Int. J. Man-Machine Studies (1986) 25, 439-451

Equal opportunity interactive systems

CoLIN RUNCIMAN AND HAROLD THIMBLERY
Department of Computer Science, University of York, York, YOI 5DD, U.K.

(Received 10 February 1986 and in revised form 24 July 1986)

One view of interactive computer systems is that the user, having problems to solve,
supplies the “givens” of these problems to the machine, which in response supplies as
output the “unknowns”. Reassigning or discarding these labels “‘givens” and
“unknown” is a time-honoured heuristic for problem-solving. Also, people seem to
prefer interpretations without such labels for fast interactive systems, and mere speed
in systems that do embody fixed distinctions between input and output often contributes
little towards ease of use—it may only serve to emphasize a frustrating mechanical
dumbness. We therefore apply the same heuristic to the design of interactive computer
systems, noting that a number of existing successful interactive system styles can be
viewed as the outcome of this approach. '

1. Introduction

When several real-world events appear to be instantaneous, an observer may not be
able (or may not wish) to distinguish between causes and effects. For example, naive
students of computer science often fail to appreciate the subtleties of character echoing
when characters appear to be echoed on a VDU screen at the same time as they are
typed. A perceptible delay in echoing increases the acceptability of a cause-and-effect
explanation. Similarly, users often fail to distinguish between moving a cursor (on a
screen) and moving the mouse (which is the input which the program interprets to
make the display outputs to move the cursor icon). Users frequently talk in terms of
moving the cursor, rather than the mouse (or, indeed, their hand). What is strictly
Jfeedback is viewed as the user’s direct input.

Also, human problem-solving is rarely confined to a linear chain of thought from
given to unknown. The vast majority of mental “links™ are undirected—they do not
serve as one-way streets of cognition; rather they relate information in a general
manner. If a person can translate (say) French to English, it is reasonable to assume
he can also translate English to French and, indeed, elaborate on the relation between
French and English in a general way. In whatever way the mechanism of human
translation really works, it does not seem to involve fixed assumptions about what is
given and what is unknown. This kind of flexibility is clearly assumed by educationalists
who, to distinguish rote learning from deeper understanding, routinely use exercises
varying the kind of information given: if you understand addition you can complete
“6+[_]=3", if you understand quadratic equations, you can not only find roots of
given equations, but can also construct equations from roots, check roots, and so on.

So, if a computer system embodies a fixed classification of pieces of information
that may be communicated during interactive use—causes and effects, givens and
unknowns, inputs and outputs—that system will very likely present an unnatural
appearance of frustrating dumbness to its users. Conversely, if a system has no ab iniro

439

0020-7373/86,/100439 + 13$03.00/0 © 1986 Academic Press Inc. (London) Limited

440 C. RUNCIMAN AND H. THIMBLEBY

predisposition to a particular assignment of roles to pieces of information it will appear
to its user as flexible and cooperative.

The starting point for this paper is the observation that it is both practical and useful
to build interactive systems which do not, presumptively, impose a fixed mode of
cognition, cause and effect, upon their users. We hope to show that the problem-solving
heuristic of reassigning the labels “given” and “unknown” (explained both in general
and by example in Polya’s (1945) classic book “How to Solve It”) can be fruitfully
applied to the design of interactive systems. We call it the “equal opportunity heuristic”.
To constrain the scope of this paper somewhat we will make the simplifying assumption
that the user is intended to be in full control of a particular dialogue with the computer.
In general this need not be the case and, indeed, equal opportunity would suggest
equality in interuption and initiative (and other mechanisms of taking control) in the
interaction. However we will not explore “equal initiative” (mixed initiative) interactive
systems further, nor generalizations to various modes of interaction such as speech.

2. The problem of premature design commitment

Programs are written to support user interfaces. Purely technical programming
decisions—for instance that a computation should be organized as a particular fixed
sequence of steps—often intrude onto the user interface in the form of limitations that
are inexplicable without a thorough understanding of the program implementation.
Many such programming decisions are actually quite arbitrary: but the intellectual
loads they place on both programmer and user are significant.

This problem is an instance of a more general one: premature design commitments
must be avoided.

