Intelligent adaptive assistance
and its automatic generation

Harold Thimblebyt & Mark Addisont

Tt School of Computing Science
Middlesex University, Bounds Green Road,
London, N11 2NQ

1 Philips Research Laboratories
Cross Oak Lane
Redhill, Surrey
RH15HA

Phone: 0181 362 5000, 0181 362 5302,
Email: harold@mdx.ac.uk, addison@prl.philips.co.uk
URL.: http://www.cs.mdx.ac.uk/, http://www.philips.com/

Abstract
Manuals and interactive help are tedious to provide, difficult
to maintain, and difficult to ensure correct, even for simple
systems. The result is a loss in product quality, felt particularly
by users and designers committed to long-term product
development.

This paper shows that it is possible to systematically put
a system specification and its documentation into exact
correspondence. It follows that much previously manual work
can be done automatically — and with considerable
advantages, including guaranteed correctness and
completeness, as well as supporting powerful new features
such as intelligent adaptive assistance. This paper shows how
interactive assistance can be provided to answer “how to0?”,
“why not?” and other questions.

Keywords
Assistance, help, training, user manuals, system design,
finite state machines, HTML.

1. Introduction
Interactive systems — cash machines, control systems, aircraft cockpits —
should be delivered to users with complete and correct documentation,
and if clients require system modifications, it should be easy to update the
documentation correctly. Context sensitive assistance should be provided
so the users can make the best possible use of the system, whether to learn
how it works or to recover from error conditions. Wouldn’t it be nice to be
able to do all this in a reliable, integrated and efficient fashion?

Interactive help is not always relevant, and can interfere with the
proper use of the system. Many systems are supposed to be sufficiently easy
to use (e.g., ‘walk up and use’ systems, such as ticket machines), or to be

used by highly trained users (e.g., aircraft flight management systems), that
manuals and help would be a distraction. What is important in these
cases, however, is to design the system so that it is easy to understand and
to use; this may be done by designing the system so that its interactive
help, if it had been supplied, would have been minimal (Carroll et al.,
1988).

Interactive products are often complex and difficult to use, usually
requiring additional material for their successful operation. Their
manuals are therefore inevitably bad — manuals may have presentation
problems as well, of course, but if they correctly and completely document
a bad system along with its idiosyncrasies, they aren’t going to be easy to
understand. Addison and Thimbleby (1994) showed that some systems are
impossible to document suitably, because they have been badly designed:
documenting these systems will inevitably result in poor manuals. These
findings suggest some manual problems arise from bad design, and the
designer should employ the results to re-design the system.

There is a considerable literature (notably Carroll, 1990; Carroll &
Aaronson, 1988) on user manuals. Our approach is more technical, to
show how manuals and interactive help may be provided through an
integrated system. We are not presenting a philosophy or psychology of
help: we present an effective technique for providing reliable
documentation and adaptive interactive help features.

Our approach simplifies the engineering and design of systems by
providing a framework for developing the complete system, including the
manual. The approach is formal, based on graph theory, and consequently
can be systematically applied, and technically is relatively easy to
implement. The benefit of ensuring integrity between the manual and the
system is important for developing user-centred system, when the design
is performed iteratively, since otherwise the iterations in the design could
easily cause version-control errors in the manuals and other user aids.

1.1. A demonstrator system: HyperDoc

We have built a prototype interactive system design tool, called HyperDoc
(Thimbleby & Addison, 1995) to facilitate automatic construction of user
help and to do various analyses of interface design. HyperDoc enables
accurate, context-sensitive and (if required, adaptive or task-oriented) help
to be provided in various forms for the user, at very little cost to the
system implementors.

Modern complex systems are notoriously hard to document either
completely or correctly. The approach we describe in this paper puts an
end to this. (Of course, there are many deliberately difficult to use systems:
security, games, and some control and safety critical systems that must
only be used by qualified wusers.) If a push-button or menu based
interactive system cannot be handled at an informative level by HyperDoc,
or a tool like it, then we would suggest the system is likely to be too
complex for conventional use in any case.

HyperDoc was conceived as a practical HCI tool for developing and
researching interactive systems, and consequently is concerned primarily
with the design and analysis of user interfaces and their manuals. It
supports a fully integrated design environment for simulating interfaces

and for writing the user documentation (manuals) associated with system
states. The concept of placing a system and its documentation in direct
correspondence is simple, but the resulting paradigm is very powerful.
The system has evolved many user-oriented facilities — derived from
graph theoretic operations — and directly maintains integrity between the
system and its documentation. In this paper, we describe its ability to
demonstrate and investigate interactive help.

