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Delaying commitment 
means keepingyour 

options open, with 
inventive 

consequences. 
Algorithms and other 

techniques make 
delaying commitment 
an effective strate*. 

HaroM Ihimbleby, University of York, England 

n many disciplines the difference be- 
tween amateurs and experts seems to 
be that experts know how to delay their 

commitments. They also know how tocon- 
ceal their errors as long as possible. An ex- 
pert's skill lies as much in repairing errors 
before they are discovered as in knowing 
how to postpone and avoid them. 

Amateurs, on the other hand, try to get 
things completely right the first time and 
often fail because they try to solve too 
many problems at once. In their anxious 
desire to avoid error, they make earlycom- 
mitments - often the wrong ones. 

In fact, the expert's strategy of postpon- 
ing firm decisions, discovering con- 
straints, and then filling in the details is a 
standard heuristic to solve problems. 
Delayingcommitments often leads to new 
insights.' 

However, i t  seems that most people, 
when faced with a new problem, have a 
tendency to make early commitments, to 
prejudge. Early commitment is natural be- 
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cause it tends to reduce both the number 
and complexity of remaining subprob- 
lems. In the context of programming, 
early commitment corresponds to eager 
evaluation. 

Hackers, for example, typically choose 
to know as much as possible about com- 
puter systems and eagerly consume every 
available bit of information, whether or 
not they will eventually use it. To make 
their all-consuming interest feasible, they 
must be committed to a particular sort of 
computer, operating system, or whatever 
- after all, you can only learn a lot about 
a few things. 

The term "hacker" is often used pejora- 
tively, and few want to be associated with 
the extreme, addictive forms hacking 
sometimes takes. Yet almost all program- 
mers, when Faced with a new system to de- 
sign, first of all commit themselves to cer- 
tain hardware (often the fastest and most 
recent). Ofcourse, there arevery practical 
reasons to do so, but early commitment 
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may blind them to more creative designs. 
In this article, I advocate an approach 

that is unnatural to many people because 
i t  involves delaying commitments and 
postponing decisions. In the context of 
programming, delaying commitment 
corresponds to lazy evaluation. 

The problem 
Design commitment is a ubiquitous 

issue, cropping up in disciplines as diverse 
as anthropology, biology, and commerce 
(where premature specialization fre- 
quently leads to extinction o r  bank- 
ruptcy). In software design, commitments 
are the choices we make from all the 
possible ways to satisfy some specification. 
A specification calls for a certain function, 
and as the design progresses the designer 
maycommittoanarray,a hash table,apro 
cedure, or some other structure. 

Which structure you commit to depends 
on effectiveness criteria: different choices 
lead to different efficiencies (some are 
fast, some use little memory, some are easy 
to program, and so on) .At some point, the 
commitments made will (hopefully) coin- 
cide with specifications that are known to 
be effective. 

So commitment is the process of intro 
ducing structure to a design by making 
representational decisions that realize or 
represent abstractions.' Abstraction and 
commitment are inverse processes - an 
abstraction is the outcome of relaxing 
commitments and a representation is the 
outcome of making commitments. 

Design by accident. Commitments must 
be made, but designers always make com- 
mitments from imperfect information 
and often do so too early in the design 
cycle. Their commitments are often un- 
consciously formed, and when design 
commitments are more accidental than 
deliberate, the chances of easy develop 
ment at a later stage are greatly reduced. 

Premature design commitment i s  

May 1988 

damaging because 
it restricts freedom for iterative design, 

which is recommended for good user in- 
t erfaces,2 

it  increases maintenance costs, 
i t  exacerbates the consequences of 

it  makes software nonportable. 
Design errors may be classified either as 

the result of premature (and unfortunate) 
design commitments or as the result of 
transformation errors (faults in the design 
process). I am concerned entirely with the 

bugs, and 

ladvowte an approach 
that is unnatural to many 

people because it 
involves postponing 

decisions. In 
pro@amming, this 

corresponds to lazy 
evaluation. 

former class of design error. I advocate 
delaying design commitments as long as 
practica1,just in case they turn out to be in- 
appropriate. 

The cost. Avoiding unmanageable, un- 
masterable complexity is perhaps the 
characteristic theme of software engi- 
neering. The standard techniques (ab- 
straction, encapsulation, and so on) have 
this common aim. 

Errors undetected at the abstract-design 
level are increasingly costly to fix as repre- 
sentational commitment increases. Per- 
versely, errors may not be noticed until a 
fair degree of representational commit- 
ment has been achieved: At the extreme, 
we may not know what problems there are 
in a particular abstraction until we can run 
a representative program. 

Typically coiiccq~tual crroi-s - socallctl 
misfeatures - remain undetected right 
up to field testing and must be corr-ectcd 
during maintenance. R u t  because of the 
corisiderablr effort invested in the preced- 
ing design and implementation phases, 
there may be so much emotional and fi- 
nancial cotntnitmcnt to the system that 
the misfeatures must remain. 