So at the outset of design it is more important to specify, for example, what it means
to sort data correctly than to choose between, say, insertion or quicksort algorithms.
There have been various methods proposed to delay commitments to a particular
algorithm as long as possible: use of a purely functional programming system (Turner,
1982) avoids the need to specify sequence in many places where it is mandatory in a
conventional imperative system; less radically, Bornat (pers. comm.) uses an idealized
programming notation (e.g. guarded commands, concurrent assignment), and provides
mechanical rules (involving fixed but arbitrary choices) for translation into a more
strictly sequential language, such as Pascal.

Sheil (1983) has made cogent arguments for delaying commitments as expressed in
strong typing in “structured” programming languages (e.g. Ada). He argues that the
implementation problems of the 1970s, which were pretty well solved by structured
programming and strong static typing—making programs as committed as possible—are
going to be replaced by design problems, caused by the very investment in the
redundancy which provides security and ensures consistency.

All this is relevant to the concerns of this paper because many design methods
(conventional systems analysis in particular) fall into premature commitments by
beginning with the separate enumeration of inputs and outputs. The designers may be
unaware both of this commitment itself and of its consequences in limiting the
opportunities for different styles of use. For batch-processing applications such a design
strategy may be entirely appropriate, but for interactive systems it is a disaster, Similarly,
defining an interactive system component as a (mathematical) function must entail the

EQUAL OPPORTUNITY INTERACTIVE SYSTEMS 441

distinction between the function argument and the function result and (depending on
the role of the component) this may also involve distinctions between inputs from a
user and outputs from the computer system. Just as it is possible and frequently more
productive to design programs without premature commitments to computational order
or type specifications, it is desirable to design interactive systems without premature
commitments to the r6les of input and output.

3. Equal opportunity defined

Conventionally, programs do distinguish strongly between inputs and outputs: pro-
grams are expected to take certain input data as “given”; corresponding output data
are “unknowns”, to be obtained. For example, given the coefficients of a quadratic
equation, a program might obtain (using the standard formula perhaps) the roots of
that equation. But even though one can obtain coefficients of a quadratic with given
roots, our hypothetical root-finding program is unable to do so. It obtains roots from
coefficients and not the other way around.

The exchange of input and output roles is only one of many possibilities. In what
we shall call an equal opportunity system, all that can be supplied or demanded by the
machine can also be supplied or demanded by the user; equivalently, each item of
information passed across the man-machine interface can pass in either direction. In
this way, there is a form of parity between the participants of interactive computation.
This is the ideal; in practice some restrictions will be an inevitable consequence of
overall design aims—a matter to be discussed shortly.

So the user of an equal-opportunity quadratic equation program could supply both
coefficients and roots and have their correspondence checked. Or he might give some
coefficients and some roots, in which case the reponse of the machine will be possible
values for the others. Even giving neither coefficients nor roots is a possibility.

4. Equal opportunity illustrated

We now want to show briefly that several well-established styles of user interface design
that the reader may have regarded as quite separate have, to varying degrees, involved
some equalization of opportunity in the sense just described. Indeed, we should like
to go further and suggest that this is of the essence in each case, although it takes
different forms in the different kinds of system. We will consider spreadsheets; program-
ming-by-example; expert systems; query-by-example; Prolog; and, as an example
typical of many interactive systems, the programming environment COPE. Our list is
by no means exhaustive.

The interface presented by a spreadsheet program (Kay, 1984) is a rectangular grid
of cells. Associated with each cell there is a rule that governs what value is displayed
there. A rule may be very simple (e.g. ““is zero’’) but will often involve values displayed
in other cells (e.g. ‘‘is the maximum value of other cells in this column’’). There is no
predetermined concept of “input cells” or “output cells™; the user sets rules in whatever
cells he pleases and the system adjusts values displayed in whatever other cells are
necessary so that all display rules are obeyed. At one moment the user may inspect a
cell to view an “unknown”, at the next he may redefine the display rule for this same

442 C. RUNCIMAN AND H. THIMBLEBY

cell, thereby introducing a new “given” with potential “unknown” effects on other
cells. Even within a single interaction, the boundary between “‘givens” and “unknowns”
may be hard to discern: for example, is a recurrence rule between a group of cells an
accelerated means of expressing “givens” or the computation of “unknowns’’?