HyperDoc provides a tightly coupled environment that readily
supports design; and the device being developed can easily be modified at
any stage of development without requiring significant resources.
HyperDoc supports four basic elements for expressing the interactive
system ‘buttons’, ‘states’, ‘indicators’ and ‘documentation’. HyperDoc can
be viewed as a system containing its manual or as an operational manual
representing the system being designed. HyperDoc can present manuals
interactively, as context-sensitive help (described later), and of course
automatically generate conventional paper-based manuals. New systems
are constructed or re-structured by the addition, deletion and revision of
such objects and HyperDoc can easily support such operations. The
design/simulation environment of HyperDoc is the same for both user
and the designer. The user and designer share the same environment and
consequently the designer is able to perceive the precise user environment
and create an appropriate discernible interface.

1.2. Finite state machines

We are concerned with push-button machines with discrete states:
pressing buttons changes the system’s state. To support the assistance
mechanism, states, buttons and state transitions are annotated in natural
language. (Default descriptions, based on button and state names, are
provided by HyperDoc if no specific natural language descriptions are
provided.)

Such an interactive system can be viewed as a finite state machine
(FSM), perhaps with time-outs. Time-outs can be handled like push-
buttons: instead of saying “Push the Record button” the system says “Wait
5 seconds” or “Wait until July 4” — internally the system’s structure is the
same, just the terminology differs (cf. Halbwachs, 1993).

Many systems (particularly computer systems) have large keyboards
and we can deem classes of keys (e.g., all alphanumeric) to be equivalent
for the purposes of manuals and user help, to obtain a small and easily-
managed finite state description of the system. Indeed, if a system is not a
‘small’ finite state machine (under some such abstraction), it is likely too
complex for human use — with or without help! Certainly its complete
manual would be very lengthy.

Another relevant form of abstraction that is convenient in defining
complex FSMs is the statechart (Harel, 1987, 88, 90), which (ignoring
features like broadcast communication) define FSMs using hierarchical,
default and orthogonal structures. The advantage of a statechart for design
is the greatly reduced number of states that need be defined explicitly (also
making the notation much clearer). A statechart, being a more concise
representation, can be annotated more easily than the FSM it defines, but
one could easily generate the appropriate annotations for the defined

machine. In fact, if the structure of the statechart clarifies the system
structure (for the designer), its annotation might be more informative
than that of the expanded FSM. In this case, the ‘expanded’ annotation of a
state could be the annotation of the hierarchy the state is in, rather than
the (lengthy and detailed) product of the state’s annotation and other
orthogonal states’ annotations.

For clarity this paper will assume every state has annotations,
though in practice one might not annotate specific states, preferring
instead to generate annotations algorithmically from combinations of
other annotations. The important point is that a user, in any case, should
not be able to tell the difference between a system implemented as a FSM,
a statechart or other form: whatever its implementation technique, it
should work correctly to its specification.

We also annotate transitions, in fact for each button in every state,
regardless of there being a state change on the transition. This feature is
useful to specify pre- and post-conditions for performing the transition
correctly. Consider a simple fire alarm system, with two buttons FIRE and
RESET. The RESET transition may have a pre-condition “Check the fire is
extinguished,” which could be generated as an assistance message.

Since HyperDoc is based on finite state machines, it is easy for it to
generate other representations of finite state machines. Notably HyperDoc
can directly produce complete system manuals in HTML (hypertext mark-
up language, the language used for the World Wide Web). Such manuals
are both normal function-based manuals and they are active hypertext,
which a user can explore: by clicking buttons in the hypertext manual, the
manual automatically goes to the appropriate places to continue reading
about the relevant system features available had the button been pressed
on an actual system.

1.3. Immediate productivity gains

It is tedious to document a complex system. Often documentation remains
incomplete or incorrect, simply because of the complexity of the task facing
technical authors, and sometimes, because of production pressures not
leaving enough time given the scale of the work required.