Advances in  software engineering cat1 
be expected to reduce dependence on so- 
called repair maintenance as Sof'hvare be- 
comes more reliable. I n  conu-iist - and 
not surprisingly - adaptivc niaititenancc 
is becoming inore important. 

Premature design coniinitnietit is a stan- 
dard problem: Perhaps we do not really 
knowwhatwcwant,andwhenwegetitwe 
may change our minds! Indeed, sonic 
argue that when we do ruddesign we can- 
not know in advancewhat wc~;tnt  anyway. 
In other words, advances in software engi- 
neering alone will not be sufficient to 

avoid the consequences of unfortunate 
and premature design coininiunents. 

The solution. The design pi-ocess is a 
search for an acceptable design from a11 
indefinitely large selection. There are two 
problemsin searching foradesign: ( I )  We 
may not search very effectively and (2) we 
may not recognize a good design when 
one is found (or convei-sely we may inis 
take a bad design for a better one). 

The first problem iscaused in  part by the 
lack of information about the structure of 
the design space, its size (the clerical and 
mental overhead of keeping track of deci- 
sions that may have t o  be re\ised), and psy- 
chological issues - particularly our natu- 
ral tendency t o  prefer fixing reasonable 
design decisions as early as possible so we 
can concentrate on concrete rather than 
abstract problcins. 

Delaying ~oniinitiiien t clearly addresses 
the first problem (effcctivcness), but it 
must have apayoff: There is no point in en- 
forcing a search strategy that takes signifi- 
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cantly longer and fails to motivate design- 
ers. 

Delaying commitment also addresses 
the second problem (identification) since 
we may be able to modify a well-known de- 
sign very easily if many of its features are 
uncommitted, that is, programmable. 

Delay tactics 
The programdesign level is not always 

the most pertinent level on which to focus 
attention. But in this article, I emphasize 
the implications of delaying commitment 
at the programdesign level only because 
this iswhere the conceptsare most easilyil- 
lustrated. I use the term "designer" to 
cover all manner of thinkers involved in 
program development, from the in- 
dividual programmer, to design teams, to 

management, and so on. 
There are technical ways to delay com- 

mitment  that  have inventive con- 
sequenceson the overall design. In the five 
boxes that accompany this article, I ex- 
amine the consequences of delaying com- 
mitment in operating systems (below), 
compilers (p. 81) ,  hypertext (p. 82), dis  
tributed systems (p. 83), and in life gener- 
ally (p. 84). 

Of course, there are many nontechnical 
ways to delay commitment that I do not ex- 
plore here, including de Bono's lateral 
thinking approach to problem-solving.4 

use malules 
Suppose a system has been imple- 

mented orothenvise has afullycommitted 
design. A change to the specification of 

0peratingsyStems:Keeping 
commitmentsopen 

Most conventional operating systems follow an isolated, virtual-memory process model. 
Each process has its own virtual machine that makes it isolated and largely independent. This 
means process crashes are independent, separated by the fire walls that handle potential in- 
securities. The operating system itself also is closed; it usually cannot be modified except by 
replacement (rebooting). 

In contrast, open systems like Cedar' and Smalltalk let processes share code and their 
scoping schemes let arbitrary operations be redefined. 

Open systems have many advantages, not the least of which is enhanced productivity 
brought about by code sharing rather than code copying, which is the only option in a closed 
system. Also, bug fixes and revisions are global in an open system. 

Conversely, fire walls mean total and early commitment to security, which programmers 
may use to ensure the security of code as well as the operating system. This may restrict other 

Orogrammers from copying code because they don't have permission, so they have to rein- 
vent it (by reverse engineering). This encourages the introduction of new features, the re- 
moval of diff icuk-to-implement features, and different (and probably more) bugs. 

These problems can be avoided if commitment is delayed. Cedar, for example, achieves 
security by static type checking and enforcing certain data invariants. Its openness en- 
courages software reuse. 

The benefits of such software reuse can be contrasted with the possibilities, and relative 
restrictions, under Unix. In Unix, the process interface for programmers is generally identical 
to the process interface for users. Thus grep is used by both people and processes using the 
same protocols. It is ludicrous to expect a program to actually invoke a display editor and use 
it itself, even though the display editor provides many features the program wants. Yet thedis- 
play editor's features can only be used via a particular interface, the user interface. 

In contrast, open systems separate user interfaces from program and programmer inter- 
faces (because the program-level module interface is readily accessible to any program), per- 
mitting more general integration of software -without compromising the user interfaces of 
the original processes. 

Reference 
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some module of the system may be re- 
quired, for one reason or another. But this 
module interfaces to other modules, so if 
i t  is changed possibly many modules will 
need revising (and they, in turn, will inter- 
face with others that may have to be 
changed, and so on).  The initial change 
has snowballed into a major task. 