In Programming-by-Example (Halbert, 1984; Summers, 1977) the user provides what
would normally be considered the output of a program in order to define the program
itself. In other words, the user provides the system with an example of what he would
like it to do; the system records the user’s actions and can perform them again. The
system organizes the program so the user can later generalize and parametrize what
he did. ‘

In expert systems (Michie, 1979) equal opportunity interaction can be found in a
variety of forms. To begin with, the user may supply such information as he has
available so that what is “‘given” (as input) in one consultation with an expert system
may be “unknown” in another and vice versa. In the context of such information an
expert system may yield conclusions (“unknowns” to user) and, on request, justify
these conclusions by a chain of reasoning; but the user also has the opportunity to
ofter conclusions (now *givens”) and have them similarly justified or refuted by a
chain of reasoning. More profoundly, an expert system may treat inference rules (or
whatever other representation of knowledge it uses) primarily as input when acquiring
new knowledge from a human expert but as output when acting as an intelligent tutor.
In general consultation with a knowledgeable user, rules may be used in both of these
roles.

Query-by-Example (Zloof, 1977) is a language and associated interactive system for
manipulating the information in a relational database. A user %an request a tuple-
template with appropriate element headings for any relation in the data-base. He has
the opportunity under each heading to supply an example value, or to supply a fixed
value or to leave the space blank. The system can respond with all actual instances
from the database that match the templates: where a template value was only an
example the actual value could be anything of the same type (where two example
values are the same in templates the corresponding actual values must be the same
too); fixed template values must match exactly; blanks are ignored. However, the user
can also supply templates for new relations; these new relations are maintained
dynamically in the correct (template determined) correspondence with the originals.
In this way there is considerable adaptability in the role of templates; they may specify
sectional views of data for output, but also the construction or input of new relations.

In Prolog, (Clockin & Mellish, 1984; Hogger, 1984) a logic programming language,
it is possible to define procedures for which the input/output roles of parameters are
not fixed. Such procedures form an obvious basis for the construction of equal
opportunity systems. A standard introductory example is “concat”, defined as follows:

concat ([], X, X).
concat ([H|T], X, [H|TX]): —concat (T, X, TX).

The first clause states that the concatenation of the empty list with any list X is just
X. The second clause states that the concatenation of a list with first item H and
remaining items T with any list X is H followed by the concatenation of T and X. An
intuitive meaning for a call concat (A, B, C) is ““if possible make substitutions so that

EQUAL OPPORTUNITY INTERACTIVE SYSTEMS 443

A and B concatenated together are the same as C”. Here are just a few possibilities:

CALL EFFECT
concat ([1, 2], [3, 4], Q) Q=[1,2,3,4]
concat ([1,2],Q, [1,2,3,4]) Q=[3,4]
concat (Q, [3,4],[1, 2, 3, 4]) Q=[1,2]
concat (P, Q, [A, B]) P=[], Q=[A, B]
or P=[A], Q=[B]

or P=[A, B], Q=[]

In the dialect micro-Prolog (Clark & McCabe, 1984) this freedom of argument roles
extends to arithmetic primitives. An expression such as “F=32+Cx9/5” may be used
to check that F and C have the desired relation (for denoting temperature in Fahrenheit
and Celsius units) when both C and F are given. If, however, only C is given
micro-Prolog will determine F as output. In fact many programming languages can
perform these two operations (though sometimes requiring a different symbol for ** =’
in the two cases). But micro-Prolog is unusual in that if F alone is known precisely the
same expression will determine C. Finally, when both F and C are unknown, micro-
Prolog generally requires additional informatjon such as “F between (0 500)”, from
which it can effectively construct an F—C conversion table over the given range.