In conventional documentation, ‘everything” has to be
documented. With a system like HyperDoc, the designer of the system
need only document S states and B buttons, requiring a total of S+B
sentences or paragraphs. Yet HyperDoc then provides help for all S2 routes
between all pairs of states, i.e. all button-pressing possibilities in all states
— another SxB paragraphs — and many other sorts of paragraphs for
explanation purposes (see section 3). This amounts to a very considerable
saving even for trivial interactive systems: for example, a very simple 10
state machine handled this way requires only 10 paragraphs to be actually
written and the B buttons named; the system is then able to generate all
100 potential state transitions and additional text components required to
answer a range of user questions (see section 3). This saves the designer
writing or anticipating at least 90 answers, just for the simple cases, and
the saving becomes more dramatic as the number of states (S) increase.

A concomitant improvement in the quality of the documentation is
obtained, since the designer (or manual writer) can more efficiently proof

read the fewer sentences and is more likely to get them correct. And since
the manual is so easy to generate, users can become more involved in
earlier stages of the design process.

2. Equivalent designer, user and technical author environments

The specification of an interactive system, as a finite state machine, can be
represented as a labelled directed graph (Parnas, 1969; Thimbleby, 1993).
Each state has an associated natural language description, and each
transition has an associated button name. A system may have indicators,
such as on/off lights. The status of each indicator is recorded in each state.
Some indicators may be conceptual, that is they are not visible to the user
but simply serve to identify classes of state.

For example, a design option for a video recorder, with the object of
simplifying the interface panel, may not include a fast-forward indicator
light (because the winding mechanism is audible), but it may still be useful
to generate a manual as if it had: because fast forward is a salient condition
to the user. Conceptual indicators are thus a convenient representation for
the designer to express design considerations without affecting the current
user’s perception of the system.

A finite state machine specification is trivial to animate; indeed,
one can go directly from the specification to an implementation for any
appropriate hardware. However, as a user operates the machine, the
annotation of states is still available and can be used to provide help. For
example, to answer the question “What can | do here?” at its simplest is
merely a matter of collecting the annotations from the adjacent states and
saying which buttons should be pressed to achieve those states. Or, to
answer the question “How do | ...?” at its simplest is merely a matter of
determining the best route from the current state to the required state, and
using the annotations to document the route to be taken by the user.

If instead a system designer or manual writer is using the system,
the answers to such questions need only be editable text for HyperDoc to
become a very powerful manual development tool. Because of the
quantity of annotations that are involved it is however helpful to have
some facilities to help the designer manage the text editing, for instance to
record which states have, as yet, no annotations defined. (An indicator is
automatically set in such states, which makes them particularly easy to
find.)

That the user’s system and the designer’s system are identical has
very many advantages and certainly increases the chances that the system
will have a sensible design; it will necessarily have been used by at least
one user! But more importantly, if the designer modifies the system, by
adding a state, deleting a state, or by modifying a button transition, the
manual necessarily changes in exact correspondence. Conversely, if a
section of annotation is deleted, the state is deleted.

In summary: the system and its manual are the same thing; the
design environment and the running system are the same thing; the
user’s help facilities and the designer’s manual-writing facilities are the
same thing. (The active hypertext manual is another side of this
equivalence.) These equivalences make HyperDoc very elegant.

The correspondence with hypertext is not to be ignored: a system’s
manual could be a hypertext. In the prototype of the system (Thimbleby,
1993), the top of the screen was the simulation of the system, and the
bottom of the screen the corresponding state’s manual material: hence
there was no distinction between using the system or using its manual.

The prototype was implemented for HyperDoc, and was
implemented in HyperCard, a general purpose hypertext programming
environment (Coulouris & Thimbleby, 1992). HyperDoc is now
implemented as a Macintosh application using Symantec’s C
programming environment; it is available from the authors.

3. Answering Questions

There is a need for interactive systems to provide mechanisms that
support users in many different ways; asking questions of the system (and
getting it to answer them) is a highly desirable feature that when
implemented correctly and consistently greatly enhances usability and
user effectiveness.

The system is doing something and the user wants to know how
the system can be made to do something else. Generally, the system is
currently in a state ¢ and the user can ask how to attain a goal or
terminating system state t, or more generally how to attain the ‘easiest’ or
‘best’ of any of a set of goal states, t (I T.

