Human-Computer Interaction — INTERACT ‘84 / B. Shackel (ed.) !
Elsevier Science Publishers B.V. (North-Holland) 661 |
: © IFIP, 1985

GENERATIVE USER-ENGINEERING PRINCIPLES FOR USER INTERFACE DESIGN ;,

Harold Thimbleby
! Department of Computer Science
University of York { L
YORK, YOl 5DD, UK i it
f Generative user-engineering principles are assertions about interactive system E
| behaviour and have equivalent colloquial forms. Current work shows that they are a [H
promising contribution to the design of acceptable user interfaces, because they

effectively bridge the conceptual gap between designer and user. In colloquial form a
generative user-engineering principle can be used to help clarify requirements in
participative design, or to explicate documentation. In rigorous form, generative
user—engineering principles provide a constructive higher order consistency on user

interfaces.

1 INTRODUCTION

Currently, the best designed interactive systems
are vpartly specified formally and partly
developed through ad hoc accretion. Many such
accretions are details for handling abnormal

boundary conditions, which are usually
afterthoughts to the formal specification.
Despite ‘user-engineering principles”, no

overall consistency emerges, and certainly no
consistency which can be applied down to
details. This is a disaster for the purposes of
introducing an interactive system to new users,
or for interactive systems which are intended
for non-computer-expert use. This paper
suggests that ‘generative’ principles should be
employed as theorems over the system
specification: this overcomes the bottom-up
piece-meal approach of applying conventional
user-engineering principles.

If, in addition, we require the user interface
to be compatible with external requirements (and
not merely internally consistent), the
generative principles must be expressible in a
form accessible to users. In a colloquial form
a generative principle could be used ia both
requirements specification and in documentation.
In one case, the principle would permit the user
to contribute to higher-order requirements, and
in the other case, even if the user has not
participated in the system design, he could be
given an unusually coherent view of it, The
colloquial form must be judiciously chosen; in
[1] the colloquial form is termed a ‘metaphor’
and excellent recommendations are given for
their presentation.

We shall wuse the term ‘generative user
engineering principle’ (abbreviated ‘guep’), to
distinguish a principle which has a colloquial
form and can express constraints on the overt
behaviour of a system. Necessarily a guep has
to be compatible with human factors guidelines
and this can be achieved weakly post hoc,

" because simply stating a system property makes a
. system easier to use. The longer term releases

‘the basic term ‘generative principle’ to be used
'or specificational purposes where there may
need be no human factors requirements at all.

Ideally, wuser interfaces may be designed by
collaboration between wuser, ergonomist and
computer scientist (using the three terms
generally). However, each view has limitations
which restrict communication and curtail the
emergence of an overall design approach. This
paper proposes using gueps as a ‘thematic’
requirement of the user interface behaviour
expressible in colloquial task-oriented terms.
With them, the user may have reasonable and well
founded expectations; the ergonomist can check
compatability of a system against them; and the
computer scientist may rephrase them as theorems
over the formal specification. In addition,
gueps, as generative principles, impose a high
degree of internal consistency.

The idea is not new, and appears to have been
first used under the J0SS system, where gueps
were termed ‘rubrics’[2]. We could view the
user model as an abstraction of required system
behaviour, and under suitable definitions it
could then be viewed as a guep.

1.1 Hypotheses

I am making a strong hypothesis that gueps exist
and that they are useful for both designer and
user. A weaker hypothesis is that only certain
pre-evaluated forms of guep are properly
effective, and therefore the approach is not
applicable for novel user interfaces, where a
set of suitable principles has not already been
established. A still weaker hypothesis is that
gueps have negligible effect on the user at the
interface but are nonetheless wuseful in
specification (as generative principles).
Directions for research are discussed in §7.

2 GUEP VERSUS USER-ENGINEERING PRINCIPLE

User-engineering principles which are
sufficiently constructive to be used in design
are numerous and are highly task-specific{3].
In fact, many such principles appearing in the
literature have been derived from very small
experiments and it is dubious whether such
hypotheses merit promotion to principles. It is
unlikely that constructive principles can be
generalised or used 1in combination reliably,
certainly mnot without considerable design
experience.

o

662 H. Thimbleby

For example, it is not clear when a mouse
outperforms key selection for selecting items
from a known menu, though experiments suggest
that unanticipated cursor positioning is faster
using a mouse. Principles interact too strongly
with user skill levels, task dimensions
(frequency, openness), hardware (e.g.
resolution, response times), psychosocial issues

(e.g. consequences of user performance and
error), and may even be in mutual conflict,
Really, wuser-engineering principles, at this

level, can be used no more constructively than
as suggestions for particular design features.