COPE, (Archer & Conway, 1981) an interactive programming environment, is
“...cooperative both in the sense of being flexible and tolerant with respect to the
form of user entries, and in being willing to perform chores that the user is generally
asked to do for himself” (our emphasis added). Very similar statements have been
made about many interactive systems. A common aim is often to help remove the
burden of tedious input from the user; this may be done by arranging certain system
output to be treated as input under the user’s control (cf. 6.2.1). ;

5. The necessity of some inequality—and its dangers

If a computer system could itself move a mouse it would in principle have a choice
of valid responses when the user moved the mouse. In particular, rather than tracking
the mouse with the cursor, the system could respond simply by moving the mouse
back again, leaving the cursor where it was, Under this arrangement both mouse and
cursor would be immovable! Hence the convention that the mouse is always an input
device and the cursor an output.

Or again, the user of a constraint-based system (Borning, 1981) might supply an
equation to convert between Celsius and Fahrenheit. As the user sets and resets the
Celsius value the system responds, always displaying the corresponding Fahrenheit
temperature. Similarly, if the user changes the Fahrenheit temperature the system alters
the Celsius. But it would be unfortunate if equal opportunity extended to all values
in the system: why then should not the system instead alter the equation relating
Fahrenheit and Celsius so that it becomes true? The convention is, of course, that
equations are never considered valid means of system output.

In practice it is unusual for the user of an application written in Prolog to be able
to benefit directly from equal-opportunity procedures in the underlying implementation.
Mellish (1981) reports that variation of argument roles is typically slight in large Prolog
programs. It seems that most Prolog programmers (having been first accustomed to

444 C. RUNCIMAN AND H. THIMBLEBY

programming in, say, Lisp or Pascal) are unaccustomed to this kind of flexibility and
fail to exploit its potential. There are exceptions, however, as Warren (1980) highlights
in his discussion of the development of a compiler in Prolog. Notice that the “concat”
example of section 4 is more usually called “‘append”; the use of the term “append”
rather suggests the particular case of taking “‘givens” (A, B in the example above) one
of which it appends to the other to obtain the “unknown” (C).

As these examples illustrate, some inequality of opportunity is invariably (and quite
properly) introduced at some point in a system design. The danger is that it can be
introduced by hidden and unquestioned assumptions rather than as the result of an
explicitly reasoned design step. Of particular concern is that once such assumptions
have been incorporated into a design (especially when fixed in its implementation) it
can be extremely difficult to reorganize the system to permit greater variation of
input/output roles or greater equality of opportunity in interaction. Fixing input/output
roles opens the way for the designer to select a particular computational model: any
design work within that computational framework may rely too heavily on the assump-
tions by which it was selected to generalize to other computational models.

Because of this, we believe that many of the standard human factors “success stories”
of iterative design (e.g. rationalizing screen layout after user participation) are entirely
fortuitous. It is easy to imagine a program design based upon a computational model
for which it is impossible to redesign a screen layout without redesigning the entire
implementation. For example, few pre-VDU hardcopy-based applications could have
been easily modified to present their dialogue in a different order. It is an important
area of research to find computational models and corresponding user interface styles
that are malleable. Otherwise, when our understanding of human factors matures (to
the point where we can address deeper cognitive issues), iterative design will become
obsolete because of the high cost of software iterations.

Users are likely to underestimate the implementation costs of modifications involving
variation of input/output roles. For example, if a system validates data provided by
the user (e.g. that Tuesday October 29 1985 is a valid date) it will be curious to users
that the relevant information which necessarily exists in the computer cannot be used
in other ways (e.g. to find the day of the week on December 25 1985). The problem
is that the knowledge is “procedurally embedded” and is not accessible except by
executing a fixed procedure in a fixed way. Incidentally, people are not immune to a
similar problem; the more skilled their performance becomes often the harder it is to
conceptualize it: human memory is a classic example. However, we retain a remarkable
flexibility even for the least conscious actions. _

The more a programmer uses procedural embedding of knowledge the more he will
rely on abstractions to manage the complexity of the embedded knowledge. To the
user of such a system the abstractions (e.g. the commands) available to him will appear
limited and contrived. If a programming paradigm is found which permits the program-
mer to model artefacts available to the user, the user interface will be cleaner. Ideally,
it should exhibit the particular traits or style of the underlying model sufficiently well
for the model to be of constructive use (when suitably expressed) for the user. Despite
the implicit approval of Prolog earlier in this paper, one disadvantage of it is that its
implementation world of lists and clauses is usually completely concealed at the user
interface level. In contrast, in object-oriented systems it is usual for objects to be both
visible and manipulable by the user. The implementation of these objects encapsulates