The user can specify the set T in many ways; the simplest is by
menu (giving a choice of appropriately named tasks), the user merely
selects one item from among its choices. Each choice selects a predefined
set, which the designer or manual writer has named appropriately. A
device’s indicator lights are supposed to inform the user of useful states or
state changes, so expressions involving indicator status form a natural way
of specifying these sets for the designer. Additionally, the conceptual
indicators of HyperDoc permit additional classes to those actually visible
on the device, and these can be set ‘on’ or ‘off in any way that is
convenient. (Conceptual indicators are similar to normal device indicators
except they are not visible to the user.)

Often it is important to attain a termination goal either avoiding or
maintaining certain conditions. To support this, both a termination set T
and an invariant set | are in fact specified through a design matrix (Figure
1) and selected via the user’s assistance menu.

For example, a “How to?” question is answered by finding any
sequence of states:

= starting in the current state c
= staying in states in | (the invariance set)

= terminating in any state in T (the termination set)

In the case ¢ (01, there is no answer to the user’s question, because no valid
state transitions exist. This potential problem can be picked up by the
designer (with tools like HyperDoc), though there are cases where it is
appropriate for there to be no assistance (except to explain why the task

cannot be performed) for the user who asks how to perform impossible or
dangerous tasks.

Suppose a video recorder is playing a tape. We wish to ask how to
remove the tape from it, and to finish with the machine switched off.
Further, we do not wish to switch the machine on and off unnecessarily
until the task is complete.

= cisthe current state, “playing a tape.”

= | is the set of states with the ‘on’ indicator true. That is, what
ever is done, keep the machine on.

= Tis the set of all states with the ‘tape’ indicator false and the ‘on’
indicator false. That is, finish when the tape is out and the
machine is off.

Figure 1 shows part of HyperDoc’s task design matrix, depicting the
necessary conditions for this query. The left-hand column represents
named indicators, other columns support three invariance conditions
‘on’, ‘off’ and ‘same’ (the indicator assertions which exist from state to
state); and four termination conditions ‘on’, ‘off’, ‘same’ and ‘flip’
(representing the indicator conditions in the terminating state) — ‘flip’
simply permits a change of indicator status, changing from ‘on’ to ‘off’ or
from ‘off’ to ‘on’, to cause termination.

|]
on
tape
play
record
pause

W

Figure 1. Setting termination goals (T) and invariants (I) with reference to
indicator status. The termination goals are shown on-screen in red
(i.e., ‘stop’) and the invariants in green (i.e., ‘go’).

Figure 1 shows the conditions necessary for “get the tape out and
switch off” on the assumption that it is best to leave the machine on until
the last moment. The invariant requires the system to be ‘on’ all the time,
and the termination condition is that the tape is out and the machine is
off. Note, in HyperDoc such queries can be named and the user is expected
to use these task names rather than explicitly using the task design matrix,
as the designer does.

3.1. “Howto?”

A “How to?” question is easily answered by finding a path in the finite
state machine, from the current state to the required termination state(s).
For example the shortest path, each transition weighted equally, gives an
answer that requires the least number of button presses. We might require
a path that changes the least number of indicators, or a path that never
switches the system off, or a path that visits states where the user gains

rewards. There are very many possibilities. We will discuss some
variations below where the costs vary according to the user’s recent use of
the system.

3.2. “Why not?”

A frequent cause of frustration is that an interactive system fails to
respond as the user thinks it should. The user expected it to go into one
state but it is in another. The natural question is “why isn’t the system in
the expected state?” For the designer, answers to such questions can
effectively contribute to the design process, by supporting an iterative
design cycle and providing perfective maintenance through redesign.

It is easy to answer “why not” questions. If the user’s expectation
was reasonable, then there would have been a button press in a previous
state that achieved (or more directly led to) the desired state. One way to
answer a “why not” question requires finding the best path from the
previous state not the current state, and phrase the answer as “you should
have pressed X not Y.” Actually, there may be other reasons why the
current state is not the one the user might have expected: the target state
may require several more button presses to attain, for instance. Hence a
general approach to answer “why not” questions is to find the least cost
path from the current state from the system’s previous state.

Figure 2 shows a simple example, of a user having made a selection
where the machine does not enter the user-desired state. The user
reasonably wants to ask why the machine did not enter the desired state. If
values of weights are equal then transitions ‘A’ = ‘B’ = ‘C’, and the two
equal shortest paths are

i) along ‘C’, with answer:
You have not yet pressed ‘c’

ii) along ‘B’, with answer:
Instead of pressing ‘a’ you should have pressed ‘b’
Answer (i) is more practical and (being easily recognised as such) is
to be preferred, though the assistant could easily explain all equal routes.