A user-engineering principle is an informal
requirements statement, which 1is yet too
sophisticated for the user and can still be
interpreted by the designer with considerable

freedom. A typical user—engineering principle
from [4] illustrates this: "User orientation
must be maintained throughout a session.

Information detailing the user’s status should
be displayed." However some principles operate
at a higher level (e.g. be consistent, reduce
modes) and could be formalised as requirements
over the entire specification. These two
particular principles happen to be relatively
trivial in relation to a formal specification,
but nonetheless are too sophisticated for
computer-naive users,

Distinctively generative user—engineering
principles meet four criteria: (i) they can be
expressed formally (ii) they have a colloquial
form (iii) in common with user-engineering
pPrinciples (which can be instantiations of
gueps), they embody certain ergonomic guidelines
and (iv) they are constructive rather than
descriptive.

3 EXAMPLES
3.1 Gueps for Concealed Information

Information in user interfaces may be concealed
by a wvariety of means, usually with the
intention of making the dialogue more rapid
(e.g. because less needs to be said), catering
for varying levels of user skill or for folding
complex information into uncluttered forms.

Typical mechanisms for concealing information
range from the straightforward absence of the
information (as in default command operands),
forms of abstraction (as in macros), to symbolic
expressions (as in regular expressions). The
purpose of the relevant guep is to express
constraints on these kinds of mechanisms, and
hence improve the chances of designing a
consistent user interface (and, additionally,
give the user an explicit key to the particular
form of consistency). The distinction between
gueps and user-engineering principles is now
perhaps a little clearer: a plausible user-
engineering principle might suggest that
"defaultable operands should occupy a consistent
position" but this is very specific; it has a
limited domain (in this case certainly to linear

command strings) and it is not at all clear that
one can be used effectively in formal design, an
area where human factors expertise is generally
absent,

In comparison a plausible guep would be that (a)
"only complete instances of syntactic categories

may be abstracted (i.e. replaced by names,
marks, abbreviations or stubs) or concealed
(i.e. eliminated from the operand set
altogether)". This might be supplemented by the
following: (b) "information may be totally
concealed locally, but there must be a
convention to indicate this is occurring”; (c)

"information concealing/revealing never occurs
as a side-effect" (e.g. a search would not
unfold data which contains the searched-for
items so the user is left at the same level of
abstraction); (d) "the body of an abstraction is
consistently available as an operand"; (e) "the

abstraction mechanism is conservative and
invertible". 1In fact, these gueps might be part
of a stronger set which implies the
commutativity of the operations required to

implement them.

For clarity we shall introduce the terminology:
a fold is an instance of an abstraction or
concealment and folding is the act of
abstracting away or concealing information.
Similarly, unfolding is the inverse act, of
exposing the concealed information. If
abstraction requires naming, unfolding is not
normally considered to lose the name, nor the
extent of the abstract’s body — in other words
unfolding is normally invertible.

The gueps above may be formalised in terms of
the chosen formal specification method, thus
their correct application may be established
mechanically, As required by the user, a more
colloquial expression of these gueps 1is that
only entire objects are folded, one is always
made aware of any folding, and objects must be
folded by some direct act (this last point not
only encourages faith in the predictable nature
of the user-interface, but expresses the fact
that the user is in control of the abstraction
level of the interface and the skill level it
consequentially requires).

Since these concepts may be unfamiliar, they are
applied to two application areas:

3.1.1 Linear Command Languages

We may view a default as the user folding
system-known information: however the system
normally echoes the command which may remain
displayed for some time, perhaps until it
scrolls out of sight. 1In this case, the echoed
form conceals information from the user about

the history of the system’s actions. Adhering
to (b), the echoed form should minimally
indicate that a default has been assumed .

Adhering to (e), the user should be able to
determine what default has been taken.

—eL

Generative user-engineering principles 663

Macros are a very direct way of permitting the
user control over abstraction. If we adhere to
the suggested guep (a), the system should impose
syntactic constraints on the bodies of macros.
(Most macro interfaces fail to do this.)