EQUAL OPPORTUNITY INTERACTIVE SYSTEMS 445

information about their visual form, and so the temptation for the programmer to
embed knowledge in a fixed procedural form is minimized. (A spreadsheet can be
implemented very easily on an object-oriented machine. The cells with ‘which the user
interacts map onto objects in the implementation). The so-called, and widely advocated,
*“direct manipulation” (Shneiderman, 1982) style of user interface can then be readily
and consistently implemented. Kay (1982) gives further examples.

6. Equal opportunity as a heuristic: design principles

Having discussed the general principle of equal opportunity we now use it as a guide
to derive more specific design laws such as the ever-popular What You See Is What
You Get (wysiwyg) (Thimbleby, 1983).

The use of such “‘generative principles”, (Thimbley, 1983; Gaines, 1984; Thimbleby,
1984) is an appealing approach to the design of effective user interfaces. Use of a
generative principle can bring a higher-order consistency to the design process, and
when suitably expressed a generative principle can be used by both designer and user
to advantage. But where do designers get new principles from? In what sense can
designers claim that the principles they adopt are valid? How do designers ensure they
adopt the principles with sufficient precision? We will attempt to show that equal
opportunity interaction is a promising heuristic for developing principles, and for
knowing precisely what they mean in the given context. By developing the principles
for themselves for their specific applications context, designers can be more certain
than usual that the principles are applied appropriately.

There are also important psychological issues. How should the principles be rephased
(e.g. in task-oriented terms) for users? How will such principles (e.g. expressed as
“golden rules™) interact with the user’s world knowledge?

6.1. DERIVING “WYSIWYG*

Suppose a word processor provides an editor (E) which operates on text (T). The
word processor also provides a formatter (F) which formats the current text and causes
it to be printed. Initially we suppose the word processor is not of the wysiwyG genre,
so that the text probably contains all sorts of incantations to a text formatter (meaning
“centre this text”, “start a paragraph”, “underline”” and so on). More formally we can
view E as a collection of functions and F as a single function.

E: T-T
F. T->P
T for texts

P for printed forms

The directions of the arrows in Fig. 1 make plain the assumptions about input/ output
roles for data involved in the editing and formatting operations.

Now let us apply the ideas of equal opportunity to F by trying to discard the fixed
assumptions about input and output roles of T and P. That is, we want to replace the
two arrows labelled F by undirected links. The main obstacle in the way of this plan
is that, for all systems of formatting directives known to us, F is severely many-1. So

446 C. RUNCIMAN AND H. THIMBLEBY

FIG. 1.

it seems we must force either non-determinism, or arbitrariness or irritating choices
on the user.

But this problem has a standard solution: we conceal unwanted distinctions between
equivalent members of T by making T an internal representation and only retaining
quotients of it (e.g. P) in the external specification. The concealment is indicated by
shading in Fig. 2.

The result is one interpretation of wWySIWYG.

Unfortunately this reasoning is over-simplified. For example, the user editing a large
document may have a view of it that is limited to a single A3-size screen; this is much
smaller than the size of the final printed document, which will fill many pages. Such

E;

n

Pf

FiG. 2.

EQUAL OPPORTUNITY INTERACTIVE SYSTEMS 447

issues, which are of little concern here have been more carefully worked out elsewhere
(Dix & Runciman, 1985). More general issues of formalising interactive system proper-
ties are discussed in Harrison & Thimbleby (1985).

6.2. OTHER PRINCIPLES

In less detail now we briefly mention some more design principles that may be viewed
as products of the equal opportunity heuristic. The actual derivations of the correspond-
ing formal principles and choice of application domains is left to the reader.