Then, allowing for Djkstra's exponen- 
tialerror probabilitie~,~ the actual cost 
could be much higher. Would it  not be 
more appropriate to design so that (where 
possible) you ensured that the cost of 
changing at implementation is com- 
mensurate with changing at specification? 

Had we delayed commitment to the par- 
ticular design of the module we now want 
to change, the modules it interfaces to 
would not be so sensitive to changes in it 
and we could reasonably expect com- 
mensurate costs. 

Of course, the rationale for using mod- 
ules is precisely this advantage of informa- 
tion hiding: You can change module im- 
plementat ions without changing 
interfaces (modules should not be com- 
mitted to aparticularimplementation hid- 
den in other modules). A well-known 
advantage of modules is that they limit the 
spread of optimizing information, thereby 
limiting the commitment of the entire 
program to an algorithm chosen to imple- 
ment a particular module. 

Use parameters 
The easiest way to remain uncommitted 

is to use parameters. The paradox here 
(Polya's Inventor's Paradox') is that  
deliberate attempts to delay commitments 
may have more chance of success. For ex- 
ample, try showing that 

1 + 2  t 3 + ... t 10,000=50,005,000 

by using numbers. It is much easier to 
prove the parametric 

1 + 2 + 3 + . . . + k = k ( k + 1 ) / 2  

and then set k = 10,000, even though it 
seems it  really ought to be harder! The ef- 
fort put into the proof (delaying commit- 
ment to k =  l0,OOO) savesyou about 10,000 
sums - and gives you a lot more confi- 
dence in the result! 

Experience is needed to choose a para- 
metrization appropriate to the problem. 
In this case, it would have been counter- 
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productive to parametrize by the ex- 
ponent 

( 1k+2k+3k+ ... 10,Wk)  

or by the operator. Similar difficult choices 
arise when parametrizing programs. 

Keep it general 
Take a simple example from program- 

ming in Pascal. Ifwe are prepared to com- 
mit ourselves to a certain representation 
type for a certain value, we can arrange for 
all occurrences of it  to be type-checked. 
We may, for instance, commit a variable s 
to a Pascal set type. Pascal then ensures 
that each applied use of the variable is type 
checked: For instance, we could not assign 
5 to s, but we could assign a set containing 
5. 

Suppose we later discover that amultiset 
isrequiredinsteadofaset. What used tobe 
supportive redundancy (the Pascal set-syn- 
tax and type checking would have de- 
tectedabusesofsets) ,nowseverelyhinders 
correcting the program: Operations and 
definitions must be changed all over the 
program. 

Had we first written the program choos- 
ing a less-committed representation (like 
an access function), Pascal could not have 
provided the checking that previouslycon- 
tributed to our sense of robustness. Thus 
the trivial way to avoid commitment is to 
leave things unspecified, but this is inse- 
cure and may be inefficient (if runtime 
checksare employed). 

Does the solution lie in experimental (or 
ex p 1 or a tory ) program mi n g en  vi r on - 
ments? Interlisp and Smalltalk are ex- 
amples of systems tha. propide unusual 
freedom for the programmer from design 
commitments, and have gained in popu- 
larity largely for this reason.' 

Rut depending on dynamic typing to 
delay commitments compromises either 
security or efficiency (because of runtime 
checks to ensure security). Exploratory 
programming environments (incremen- 
tal, polymorphic type checking notwith- 
standing) will not produce reliable prc- 
duction systems of any complexity. 

The languages available in exploratory 
environments generally depart from the 
conventional imperative programming 
paradigms: They are functional, object- 
oriented, access-oriented, rule-based, and 

Compilers Acommibnenttoorder 
~ 

Compilers are composed of phases: lexical, syntactic, semantic, optimization, code gen- 
eration, more optimization, loading, and so on. Each phase (or group of phases) generally 
runs to completion on program units - blocks, routines, or lines (in Basic) - before pro- 
cessing the next unit. Thus, lexical and syntatic analyses are usually completed before op- 
timization and code generation are attempted. 

The most important forms of optimization are machine-independent and are applied before 
the compiler is committed to a target machine's code. However, most compilers fix and totally 
order the sequence of computation but the pairs <phase, programanit> form a partially 
ordered set. Most compilers are therefore overcommitted to a predetermined computational 
order. 

It is clearly possible to perform all syntactic analysis on the entire program before any code 
generation, then perform all code generation before any loading (and, indeed, before pro- 
gram execution). Alternatively, it is equally valid for the compiler to perform syntatic analysis 
and code generation on a per-routine basis. 

An extreme example of this is Brown's interactive, dynamic program-building system,' 
which delays compiling a line of a program until it needs to execute it, and even then does not 
request a line from the user until it needs to be compiled. This at least ensures that the user 
never enters program code that isn't executed (with obvious educational advantages)! 

Butaconventional compilertotally orders the computation. With the orderdefined and fixed 
in the compiler structure, it is very hard, if even possible, to modify. This limits its use (or at 
least its efficiency under some circumstances). 