The approach generalises naturally when the arcs ‘B’ and ‘C’ are multi-step
paths.

previous state
(where erroneous selection occured)

button 'a' with
transition 'A’

button 'b' with

current state transition 'B'

button 'c' with
transition 'C'

v

desired state

Figure 2. Simplified state diagram to illustrate “why not?” answer
generation.

The assistant’s search should not reach too far back into the past,
otherwise the user will be presented with answers that refer to states too
long ago to be relevant to their current situation. (In the simple example
above, of the two equally weighted answers, the best answer was the one
that reached back least into the past.) In fact, to generate satisfactory
answers, we found during the development of HyperDoc by trying
alternative strategies, only the previous system state need be considered,
though of course, in some applications, say with professional users or
teams of users (where one user wants an explanation based on a previous
user’s actions), there will be requirements to delve further back. One
possible extension would be to introduce a time-stamping history of states
as they are visited.

When states are error conditions, the assistant must avoid perverse
answers. Provided error conditions can be defined, perverse answers are
easily avoided by weighting edges out of error states very highly; in other
words, the answer generated would rarely or never carry on from a
mistake, and advise avoiding making one in the first place. On the other
hand, from the designer’s point of view, if “why not?” and “how to?”
answers often involve error states there is probably something wrong with
the structure of the system and hence the design. This type of problem is
easily detected by HyperDoc, and hence would encourage redesign.

start —b A —’ B —b intended state

\/

error state
current state

Figure 3. A simple subsystem containing a possible “error” state (here error
can mean ‘costly’, ‘dangerous’ etc.)

Figure 3 shows how these ideas work: the user asks “Why not
intended state?” when the system is in the state identified as error state.
The equal-weights answer would be: “Your press ‘z’ was correct, but you
now need to press ‘y’ (to get to ‘B’) then ‘z’ again.”” But the press ‘z’ was not
correct! Instead, by weighting the transition ‘y’ from the error state highly,
the answer becomes: “Instead of pressing ‘z’ (when you were in ‘A’), you
should have pressed ‘y’ to do ‘B’.”

Of course, recovery from an error state might take us closer to the
goal state than by any other route, even with a high (but not infinite)
weighting: but this is likely to be a result of poor system design — the
assistant’s advice would be correct. Importantly, the existence of such poor
answers can be identified very easily automatically, because error state
transitions can be traced between pairs of states in the finite state machine,
permitting them to be designed out of the final system.

3.3. “Why?”

Why is the system currently performing a particular activity; why is an
indicator in a particular on/off condition? To answer this sort of “why”
question, the system need only maintain a record of the most recent
button press that changes the status of each indicator.

For example, “why is the machine recording (why is the record
indicator on)?” might obtain the answer “The record indicator is on
because you pressed Record.” Sometimes systems simulated by HyperDoc
provide bizarre answers: to the question “why isn’t it showing the pause
light?”, one video recorder we investigated generated the assistant’s reply,
“because you pressed Play, which made it Record”! On this video recorder,
the Play button is confusingly overloaded, used both to play a tape and to
remove the video recorder from being paused. A tool like HyperDoc can
list all possible assistant’s answers and a designer would obviously look
out for confusion of this sort.

3.4. “What now?”
Users may be unaware of particular states until they accidentally or
inadvertently perform an operation that enters one of those states. This

* The word ‘again’ is easy to add, and makes the assistant’s English appear more fluent as
well as making the instructions easier to understand.

10

can result in confusion (the user is uncertain of how to proceed) or
gratification (the user has discovered a new and possibly useful feature). In
the case of confusion there is an associated feeling of anxiety, how do they
recover from their current predicament “what can I do now?” or “how do
| extricate myself from this position.”

The first question is easy to answer: simply list the annotations of
the states adjacent to the current state. Alternatively the user might want
an answer phrased in terms of the (actual or conceptual) indicator status of
these states.

The second question poses much more subtle problems, which we
consider next.

3.5. “How do I go back?”

Undo is a special help request, so common it has a special name.
“Whatever | was doing a moment ago, I’d rather be doing that than what |
am doing now. Please undo my last action!” This sort of assistance is
therefore easy to specify: it only requires one button labelled UNDO, or
one menu choice in the “How to?” menu. As undo is a frequent need, it
might seem surprising so few devices capable of supporting undo actually
provide the facility.