6.2.1. If you can see it you can use it

Any output (displayed on a terminal screen) should be able to be reused and provided
as input for other functions. Teitelman (1979) argues that this gives the user “pronoun
reference”: the user can say to the system this expression or that value. This greatly
increases the system’s effective input bandwith available to the user. Some systems
permit textual output to be selected, edited and then resubmitted as new input to the
system; this operation is easily represented on a bitmapped display together with
pointing operations. ““Block-mode” VDU terminals readily support equal opportunity
in this sense, and as local VDU editing commands are generally fixed in firmware, the
user has the additional assurance that the commands for selecting, editing and reusing
text are identical for all applications.

6.2.2. Commensurate effort

The relative computational costs of tasks carried out by the system should be reflected
in the relative amount of work the user must do to invoke the necessary computations—a
principle applied by Jensen & Wirth (1974) in the design of Pascal. For example, if
creating X requires more effort than creating Y then so also should the effort needed
to destroy X be greater than that needed to destroy Y. Further, a user must not be
able to destroy data significantly faster than he can create it: this may seem restrictive,
but it may also be seen to encourage the provision of accelerated ways of creating
information in the first place!

6.2.3. Non-pre-emption (Swinehart, 1974)

This could be seen as an extreme corollary of “commensurate effort”’. A computer
sytem should not demand input from the user, refusing to continue until the user
supplies that input. A pre-emptive system corners the user, forcing him to supply input
before proceeding. This can be very disruptive. An advantage of multi-window multi-
process systems is that the user is generally able to provide input to whichever processes
he chooses, thereby sidestepping the problem of unequal opportunity subsytems.
Pre-emption then becomes an issue when interacting with the window manager itself
because it is not possible to sidestep it. Pre-emption may sometimes be a necessary
protection mechanism—an “‘inevitable inequality”.

6.2.4. Self demonstrability

The provision of help and guidance is another aspect of equal opportunity: the system
output is intentionally selected as descriptive of plausible or potential input. It is less
demanding of the computer system if it can describe how it may be used by way of a
(say) script-following demonstration (Thimbleby, 1984).

448 C. RUNCIMAN AND H. THIMBLEBY

7. Equal opportunity as a heuristic: case studies

We now present three illustrative case studies of equal opportunity employed as a
heuristic in the design process. A more substantial example has been published
elsewhere, (Thimbleby, 1986a).

7.1. MECHANICAL PROGRAM PROVING

We will first illustrate the value of the equal opportunity heuristic by tracing the efforts
of computer scientists in the early 1970s to solve the probelm of proving programs
correct.

Initially, programs were assumed to be the “givens™ of this problem and their proofs
were regarded as the ‘“‘unknowns”. In other words, the goal was to construct a system
which read a program text and would print its proof. The plausibility of this view was
enhanced by the anticipated potential of mechanical proof procedures. However, a
prerequisite for proof is the formulation of an exact specification, and in nearly every
program proof the most important parts are the invariant assertions without which the
rest of the proof cannot proceed:

program - specification - invariant assertions > proof

However, determining suitable specifications and invariants for programs turned out
to be a very hard problem. Eventually, it was found productive to take the formal
specification as *“given” from which the “‘unknowns” program and proof were to be
derived:

specification - invariant assertions - program and proof

72. INTERACTIVE LITERATE PROGRAMMING: A BRIEF INTERFACE DESIGN CASE STUDY

Cweb is a batch-style system which enables documentation and program code to be
interleaved. Interleaved documentation/code is fed through cweb which can then
produce either compilable code or high-quality typeset code with cross-referenced
documentation. The notation for interleaving is baroque.

The paper on cweb (Thimbleby, 1986b) suggests an interactive variation which
removes the burden of the user knowing this notation. For example, it was suggested
that graphical devices (such as boxes) can take the place of explicit bracket symbols.
But so far as input/output roles are concerned, this “new” user interface is just like
the original batch system: the user merely interacts through a sanitized (graphical)
notation.

If the starting point of design is the ideal of equal opportunity interaction, rather
than a superficial avoidance of poor notation, then a more interesting interface merges.
For example, the user could edit code or documentation at will (both were outputs of
the original cweb) and the system—now much more sophisticated—would ensure that
the two representations remain projections of a common data object. As in our
derivation of wysiwyg, the user need now never see this internal data.