If physical memory is small in comparison with the requirements of each phase, it is likely 
more efficient to compile in phases. If the program units being compiled are larger than the 
phases processing them, it is more effident to compile each unit to completion. In any case, 
efficient memory management (including efficient use of memory bandwidth) is possibleonly 
if you delay committing to a total ordering of the compilation process until you know the details 
of the compilation. These ideas have been put into a Pascal compiler.' 

Afunctional compiler lazily evaluated would readily obtain these advantages. "Motivating" 
the lazy evaluator with eager diagnostic consumers (like student users) or eager executable- 
program consumers (as in a production environment) would produce different total orders 
consistent with the partial order. 

The compilation strategy you choose also relates to the program's design-commitment 
strategy, andvi~eversa.~ Suppose you want explicittype binding (strong commitmenttotype 
specification) and early error detection. In this case, the compiler shouldorder computation 
by phase because the earlier a program unit is cross-checked with others, the earlier global 
type inconsistencies are detected. Conversely, if you want runtime binding (weak commit- 
ment to type specification) and early error detection, the compiler should order computation 
by program unit because the earliera unit is run, the earlier runtime type conflicts are detected. 

Configuration systems for programs follow a similar paradigm. Different language proces- 
sors (or different activations of processors) run by the configuration system are analogous to 
the various phases of a conventional compiler. Normally, program configuration is specified 
in a procedural, jobcontrol language, by imperatively speafying a total ordering for the steps 
of the configuration. Because of unavoidable serialization andthe difficultyof expressing data 
dependence in a general way, a secure procedural configuration chooses a predetermined 
total ordering over the full set of target-program dependencies. 

In contrast, declarative systems (like Unix's Make) may determine a data-dependent, 
totally ordered subset consistent with the partial order (expressed in the Make file) and the 
given data (in Make's case, fileage relations). 
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so on. Some people have argued that such 
programming languages are  imple- 
mented in their fullgeneralitybecause the 
cost of generality is marginal in compari- 
son with their overall inefficiency. 

In contrast, a typical imperative lan- 
guage (such as Pascal) can be imple- 
mented very efficiently on conventional 
computers if certain compromises are 
made (so that it is forbidden to return an 
array from a function, for example). What 
has happened is that the lure of attainable 
efficiency has led the programming lan- 

guage designer away from generality. 
Whether this isjustified depends on the 

designer's intentions (or, rather, on the in- 
tentions expressed or implied in the de- 
sign requirements). It isoftenjustifiable to 
trade programdevelopment time for pro- 
gram-execution speed. The danger is that 
the designer may not consider these inten- 
tions and will make arbitrary commit- 
ments that turn out to be unjustifiably re- 
strictive. 

The solution, I believe, lies in the pro- 
gress made in those imperative languages 

Hypertexk Implied commitment 
Text in a conventional document follows a single sequence. Each word has a unique 

successor: the next word. Hypertext has multiple sequences and hierarchies. Each word may 
have several successors. One may be the next word, but another successor may be a dic- 
tionary definition of the word, or a cross-reference, or even adiagram illustrating a pertinent 
concept. 

In a typical hypertext system, the author interactively specifies relations between comp- 
nents of the text. In most hypertext systems, you specify these relations explicitly. 

Perhaps you use a mouse to link fragments of text. In this case, it is easy for the system to 
determine a particular document structure from these relations because the user interface 
enforces a consistent and simply connected arrowing at all times. 

But a commitment-delaying design might let you imply relationships, perhaps with sym- 
bolic expressions. Now it is quite possibile that the relations will not specify a total ordering. 
For the system to print the hypertext document, it must choose one order from all those al- 
lowed by your partial ordering. 

For example, you may have specified only that section xfollow y and section zfollow y, 
without specifying an explicit relation between xand z. The system may choose to print in 
either order yxzor yzx. In an extensional system, you would not be permitted to place two ar- 
rowsfrom xwithout giving an explicit order. If zis to be kept in the system, let alone printed, it 
must have asingle arrow pointing to it (from either xoryin thiscase). 

Now suppose you write some text ?between zand xand you require that tfollow z. This is 
suffiaent information for the system to determine an order (yzk) without further adjustment 
of the relations. In an extensional system, you would have had to adjust the arrows manually: 
a tedious job if they had previously been specified in the contrary order (yxz). The problem 
gets worse with examples on a realistic scale. 

A hypertext system must commit itself to an order at some point. However, many hypertext 
systemsforce you to specify aconsistent, total ordering of adocument'scomponentsassoon 
as they are introduced into the system, even though this may not be needed until a user re- 
quests a paper copy or some other tom of output. 

Thechoiceof how and when totalorderis irnposeddepends on variouscriteria. Users have 
(at least) three reasons to use the system: They may be composing new text; they may be 
browsing interactively; or they may want hard copy (a noninteractive or less interactive form 
of browsing). In each case, a different choice of order might be appropriate. Indeed, there 
may not be a total order consistent with all three uses. 