3.1.2 Menu Based Systems

Single-level menus often grow to such size that
the entire range of options cannot be displayed.
Unfortunate systems exist which flaunt (b) and
therefore surprise their users when they select
non-displayed choices.

If rest of the menu 1s folded {(for example, by
providing an option ‘others’), adherence to (e)
suggests that a function must exist to return to
the enclosing menu., Of course, if the menu is

arranged as a tree, (e) suggests that this ‘go
back’” function is uniformly available.

3.2 "What You See is What You Get"

The well worn maxim "what you see is what vou
get" 1is an ideal example. In simple English,
this phrase specifies certain properties of a
user interface which, with a little explanation,
may be used for the user to develop hypotheses
about system behaviour. The phrase may also be
placed on a more formal base as follows [5]:

A display can be considered a function

content->view, with view perhaps as
position->symbol (= pixel*). Operations om
contents, such as edits are content
transformations (content->content) with
corresponding display transformations

(view->view) to provide feedback on the outcome
of the edits. The "what you see is what you
get" simply requires the display function to be
a morphism of the contents and view
transformations. The user can then equally view
commands acting on his data (content) or on what
he can see displayed (view): this may be non-
trivial to specify because in most applications
the display function is a projection with no
inverse, so some ‘obvious’ (easy to use) view
transformations are complex content
transformations. Indeed, most user interface
problems stem from the non-uniform conventions
for the display transformation: obscure quoting
and meta conventions are introduced (cf §3.4).
Consequently, a user interface which adheres to
the "what you see" guep may well be more
consistent and easier to use, but it is very
likely to be much harder to implement.

It should be noted that the accepted
interpretation of 'what you see" by the
computer-science community is different from the
semantics presented above. Here, we have simply
taken a workable phrase and shown how it might
be utilised — after all, users who are presented
with this guep need not know of its other
(weaker) connotations. The non-standard
semantics are explored in (6] and the usual
interpretation is discussed further in §6.2.

3.3 "It Can Be Used With Your Eyes Shut"

Being able to use a system ‘with your eyes shut’
clearly implies a wvery predictable interface.
But if the user really did shut his eyes, to be
able to make effective use of the system, the
interface would have to be mode free and
indicate diagnostics in a non-visual mode (e.g.
audibly) and rapidly, to be synchronised with
the occurrence of the error, rather than at the
end of a unit utterance in a dialogue. In a
keyboarded application this requires per=-
character interaction and a postfix (or function
key) command structure. . Already we have quite
definite technical constraints consistent with
the view of the interface the user may have been
encouraged to elaborate from exactly the same
principle. BSee [7] for further discussion.

3.4 Gueps for Quoting Mechanisms

Any general purpose system will require quoting
mechanisms. For example, a text editor must
allow a user to issue commands and to enter text
to a file which, for example, could document
those commands. When the commands are entered
as documentation, they should not be executed
and therefore they have to be quoted, that is,
interpreted in some non-command mode. In
addition, a text editor would normally provide a
command which allows the user to search for
textual patterns: the patterns will use
metacharacters which may be overloadings of
textual characters. To search for a textual
character which is overloaded requires the
character to be quoted.

Perhaps quoting mechanisms most frequently arise
where different input/output devices have
different resolutions or character sets. Users
are confused by the consequent overloading e.g.
"“K" denoting ‘control-shift-K’, not ‘up-arrow’
'K’: the problem would not arise if there was a
displayable form for ‘control~-shift-K’
compatible with the keyboard legends. (In this
particular case quoting is implicitly determined
by context.)

Few systems impose any consistency over quoting
mechanisms, and a number actually have
misleading documentation in thisg respectt. This
is probably because quoting 1s tedious to
specify and usually slips past the formal
specification. (A set theoretic approach is used
in [8].) This often results in an unnecessary

T For example, lex [16] documentation asserts
that \ followed by any character denotes itself.
So * denotes a star, \\ a backslash, but \n a
newline! An alternative quoting mechanism
provided by lex is to place literal text between
quote marks. There is no simple relation
between the two quoting mechanisms: "n" ¥ \m,
but "*" = *, The latter mechanism cuts across
the phrase structure (e.g. "ab"* = NatERY R
where * is a postfix operator) and, indeed, 1is
subordinate to certain operators (e.g. ["]"] is
ill-formed).