Undo may mean more than simply entering the previous state:
there may not be a direct transition from the current state back to the
previous state (although there must have been a transition from there to
the present state). Thus the answer to an undo request can be complex, and
can provide the choices we discussed above for other forms of assistance. It
may be that the user may not wish to proceed with an undo when the
consequences are fully understood; for example, it is possible that an undo
requires taking the system through an undesirable state (such as off) and
the user may prefer to proceed in some other, more controlled, way than
simply undoing to the previous state.

Unfortunately undo raises serious design problems. Which we
believe have been largely ignored, perhaps because properly conceived
undo is generally so difficult to implement, and restricted
implementations forbid the situations arising we wish to address; see
Thimbleby 1990; and Dix & Abowd, 1994. What should undo mean just
after using an undo button? Many systems undo the undo; some undo the
previous transition, up to some fixed limit of transitions the system
records.

Consider the following scenario. A life support machine (e.g., a
ventilator) is switched on. Pressing some button ‘X’, on the interface panel,
the operator can cycle the machine through a ring of n states (6 in Figure
4), that provide different sorts of clinical features, ‘a’ to ‘e’. Just after press
n+1, i.e. in state ‘on’ in figure 4, the operator presses the undo button.
What should undo do? It seems uncontentiously it should enter state ‘e’.
But suppose undo is now pressed n-1 more times, so the machine is in
state ‘on’. What should undo do here? The simplest design options are
that the machine switches ‘off’ (and maybe as a consequence the patient
dies) or the machine enters state ‘e’ because of the ring of states and that
the last time state ‘on’ was reached it had been reached from ‘e’. Both are

11

plausible design choices. Other design options, for undo, may require the
user making a choice which may involve several design alternatives.

o———Pp a
off

c

Figure 4. An example system which highlights a general problem for undo.

As the example (Figure 4) shows, what design choice is preferable
depends on the use and purpose of the device. Presumably it is more
important to keep the patient breathing than to see a particular monitor
display; for different scenarios, alternatives, including the machine
switching off, may be preferable.

The correct implementation of undo depends on the specific task
requirements. It may further depend on specific details of use under
specific circumstances. Therefore: there is no general undo strategy for a
finite state machine which commonly contain cycles. This observation has
implications for the design of systems like HyperDoc and how they
support undo in the systems being simulated. We suggest that, with more
research, a simulation tool could report on the quality of undo, just as
HyperDoc already reports other metrics such as connectivity.

Since HyperDoc neither reads the mind of its users, nor is fixed in
its assumptions of the task domain, when the user asks to undo from a
state that has been entered from alternative states at different times in the
past, the simulator says so and provides the user with options to choose
amongst those states (or to cancel the request or to ask for other assistance).
This general strategy may not be appropriate for some applications.

4, Natural language

It is crucial to the success of an assistant that its advice is intelligible and
even courteous. This paper only discusses what the assistant should say,
rather than how it should express its answers. We note, however, that a
correct manual or correct help requires the phrases used to have
appropriate syntax and semantics for the states they annotate; our system,
as it is currently implemented, does not attempt to enforce this.

The same facts require several modes of expression depending on
the linguistic and system contexts in which they are used. For example,
different tenses are required to describe the current, past and future
intended states. Proper discussion of these topics are beyond the scope of
this paper, but for our purposes, in developing HyperDoc, it was sufficient
to have just three forms: indicative (you are in this state), imperative (get
in this state) and interrogative (is the system in this state?). These forms
provide a simple yet very powerful representation of explanation
material. The system keeps three tenses for the action of pressing a button

12

L L 13 LE 13

(e.g., “press,” “pressed,” “pressing”) since different systems may need
different verbs (switch, hit, slide, click...) The annotations may be as brief
or as long as desired. Likewise, transition conditions require three words,
usually “assure” (as well as “assured” and *“assuring”). Obviously these
ideas could easily be extended to deal with whatever style of description
was desirable.

The annotations are inserted into templates, which are chosen
appropriately to answer each question. In HyperDoc, templates are selected
depending on the number of steps involved and other simple
grammatical criteria. A trivial string generator caters for is/are, this/these,
twice/3 times, and other simple lexical issues (like the placement of
commas and full stops) to improve the quality of the English presentation
of explanation. The advantage of this approach is that there is very little
natural language knowledge in the tool, and it is easy to convert the
assistant’s working language from, say, English to German or French.