Usually, the designer chooses some arbitrary criteria and commits the system before it is 
built. The designer probably is guided by user-interface considerations, such as a desire for 
direct manipulation, which requires extensional relations. In other words, the designer avoids 
the implementation problem of handling nondeterminism at runtime (and the problemsof how 
to provide the user with features to handle nondeterminism) by eliminating it at design time, 
thereby restricting the user. 

where designers intentionally emphasize 
generality and completeness (and other 
language-design principles) instead of 
efficiency on typical computer architec- 
tures.8 

Avoid sequencing 
There is now a growing trend away from 

procedural languages (such as Pascal, 
Ada, and Smalltalk) to nonprocedural lan- 
guages (such as Prolog and Miranda). 
This trend grows partly out of the recogni- 
tion that algorithms can often be defined 
without any reliance on a specific order of 
evaluation. In a procedural language, for 
example, to find the maximum element of 
an array the following code might be used 

rnaxval := - 
for i := 1 to N do 

if a[ i J > maxval then maxval : = a [ i] 

It is not immediately clear why this par- 
ticular order is necessary; it  would have 
been as reasonable to write 

fori := N down to 1 do 

or do it in any other order. I t  is even legiti- 
mate to examine elements of the array 
more than once. 

If you choose a procedural language, 
you must commit to one of the possible 
representations of the algorithm. To make 
this particular commitment youmaywaste 
programdevelopment time, especially if 
you begin to wonder which is more effi- 
cient on the particular computer you ex- 
pect to run the program on (if you are al- 
ready commit ted to a particular 
computer). 

In such a simple case as finding a maxi- 
mum, you readily draw on a set of pro- 
gramming idioms (perhaps using a primi- 
tive of the programming language) and 
the question of wasted design time hardly 
arises. But in a more complex example it  
would take longer to discover if the appre  
priate primitives or library routines were 
available, and if they weren't i t  would take 
longer to devise the code. 

So why not use a programming notation 
that does not express sequencing? Ob- 
viously this is an idealization: You must 
now learn a different set of programming 
idioms to program effectively. But i t  is al- 
most certain that (for a wide class of algo- 
rithm) you will be able to program faster 
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and more rehdbly.' 
In real life, the intention of this example 

would have been that some computer 
eventually find the maximum element of 
some array. Whether Pascal, Prolog, or 
some other language is used, the com- 
puter will necessarily evaluate the algo- 
rithm with a particular procedure: By in- 
creasing i or decreasing i or by taking 
values of i in parallel, or perhaps in some 
combination of these procedures. The 
point is that you need not commit to thepartic- 
ulur procedure eventually chosen, in this case 
to find the maximum. 

The freedom to choose a nonsequential 
(parallel) program relies on the efficiency 
of the underlying implementation. Some- 
body must have shown that a parallel exe- 
cution indeed works, and to do that they 
will have to have made various commit- 
ments that are no longer visible to the pre- 
sent programmer. 

Ofcourse, the parallel strategy inevitably 
has commitments; otherwise i t  might 
never terminate, perhaps due  to re- 
peatedly examining a certain array ele- 
ment. The advantage of the strictly serial 
algorithm is that there is a simple argu- 
ment that shows that every element is ex- 
amined (correctly) no more than once 
(efficiently). 

Don't build prototyping 
tools 

Rapid prototyping is sometimes sug- 
gested to avoid design errors. But ifyou are 
building novel applications, say novel user 
interfaces, rapid prototyping is not 
possible. 

Prototyping only shifts the locus of the 
expensive errors from the application to 
the rapid prototyping tools themselves. In 
other words, fourthgeneration languages 
and prototyping tools may indeed make 
design easier and more flexible for certain 
specific classes of problems, but the issue 
of design commitment still exists. Indeed, 
early commitment has been shifted to a 
more central position, where the effects of 
unfortunate design commitments will be 
wider than before, affecting all software 
developed with the prototyping system. 

Furthermore, prototyping tools are 
generally more complex than the proto- 
typed applications themselves, so the de- 
sign errors in the tools are more complex 

Virtual time: Brealdngcommibnents 
One of the most radical approaches to delaying commitments right up to (even past!) run- 

time is Jefferson's virtual time,' which is analogous to virtual memory. 
With virtual memory, physical address bindings are not committed until the runtime eval- 

uation of the memory mapping, and this commitment is usually transparent to the software. 
Essentially, virtual time lets a process continue processing with insufficient information, as if 
it could commit itself. Sometimesits hypothetical commitment will be appropriate, sometimes 
not. Time warping lets a process backtrackon incorrect hypotheses in a well-organized fash- 
ion. 

l ime warping is best understood in the context of a distributed system, where processes 
want to proceed with their computations but must wait for all pertinent messages from other 
processes. How long should a process wait? It might seem that a process should be allowed 
to commit itself to a particular line of computation whenever it assumes it has received all the 
relevant messages. But what if relevant messages had been delayed and the computation 
would have run differently had they been received? 