664

profusion of unrelated quoting mechanisms, some

of which cut across the phrase structure of the
interface,

A guep ig

needed which might express some of the
following

constraints: there is one quoting
mechanism which ig permanently available (e.g.
there 1is a dedicated ‘quote’ key); quoted
composite objects become atomic; the quoting
mechanisny superordinates all other functions,

4 CHARACTERISING GUEPS

Gueps will be most
to design method,

Practical as a contribution
rather than as a contribution
to catalogues of acceptable interface
techniques. To thig end we must recognise what
characterises gueps.

For the user, gueps explain in straight~forward
language higher-order pProperties of the user
interface which affect its “feel’. For example,
d guep may verbalise a pPerceptual-motor routine,
Or a group of related routines (cf §5.1).
the principle might define a second level
grammar [9] o predicates over
specification:- there are many possibilities and
until further research indicates a particularly
promising form 1t will be better to
‘generative user-engineering principle’ as a
generic term. For the designer, the principles
constrain the interface to avoid what hag been
‘interaction

uncertainty’ [10} or
‘under—determination’ [11] — a5 the wuser
interface 1ig powerful enough to exhibit any

behaviour, the user has less confidence that it
will exhibit any particular behaviour.

Thus gueps constrain the

machine and explain the
interface — ip 3 manner

which was not previously
accessible to the user, and once verbalised may
be used by the user comstructively, probably
using an acquired or taught inference procedure.

5 THE CHARACTERISTICS OF SYSTEMS MOST
EFFECTIVELY DESCRIBED

Necessarily, gueps have an effective domain, and
it is constructive to characterise that Property
of interactive systems which would make them
more suitable for applying gueps,

It seems clear that the purpose of a guep is

‘partly to make a property of the system ‘second
nature’ (autonomic) to the user. This can only
oceur when the vyser’s reasoning can leave
symbolic Processing and, instead, have rapid
feedback of Progress and so on. In short, the
interface should be ‘manipulative’, The

condensed observations in the following section

are largely due to Ben Shneiderman, whose
excellent paper should be consulted[12], Other
positive comments have beep . made about
manipulative interfaces in the literature, 2.8.

[13].

H. Thimbleby

5.1 Manipulative Interfaces

User interfaces
manipulation
Tepresentation for application
‘real world”’ i

actions the usar
cbjects are atomic;

not have to reason about command composition tgq

which support direct

and commensurate
objects (often a
reasonable icon),
may perform

achieve logically immediate goals. As a1l
atomic actiong are rapid, they may be wused
incrementally and reversibly,

An example of direct manipulation ip an

interface ig the use of foyr cursor control keys

keys labelled. ‘up”’, ‘down’, ‘left’
‘right*) instead of textual commandsg (such as
‘move 23,477y, requiring numerical] coordinates
or offgetg, Manipulative interfaces Provide
immediate feedback on each atomie action (e.g.
‘per-character’ interaction). On typing the key
labelled ‘up’, the cursor would move up; whereas
Wwith the command form, the cursor cannot be
moved until the multi-keystroke command ‘move
how much’ ig completed, To determine ‘how much”’
cognitive Processing (e.g, counting) is
required, ip distinction tg the (iterative)
Perceptual-motor Processing wused with atomic

commands ,
A manipulative interface

supports layered

be used

on demonstration), and with

Browing experience
the user will be

able to usge it more and more

effectively without abandoning hig initial
DPerceptions.
With manipulative Systems, casual users can

retain essential concepts readily,
users can work rapidly.
anxiety becauge

yet expert
Users experience less
the system ig comprehensible,
because their actions are invertible, Since
objects have a fixed and commensurate
representation it ig plain whether the users-”

actions furthey their immediate goals, Indeed,
sophisticated diagnosticg dre rarely necessary.
Using a direct manipulation System is gelf-
motivating,

5.2 Self-Demonstrating Interfaces

If a systen uses direct manipulation, it may be

or
displayed op screen,
pPossible uger actions

demonstration approach ca
a textual command System;
‘a system ig not easy to

Pen might
demonstrating the
explicitly). 4 self-
nnot be so direct using
and the prejudice that

use if it needg help”’
Presumably arigeg because non-manipulative,
non—self—demonstrable, Systems are manifestly

harder to use,
5.3 Passive Interfaces

A user interface ig

Passive if the manifest

.rect
irate
en a
The
the
does
o to
all
used

‘ed
ed

ce
re
al

[

Generative user-engineering principles

action and object worlds are commensurate (for
example, the commands and their operands must be
mode~free); passivity requires an interface to
be uniformly manipulative. A manipulative
system is a candidate to be well described by a
guep, but Ffor the principle to be uniformly
applicable, the user interface must in addition
satisfy passivity[14].