7.3. THE UNIX®t COMMAND LANGUAGE

What Unrx command should you use to find out who owns a file? A textbook answer
(Bourne, 1982) is “Is —I file”, meaning list in full the details of the named file. But if

+ UNIX is a trademark of AT&T.

EQUAL OPPORTUNITY INTERACTIVE SYSTEMS 449

you only want to know the owner, this does far too much, contrary to the small
single-purpose software tools philosophy of Unix (Kernighan & Pike, 1984). More
seriously, from the user interface perspective, it is not obvious how to discover such
a command; a keyword search of the Unix manual would suggest “chown” (which
changes ownership of a file). The difficulty is that Un1x commands have fixed assump-
tions about inputs and outputs which restrict their use. In the case of “chown”, no
visible output is given at all!

In considering a variation of “chown” in which some attempt has been made to
provide equal opportunity interaction, let us first change its name to “ownsfile””. The
style of application here is very close to that of a Prolog procedure call.

USER SYSTEM
ownsfile user file yes/no
ownsfile — file owner of file
ownsfile user — names of files owned by
user
ownsfile — — list of files and their
OWners

According to this interpretation “ownsfile” does not change owners or files but
simply supplies information—it has no side-effects.

To specify intended change in a manner consistent with the style of the Unix
command language one might provide a “~f (for force) option so that, for example,
the user could enter

ownsfile —f wuser file

to set file ownership. There are other possibilities,

The advantage of this approach is that each command would localize access to all
information pertinent to a particular issue, such as file ownership as in this case. See
also Fraser (1980) who discusses the potential of editing the output of commands. For
example, a generalized editor may permit the user to edit file properties (by effectively
editing the output of some file enquiry) in order for the user to change certain
properties. A debugger is a core-image editor; an electronic mail system is a mail editor
and so on. The issues of equal opportunity arise because once the “unknowns” (outputs)
of these commands (file lister, debugger, mail system etc.) are edited the user will then
wish to assert them as new “givens”. A high degree of interface uniformity can be
attained by making as many as possible state-changes achievable by the same editing
mechanisms: the “if you can see it you can use [edit] it”” maxim again (cf. section 6.2.1).

8. Summary and Conclusion

Removing assumptions about what is given and what is unknown first appeared as'a
heuristic for problem-solving. It is used in education to distinguish understanding from
rote learning. In some sense, demonstrating ability to accomodate such variation
demonstrates intelligence or at least a certain advantageous and cooperative flexibility
in approach.

450 C. RUNCIMAN AND H. THIMBLEBY

For interactive computer systems, we have adopted the ““‘equal opportunity” slogan
to advocate a corresponding removal of assumptions about which side of the interface
must supply a particular piece of information.

Delaying design commitments to the point where they can be properly analysed and
justified is essential. At that point, commitment trade-offs should be made explicit and
carefully reasoned through. Starting with the idealized assumption of equal-opportunity
interaction is one way to delay commitments in the design of interactive systems. A
large number of successful interactive system styles incorporate this idea to varying
degrees. It appears that placing equal opportunity interaction as an ideal can usefully
guide user-interface design, and even when innovative styles do not emerge we would
contend that useful insights will still be obtained by the designer who adopts this
problem-solving heuristic.

Whether users have the capacity or inclination to exploit equal opportunity effectively
remains to be explored in complex cases. It will certainly depend on the purpose of
the user’s particular interactive session. The user’s performance in a “creative” session
may be degraded by the explosion of choices open to him, whereas a “problem-solving”
session may be facilitated by the greater adaption by the system to the user’s framework.
(Of course, the user’s perception of his performance and his preference for equal
opportunity will be determined by many factors other than his actual performance).
The cost of implementing full equal opportunity (indeed, even when it is possible)
may be prohibitive; consistent restrictions of the ideal—which the user readily compre-
hends—may be difficult to determine.

References

ARCHER, J. JR & CONWAY, R. (1981). COPE: a cooperative programming environment, TR.
81-459, Department of Computer Science, Cornell University.

BORNING, A. (1982). The programming language aspects of ThingLab, a constraint-oriented
simulation laboratory. ACM Transactions on Programming Languages and Systems 3, 353-
387.