Time warping lets a program select a computation path (obviously, a path consistent with 
the messages received so far). But, if it later receives a message that should have been 
processed earlier, it discards the current processing and revises its last choice, rolling back 
its local clock to that earlier time. Thus, time warping is aform of look-ahead: Aprocess com- 
putes ahead of received messages whenever it can. Sometimes it will have to backtrack its 
look-ahead. 

When may a process commit itself publicly (reclaim its backtrack stack)? Jefferson's solu- 
tion is global virtual time, which is a conservative estimate of the time of all the local clocks 
(and time stamps of unprocessed messages). Global virtual time never decreases, so when- 
ever it exceeds the time of timestampson received messages, any processing that would be 
triggered by those messages may be committed without fear of future backtrack. 

This commitment is less restrictive than it appears. A process can transmit messages 
before it has become committed to a computation path. When it must backtrack, it transmits 
time-stamped antimessages to all its previous message targets. The antimessages will, in 
turn, make the receiving processes backtrack (or cancel the effect of unprocessed mes- 
sages). 

With timewarping, commitment is requiredonlybeforeoutputtoaprocessoruserthatcan- 
not backtrack because it is not part of the time-warping scheme. 

Reference 
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and much harder to avoid. Programmers 
are likely to be less familiar with the proto- 
typing tool's structure than the applica- 
tion's, so the counterargument that proto- 
typing tools are developed only once and 
so deserve a very high investment in their 
design can be dismissed. The design in- 
vestment would never be amortized if the 
prototyping tool is overcommitted and 
must be changed. 

Prototyping, rapid or otherwise, is not 
an answer to delaying commitments. You 
may disagree, but then uncommitted proto- 
typing tools should be called compilers. 

Useabstractions 
Premature design commitment can be 

partly avoided by using abstraction (in 
SETI,, you can write "max/a" instead of 
spelling out a specific maximizing algo- 
rithm*). As implementation proceeds, 

* There is a subtle distinction between delaying com- 
mitment and letting someone else make the commit- 
ment for you. Who implemented mdx? 

however, inevitable biascommitsdesign in 
ways that might later need to be revised. 

Specification tools (proving, animating, 
prototyping, and modeling) may help 
enormously, but the fact remains that the 
major cost of software is incurred after the 
initial implementation commitments 
have been firmlyfixed. This is inevitable in 
systems that put a high emphasis on the 
user interface because users make a signif- 
icant contribution to the design only after 
using a full-fledged production system. It  
has been estimated that more than 60 per- 
cent of maintenance costs originate from 
external pressure (users) rather than in- 
ternal problems (bugs) .'" 

User interfaces 
Ultimately all programs need a user in- 

terfaces, else they can neither be used, nor 
the effects of running them be known! 
However, purely technical programming 
decisions, such as order of computation, 
often intrude into the user interface. 
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These decisions might be in the form of 
limitations that are inexplicable to the 
user who does not have thorough knowl- 
edge of the implementation (and perhaps 
of the sequence of design decisions). The 
decisions that cause many such limitations 
are in fact quite arbitrary, but they place a 
significant intellectual load on both the 

designer and the user. 
The following calculator example il- 

lustrates one benefit of delaying commit- 
ment for user interface design. Interactive 
systems are often designed by first decid- 
ing the nature of their required inputs and 
outputs. This involves making an early 
commitment - one that may be prema- 

Commitments in life: A matter of style 
Any approach to solving problems in programs can be used more widely: As an approach 

to program design and to the wider problems of life. Delaying commitment is related to lazy 
evaluation; early commitment to eager evaluation. Delaying commitment also corresponds 
to breadth-first search; early commitment to depth-first search. 

In life, a problem-sober often wants to take action on the workl as the search for a s o b  
tioon progresses. This makes backtracking costly and sometimes impractical. Of course, you 
hope that lots of backtracking will not be necessary, and that you can safely use pruning to 
narrow the options. Depth-first search and eager evaluation are often easier because fewer 
alternatives and partial results need be kept track of. 

Just as programs are typically designed with some computational strategy in mind, so 
people tend to solve problems with their favorite strategy. Aperson who tends toward eager 
evaluation is said to be a judging type and aperson who tends toward lazy evaluation is aper- 
ceiving type.' 

Ajudging person looks for goals in life; a perceiving person is interested in processes. It's 
atrade-off betweenmeansandends:Ajudgingpersonemphasizestheends('rhe endsjustify 
the means") - he wants a system he can get results from. Aperceiving person emphasizes 
the process and might never make the decision necessary to attain his goals - he wants a 
system he can enjoy using. 

There are trade-offs in each personality type, depending on the situation. Judging people 
may waste time making plans, making early commitments for situations that never arise. Per- 
ceiving people may be overtaken by events that they had not planned for. 

Balanced people may approach each situation in a way that is appropriate for them in that 
situation, neither strategy habitually prevailing. But most people facing new problems have a 
tendency to makeearlycommitments, toprejudge. Early commitment isa natural stategy be- 
cause it tends to reduce both the number and complexity of the remaining, and likely unfamil- 
iar, subproblems. 