Passivity 1is essentially a restraint on the
system not to do too much in anticipation of the
user {or worse, occasionally do too much): this
anticipation may occur either during the system
design or during a particular dialogue. Simply
increasing passivity in the obvious way, by
decreasing hidden activity, variation and
complexity but keeping the dialogue style
constant may be too restrictive — instead a
different, more manipulative style should be
chosen and passivity 1is thereby dincreased
without loss of effectiveness.

6 A WARNING AGATNST PSEUDO-GENERATIVE PRINCIPLES

There is a class of principle which
superficially meets the criteria for gueps. Two
outstanding examples are (1) the ‘desk-top
model’, that is, the interface should simulate a
user’s desk-top displaying appropriate icons
mapping onto objects which might be found on
office desk tops, such as calculators and spread
sheets. And (2) the '"what you see...'" principle
as conventionally interpreted.

6.1 The Desk-Top Model

It will expose the misconception in the desk-top
view of man-machine interaction if you consider
the horseless-carriage period at the beginning
of this century. The initial approach to
designing cars followed the obvious ‘generative’
principle of being compatible with the
functional predecessor. This resulted in
machines which were no doubt familiar and ‘“easy
to use’ but which pushed carriage technology to
limits, e.g. in suspension, steering, coachwork
and so on. The principle (not that it was ever
espoused as such) led to the exposure of
limitations in contemporary technology — far
from conmstraining it. So far as I am aware the
horseless—carriage peried achieved no
standardisation in the user interface, not even
the development of the steering wheel.
Similarly, the desk-top approach in office
automation leads inevitably to display
processing requirements (e.g. to scroll A4 text
in real time in arbitrary direction) which are
certainly an impetus to technological
development but may not be a wvalid approach to
designing a user interface per se.

6.2 What You See is What You Get

T

As conventionally interpreted, "what you see...'
implies equivalent resolution for hardcopy and
display devices (when there is usually an order
of magnitude difference). It may also be taken
to imply real-time formatting and screen

665

updates. Again, the principle primarily
encourages systems research rather than either
an improved user interface or research towards
one. See [6].

7 DIRECTIONS FOR RESEARCH
7.1 In Formal Specification

Gueps may be more defined in terms of formal
requirements (e.g. as assertions about the
specification). Whether algebraic (ef [15],
which formalises such questions as, "Is it the
case that pictures are not transparent or even
translucent? 1I.e. if two pictures overlap does
the bottom one have no effect on what one sees
through the top omne?") or constructive methods
(such as VDM) are most suitable remains to be
determined. Some of the gueps appear to require
an explicit time metric and this 1is not
satisfactorily modelled by any existing formal
technique.

7.2 In User Interface Design Methodology

It is mnot clear how gueps may be used
prescriptively in general, and a design
methodology is wanting. For example, some gueps
are very general and allow considerable choice
over design.

7.3 In User Interface Evaluation

The gueps may alternatively be selected for
their psychological effectiveness.
Psychological experiments might establish
whether gueps have any significant effect on end
users — which is possible because the interface
is better designed or because the users know
more about the form of the design. Whether the
effect, for example, is limited to accelerating
the time to reach criterion; what gueps the
users establish for themselves in the absence of
explicit gueps; whether, conversely, semantic-
free gueps have any effect.

These three research areas need to interact, to
avoid unintelligible gueps which are helpful in
design, or helpful gueps for users which are too
vague for formal expression. It 1is also
possible that there exist principles (i.e.
certain forms of user-interface consistency)
which are actually detrimental to usage, in
which case the stronger hypothesis of 81,1 is
falsified in an unhedged form.

