and tried!

The designer simply did not recognize
the overcommitment, even with hind-
sight. As I explain in the box on p. 84, de-
signers have a disposition toward over-
commitment. Alternative strategies may
simply not be part of the designer’s expe-
rience.

Reality is often a combination of all
cases!

Paradoxically, some commitments arise
precisely because designers strived to
avoid them in the first place. Initially, Unix
wasveryportable, but thisportabilityled to
a great variety of implementations. Its
popularity also led to a great interest in de-
veloping it in various directions. As a con-
sequence, programs written for one ver-
sion are difficult to port to another. Such
counterproductive results are always a real
possibility when a system significantly af-
fects the lives of its users.

Finally, there are nontechnical issues:
Social, managerial, and commercial pres-
sures are the most common cause of pre-
mature commitments. If a project must be
completed on a tight schedule, careful de-
sign may be sacrificed for short-term pro-
ductivity, What should have been proto-
types are committed to and sold as
products.

May 1988 85

Authorized licensed use limited to: SWANSEA UNIVERSITY. Downloaded on July 12,2010 at 14:52:38 UTC from IEEE Xplore. Restrictions apply.

elaying design commitment is a penasive but implicit
technique - “programmable” isalmost synonymouswith D “uncommitted.” Does it merit discussion? Yes: Delaying

commitment as a design approach (including programming)
may be exploited systematically a n d explicitly.

Delaying commitment is so pervasive it is a fundamental con-
cept. Where delaying design commitment has been automated it
has been so successful that almost everyone acceptsit and the loss
of efficiency it entails (consider the history of virtual memory) .
O n the other hand, premature design commitments tend t o be-
come more entrenched as time goes by. It isonly late in the design
process that inappropriate decisions can be recognized, and by
then they are far more costly to fix, the cost being ou t of all pro-
p o r t i o n t o t h e cos t o f a n or iginal ly u n c o m m i t t e d imple-
mentation.

As each design decision is formed it is worth asking:
Can this decision b e delayed?
Is there a n implementation technique available to support

‘ r & L WITH SCREENS,

rDEMOS AND GRAPHICS?
Try the DisplayE~press,~ and C-Display
LibrarisrrTN! This software can improve
your competitive position and increase your
productivity. SATISFACTION GUARANTEED
OR YOUR MONEY BACK.

‘?emendous pivducfivity tools”
(PC Wek Ocfober27, 1987)

“Many applicatrons will benefit lmn the quick developmenf times and
minimal programming required fo implement a finished, qualify pivduct“

(IEEE Softwans Novembec 1987)

“If you want to include bit-mapped graphics in your applicafion,
then this might be the package lor you”

(Computer language June, 1987)

DisplayExpressTM ”69

Send check or money order now to:

SYDETECH
SYSTEM DEVELOPMENT TECHNOLOGIES, INC

~ _ _ _ _ _

I 43-23COLDEN S’IREET. #17C, FLUSHING, N.Y. 11355

o u r intentional indecisiveness?
How can I conceal the commitments that currently seem

inevitable so nothing else is committed to them?
We should be encouraged by the Inven tor’sparadox, which says

that o u r deliberate attempts t o generalize a n d delay commitment
may contribute to greater success. Use delaying design commit-
ments as a heuristic and ifit fails to produce asuccessful approach
it will have at least led to a better understanding of the design
problems. .:.

References
1. J. Pearl, Hmristirs, Addison-Wesley, London, 1984.
2. W.L. Scherlis and D.S. Scott, “First Steps in Inferential Program-

ming,” in Infonnahm PmczssingR.?, R.E.A. Mason, ed., North-Hol-
land, Amsterdam, 1983, pp. 199-212.

3. J.D. Gould and C. Lewis, “Designing for Usability: Key Principles
,and What Designers Think,” Comm. ACM, March 1985, pp. 30Ck
311.

4. E. de Bono, Po: &jond E-sandNo, Penguin Books, London, 1973.
5. 0.3. Dahl, E.M! Dijkstra, and C.A.R. Hoare, Shuctured hgrum-

mzng, Academic Press, Orlando, Fla., 1972.
6. G. Polya, How to Solve It, seconded., Princeton Univ. Press, Prince-

ton, N.J., 1936.
7. D.R Barstow, H.E. Shrobe, and E. Sandewall, Inlerurtzvt Program-

mingEnuimnments, McGraw-Hill, New York, 1984.
8. D.M. Harland, PolymorphicProgrammingIanguages:L)esign and Im-

pkenkztion, Ellis Horwood, Chichester, England, 1984.
9. D.A. Turner, Rerunwn Equalions as a Programming Imguage, in

FunrtionalProgramminganditsAppliratim, Cambridge Univ. Press,
New York, 1982, pp. 1-28.

IO. B.P. Lientz and E.B. Swanson, “Problems in Application Software
Maintenance,” Comm. ACM, Nov. 1981, pp. 763-769.

I I . C. Runciman and H.W. Thimbleby, “Equal Opportunity Interac-
tivesystems,” Int ‘lJ. Man-MarhineStudies,Vol. 25,1987, pp.43945 1.

HaroldThimbleby is currently acomputer science lecturer at the
University of York, England. He will soon be joining the com-
puter science faculty at the University of Stirling, Scotland as a
professor ofinformation technology. His main research interests
are human-computer interaction, including programming and
programming skills.

He received the PhD at Queen Mary College (London Univer-
sity) in 1981. He is an associate member of IEE and the British
Compu ter Society.
Questions about this article may be sent to the author at Com-
puter Science Dept., University of Stirling, Stirling, Scotland,
FK9 4L4, UK.

Reader Service Number 11 IEEE Software

Authorized licensed use limited to: SWANSEA UNIVERSITY. Downloaded on July 12,2010 at 14:52:38 UTC from IEEE Xplore. Restrictions apply.