Because real design is necessarily tackling new problems, designers naturally tend toward 
early commitments, with the consequences the article highlights. Indeed industrial pressures 
and the goals of financial rewards further encourage early commitment. 

Furthermore, few programming systems provide support for delaying commitments. Most 
interactve systems are written in imperative languages and a judging style of design follows 
naturally. Ajudging styleisexhibitedwhenallchoicesinthedesignarefixedand must beeval- 
uated in the same order as the program expects them (that is, eagerly). 

The result of early commitment is an inflexible system that may not be appropriate for in- 
teraction with people. The user might wish that the designer (and system) had delayed a m -  
mitmenttothestuctureimposed. Thisisthecentral problem identified by Suchman.*DeIaying 
commitment is a solution, both when it can be supported by computational strategies and in 
the design process itself (where there may be less algorithmic support). 
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ture, particularly for highly interactive sys- 
tems. 

Of course, you must distinguish between 
the user's input to the computer and the 
computer's answers to the user, but de- 
signers often make this distinction too 
early in the design process and therefore 
fail to perceive various reasonable, and 
often powerful, possibilities. 

The design heuristic (or design feature) 
of delaying specific input/output distinc- 
tions is called equal opportunity." 

Calculator example. An example where 
these distinctions can be delayed right up 
tothe time that thesystemisusedisanovel, 
interactive four-function calculator. A typi- 
cal four-function calculator will require 
the user to enter an arithmetic exprmion 
andwillin turn calculateandoutputan an- 
swer. 

One obvious, powerfulwaytoavoidapri- 
o n  distinctions - and syntactic commit- 
ments - between input and output is to 
use variable names. However, variables 
greatly extend the power of the calculator 
(because the user could enter polynomial 
fractions) and the calculator would have 
to use numerical techniques to solve them. 
But let's at least commit to one require- 
ment: We are only considering the design 
ofa simple, four-function calculator. 

Suppose we eliminate variable names 
and use some anonymous symbol like ? to 
represent a number slot in the user's 
input. (The conventional four-function 
calculator design is committed to requir- 
ing this symbol to always delimit the end of 
the user's input.) But now notice that the 
? symbol is not really necessary, since the 
system can error-repair the user's input. 
For example, if the user inputs 4 t = 5 the 
system can repair the syntax error and 
simultaneously provide 1 as output (in the 
appropriate position). 

The social model of the calculator is now 
more like student and teacher cooperat- 
ing on correcting and solving a common 
arithmetic task, rather than the conven- 
tional model of the computer doing every- 
thing. Again, this design delays commit- 
ment to distinctions between input and 
output right up to the time of use, and 
then only needs to distinguish input and 
output byachoice ofcolororfontforclar- 
ity. 
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Using the calculator. Consider the task 
of converting centimeters to inches. The 
conversion factor is 2.54. If the user types 
2.54 x = , the system will repair this to 2.54 
x 1 = 2.54 (boldface is the computer’s out- 
put; an actual system could use colors). 

If the user now enters 100 (one meter), 
the system can repair the expression to 
2.54 ~39 .37  = 100. Now suppose the user is 
interested in how many feet is in one 
meter. The user enters x 12 on the left side 
of the equation (by moving left and insert- 
ing text like in a text editor). This obtains 
2.54 x 12 x 3.28 = 100. So one meter is 3.28 
feet. 

To convert that into feet and inches, the 
user can use 2.54 x 12 x + 2.54 x = 100 or, to 
take greater advantage of the error repair, 
2 . 5 4 ~ ( 1 2 ~ + =  lOO.Ineithercase,thereare 
two slots for the system to compute feet 
and inches. The system need not choose 
an integral numberoffeet, ofcourse! The 
userfindsthatameterisjustover3feetand 
he can edit the expression so that it a p  
pears in error-repaired form as 2.54 x (12 
x 3 + 337) = 100. Thus, one meter is 3 feet, 
3.37 inches (to this precision). Spelling it 
out makes it look complex, but try doing 
the conversion on an ordinary, four-func- 
tion calculator! 

This technique of interactive error re- 
pair can be generalized to syntaxdriven 
program editors to lessen some of the over- 
commitment problems normally associ- 
atedwith them. Forexample, although the 
user may be experimenting with a pro- 
gram, conventional systems require the 
user to be committed to a rigid syntax. 

How we overcommit 
The most common way we fail to delay 

commitments is by pushingsemantics into 
syntax, then pushing syntax into the lexi- 
cal commitments. 

In other words, we often decide what 
functions to provide in a system by decid- 
ing howwewant toexpress thosehnctions 
(or howwe want the user to express them). 
If i t  turns out that the chosen notation 
(command language, programming lan- 
guage, and so on) cannot express certain 
functions, then of course the imple- 
mentation need not provide any support 
for those functions. Thus when a change 
to the design is required later (perhaps to 
add an omitted operation) itwill come as 

a complete surprise - and it will be awk- 
ward to implement because the syntax (or 
lexical vocabulary) is too inflexible. 