8 SUMMARY

This paper has been an exploratory introduction
to ‘generative user-engineering principles’, and
has not been intended to be superficially
rigorous when considerable effort is still
required to find wuseful definitions. The
intention has been to demonstrate the potential
for higher-order guiding principles which may be
used throughout design and help bridge the gap
between designers and users.

666 H. Thimbleby

Generative user—engineering principles are
easily understood and used both by user and
designer. They can be expressed in such terms
that

® The user interface may be designed top~down,
using gueps as guidelines to select
appropriate low-level features,

e The user has a sound basis on which to
construct an understanding of the system, even
before using it.

e The wuser may generalise his knowledge
reliably. The user is confident as to what
has happened (e.g. after an error), and does
not need debugging skills.

e The user is encouraged to use his skills
fully. Gueps can help enhance the view that
what the user does is real and not abstract.
This is especially motivating.

e The designer can use gueps to meet clearly
defined user expectations, often with specific
techniques.

e A manipulative and passive style of
interaction is encouraged.

Having once suggested a basis for the user
model, the designer is under an obligation to
ensure its coherent implementation through
careful system design, which should maintain the
model as understood by the user — this approach
will entail evaluation and retrospective
refinement.

I belleve that generative principles, plus
attention to detail, already provide a
constructive approach to the top-down design of
effective, acceptable, interactive systems., At
the very least, even if a guep is ergonomically
unsound, an interactive system explicitly
designed around it will have more internal
consistency and be more clearly documented than
the average interactive system available today.

9 ACKNOWLEDGEMENTS

Michael Harrison, John Long, Ian Pyle, Andy
Whitefield and others made major comments on
earlier drafts of this paper for which I am very
grateful.

10 REFERENCHS

[1] Carroll J. M. & Thomas J. C., Metaphor and
the Cognitive Representation of Computing Sys-—
tems, IEEE Transactions on Systems, Man, and Cy-
bernetics, SMC-12, 107-116 (1982)

[2] Baker C. L., JOSS: Rubrics, P-3560, RAND
Corp. (1967).

[3] Smith S. L., User-System Interface Design
for Computer-Based Information Systems, ESD-TR-
82-132, MITRE Corp. (1982).

(4] Engel S. E. & Granada R. E., TR 00.2720, IBM
Poughkeepsie Laboratory (1975)

[5] Harrison M. D. & Thimbleby H. W. Formalis-
ing User Requirements for a Display Editor,
University of York, To appear.

[6] Thimbleby H. W., ‘What You see is what you
have got’ - a user engineering principle for
manipulative display? 70-84 in Balzert E. H.
(ed) Software Ergonomie (Teubner, Stuttgart,
1983)

[7] Thimbleby H. W. Character Level Ambiguity:
Consequences for User Interface Design, Interna-
tional Journal of Man-Machine Studies, 16, 211-
225 (1982)

[8] Sufrin B. Formal Specification of a Display
Editor, PRG-21, Oxford University Computing La-
boratory (1981)

[9] Green T. R. G & Payne S. J. Higer-Order
Rules in the Perception of Grammars, Memo 544,
MRC Social and Applied Psychology Unit, Shef-
field University (1983)

[10] Hansen W. J., Doring R. & Whitlock L. R.
Why an Examination was Slower On-line than on
Paper, International Jourmal of Man-Machine Stu-
dies, 15, 507-519 (1978)

[11] Thimbleby H. W. Dialogue Determination,
International Journal of Man-Machine Studies,
13, 295-304 (1980)

[12] Shneiderman B. Direct Manipulation: A Step
Beyond Programming Languages, IEEE Computer, 16
57-69 (1983)

[13] Brooks F. P. The Computer ‘Scientist’ as
Toolsmith — Studies in Interactive Computer
Graphics, in Gilchrist E. B. (ed) IFIP Confer-
ence Information Processing ‘77, Toronto, 625~
634 (1977)

[14] Thimbleby H. W. Interactive Technology:
The Role of Passivity, in Bensel C. X. (ed)
Proceedings Human Factors Society, Bostom, 23,
80-84 (1979)

[15] Guttag J. & Horning J. J. Formal Specifi-
cation as a Design Tool, in 7th ACM Symposium on
POPL, Las Vegas (1980)

[16] Lesk M. E. Lex — A Lexical Analyser Gen-
erator, Computer Science Technical Report No.
32, Bell Laboratories, Murray Hill, New Jersey
(1975)