BOURNE, S. R. (1982). The UNIx System. Addison- Wesley.

CLARK, K. L. & McCARBE, F. G. (1984). Micro-PROLOG: Programming in Logic. London:
Prentice-Hall.

CLOCKSIN, W. F. & MELLISH, C. S. (1984). Programming in Prolog (2nd edn).Berlin: Springer-
Verlag.

Di1x, A. & RUNCIMAN, C. (1985). Abstract models of interactive systems. In JOHNSON, P. &
Cook, S. Eds, Proceedings People and Computers: Designing the User Interface, pp. 13-22.

FRASER, C. W. A generalized text editor. Communications of the ACM, 23, 154-158.

GAINES, B. R. (1984). Dialog shell design. Interact’84, First IFIP Conference on Human Computer
Interaction, London, pp. 344-349.

HALBERT, D. C. (1984). Programming by example. OSD-T8402, XEROX Palo Alto Research
Centers.

HARRISON, M. D. & THIMBLEBY, H. W. (1985). Formalising guidelines for the design of
interactive systems. In JOHNSON, P. & COOK, S. Eds, Proceedings People and Computers:
Designing the User Interface, pp. 161-171.

HOGGER, C. J. (1984). Introduction to Logic Programming (APIC Studies in Data Processing,
No. 21). London: Academic Press.

JENSEN, K. & WIRTH, (1974). Pascal User Manual and Report. Berlin: Springer-Verlag.

KAy, A. (1982). New Directions for Novice Programming in the 1980s. In Infotech State of the
Art Report, pp. 210-247 Pergamon.

KAY, A. (1984). Computer software. Scientific American 251, 41-47.

EQUAL OPPORTUNITY INTERACTIVE SYSTEMS 451

KERNIGHAN, B. W. & PIKE, R. (1984). The UNIX Programming Environment. Prentice-Hall.
MELLISH, C. S. (1981). The Automatic generation of mode declarations for prolog programs.
DAI Research Paper No. 163, Department of Artificial Intelligence, University of Edinburgh.
MicHIE, D. Ed. (1979). Expert Systems in the Microelectronic Age. Edinburgh University Press.

PoLyA, G. (1945). How to Solve It. New Jersey: Princeton University Press.

SHEIL, B. (1983). Environments for exploratory programming. Datamation, 29, 131-144.

SHNEIDERMAN, B. (1982). The future of interactive systems and the emergence of direct
manipulation. Behaviour and Information Technology, 1, 237-256.

SUMMERS, P. D. (1977). A methodology for LISP program construction from examples. Journal
of the ACM, 24, 161-175.

SWINEHART, D. C. (1974). Copilot: a multiple process approach to interactive programming
systems. Stanford University Al Memo 230.

TEITELMAN, W. (1979). A display oriented programmer’s assistant. International Journal of
Man- Machine Studies 11, 157-187,

THIMBLEBY, H. W. (1983). ‘What you see is what you have got’—a user engineering principle
for manipulative display? In ACM Proceedings Software Ergonomie, pp. 70-84, Nuremberg.

THIMBLEBY, H. W. (1984). Generative user-engineering principles for user interface design.
In Interact’84, First IFIP Conference on Human Computer Interaction, pp- 62-107. London.

THIMBLEBY, H. W. (1986a). The design of two innovative user interfaces. In HARRISON, M.
& MONK, A. Eds, Procceedings People and Computers: Designing for Usability, pp. 336-351.

THIMBLEBY, H. W. (1986b). Experiences of ‘Literate Porgramming’ using CWEB (a variant of
Knuth’s WEB). Computer Journal, 29, 201-211,

TURNER, D. A. (1982). Recursion equations as a programming language. HENDERSON, P. &
TURNER, D. A. Eds, Functional Programming and its Applications. pp. 1-28. Cambridge:
Cambridge University Press.

WARREN, D. H. D. (1980). Logic programming and compiler writing. Software— Practice and
Experience, 10, 97-126.

ZLOOF, M. M. (1977). Query-by-example: a database language. IBM Systems Journal, 16,
324-343,