A very common, trivial example is when 
system functions are given single-letter 
names. Later, the commitment to this lexi- 
cal form leads to embarrassment when 
function names conflict or become over- 
loaded as the system is extended. 

Many terminals and printing devices 
suffer from designs that provide for - are 
committed to - a fixed set of features, 
such as certain display styles, movement of 
the printing position, and so on. If an a p  
plication requires something slightly 
different than the designers of the device 
anticipated, it’s possible that nothing can 
be done. The designers of the Postscript 
picturedescription language realized this 
and built a printing device that has an ex- 
tensible language. If an application calls 

Paradoxicallly, some 
commjfmenfs arise 
becausedesigherrr 

strived to avoid them. 
Unix’s portability led to 
many implemenations, 

which made itdlfffcutt to 
portprogtams amongits 

many versions. 

for a feature the hardware can provide, it 
can be programmed into the device as a 
new feature. The designers need not anti- 
cipate it. 

The design of Telidon, the Canadian 
videotex system, illustrates an interme- 
diate approach to commitment. Telidon 
uses a nonextensible language of picture- 
description instructions. Picture descrip 
tions are transmitted parametrically as 
lines, arcs, and so on, parametrized by size, 
position, orientation, color, and so on. 
The receiving terminal then draws the a p  
propriate object to its best resolution. In 
contrast, Prestel, the British videotex sys- 
tem, was committed to a resolution that 
was alreadyrestrictivelylow by the time the 
system waswidely available. 

Why we overcommit 
A design may be overcommitted be- 

cause: 
The designer was ignorant or made 

poor design decisions. A more positive ex- 
planation does not blame designers but 
recognizes that design is an extremely 
complex business and the human brain is 
computationally limited. Commitment is 
necessary, overcommitment inevitable - 
but it  need not be done thoughtlessly. 

OThedesignerwantedbetter system per- 
formance. There may be safety, security, 
and real-time constraints that can only be 
met (or provablymet) byasuitably limited 
design. 

The designer wanted better design 
performance. The designer may want a 
good-enough design rapidly; inventive- 
ness may be unnecessary or too risky. 

The designer made decisions that were 
later shown to need revision. Of course, 
later evidence may have been theoretically 
unavailable until the wrong design was 
fully implemented and tried! 

The designer simply did not recognize 
the overcommitment, even with hind- 
sight. As I explain in the box on p. 84, de- 
signers have a disposition toward over- 
commitment. Alternative strategies may 
simply not be part of the designer’s expe- 
rience. 

Reality is often a combination of all 
cases! 

Paradoxically, some commitments arise 
precisely because designers strived to 
avoid them in the first place. Initially, Unix 
wasveryportable, but thisportabilityled to 
a great variety of implementations. Its 
popularity also led to a great interest in de- 
veloping it in various directions. As a con- 
sequence, programs written for one ver- 
sion are difficult to port to another. Such 
counterproductive results are always a real 
possibility when a system significantly af- 
fects the lives of its users. 

Finally, there are nontechnical issues: 
Social, managerial, and commercial pres- 
sures are the most common cause of pre- 
mature commitments. If a project must be 
completed on a tight schedule, careful de- 
sign may be sacrificed for short-term pro- 
ductivity, What should have been proto- 
types are  committed to and  sold as 
products. 
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elaying design commitment  is a penasive but  implicit 
technique - “programmable” isalmost synonymouswith D “uncommitted.” Does it merit discussion? Yes: Delaying 

commitment  as a design approach (including programming) 
may be exploited systematically a n d  explicitly. 

Delaying commitment  is so pervasive it is a fundamental con- 
cept. Where delaying design commitment  has been automated it 
has been so successful that almost everyone acceptsit and the  loss 
of efficiency it entails (consider the history of virtual memory) .  
O n  the other  hand,  premature design commitments tend t o  be- 
come  more entrenched as time goes by. It isonly late in the design 
process that inappropriate decisions can be recognized, and by 
then they are  far more  costly to fix, the cost being ou t  of all pro- 
p o r t i o n  t o  t h e  cos t  o f  a n  or iginal ly  u n c o m m i t t e d  imple-  
mentation. 

As each design decision is formed it is worth asking: 
Can this decision b e  delayed? 
Is there a n  implementation technique available to  support  
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o u r  intentional indecisiveness? 
How can I conceal the commitments that currently seem 

inevitable so nothing else is committed to  them? 
We should be encouraged by the Inven tor’sparadox, which says 

that o u r  deliberate attempts t o  generalize a n d  delay commitment  
may contribute to greater success. Use delaying design commit- 
ments  as a heuristic and ifit fails to produce asuccessful approach 
it will have at  least led to a better understanding of the design 
problems. .:. 
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