Rather than speaking or typing a question such as “How do | make
the machine record on a tape?” our current system has several menus, as
described earlier. One menu is for asking “How?” questions, and if selected
currently provides a list of all of the “How?” questions, which will
include, for instance, “Record on a tape.” In other words, HyperDoc can
answer preset questions without having to invoke natural language
parsing. Alternative presentation strategies need to be investigated for
complex systems which maintain a large number of states.

Thus, we do not need to handle questions that have no answers!
“How can | fry eggs?” is a sensible “How?” question but not one that a
video recorder might know how to answer; by providing a menu of
options the user is forced into phrasing a plausible question for the
particular system.

5. Static analysis of an assistant’s help

Although the assistant is envisaged as an interactive aid, its answers can
be analysed statically. For example, for one video recorder we have
simulated with HyperDoc, the answer to “Why is the record light on?” is
not always that the Record button was pressed (the Play button makes it
record if it was previously paused recording)! Or, for an ATM, the answer
to “Why not?” is sometimes that the user has not yet pressed Confirm —
but not always.

We gave an example above (in section 3.2, which discussed “Why
not?” questions) where we would want to modify the system design if the
assistant could ever give error states as part of its suggestions. We have
found it convenient to do such analyses in Mathematica (Wolfram, 1991),
which is a powerful general purpose symbolic mathematics system; it can
analyse finite state machines and draw their transition diagrams.
Mathematica is the textual representation for HyperDoc and readily
supports examining system designs.

13

Since HyperDoc saves system specifications directly as Mathematica
expressions,” it is easy to redesign a system within Mathematica itself,
based on its analyses or other criteria.

The extreme static assistant is the user manual, a static collection of
instructions. This may be generated automatically in various forms. A
simple manual might be the tabulation of answers for “how to” questions
from each state to each other state. Generally, however, manuals require
more structure if they are not to become overwhelming to the user, and
static analysis can help the designer find a more appropriate structure —
or even suggest modifications to the system so that its manual can be
shortened.

A companion paper will discuss the analytic support that HyperDoc
provides, taking advantage of Mathematica and World Wide Web
hypermedia manuals. See the brief paper (Addison & Thimbleby, 1995).
These ‘non-interactive’ features are beyond the scope of the present paper
however.

6. Training versus assistance

The term ‘help’ is ambiguous. Does it mean educational help, that is,
“learn this procedure”; does it mean advice, that is, “do this now”; or does
it mean active assistance, as in “Shall |1 do ... for you now?”” In the first case,
help might provide documentary material the user can read and learn; in
the other cases the assistant can easily achieve the requested objective but
should normally ask the user to confirm their intentions (they may have
asked the wrong question, for instance!) All these cases may be combined,
of course, as in Figure 5, where the “Do It” button enters the additional
dialogue with the user if they want more active advice.

* HyperDoc also stores pictures (of the system, its buttons, indicators etc.) in the
Mathematica file. Since HyperDoc is a Macintosh application, this feature is supported by
the Macintosh’s file resources. It allows a full system specification to be saved along with
pictures, but yet is a standard Mathematica file.

14

Assistant’s response
You have the UCR off, with no tape in it. 7|
You asked, “How do | make it record a tape - manual
stop?”
+ Press ‘Tape in’ to make it on, with tape in, then
+ Press ‘Record’ to make it record a tape - manual stop.
-

Figure 5. Assistant’'s answer to a question how to make a VCR record a
tape (with manual stop).

If the user presses “Do It” HyperDoc helpfully animates and
explains the sequence of steps to get to the state. But if an assistant can take
a user directly to a requested state, why not do that directly and dispense
with the explanation? There are many answers to this question, including:

< For many devices, it is important to enter states satisfying
certain conditions and in a restricted sequential order. Thus, you
cannot record a video tape without first inserting a tape.

= Distinctions can be drawn between normal use, training the
user, error diagnosis, and error recovery. For normal use, it is
likely that pressing buttons is most efficient, though for
unfamiliar circumstances, help may be desirable.

= An interactive system typically has far more states than it has
buttons. Selecting a target state from the assistant may therefore
be more tedious than progressing through a series of familiar
states that are selected in a sensible way via buttons.

= To obtain assistance it may be easiest to describe target states by
referring to indicators (e.g., that the record indicator is desired to
be on).

In summary, there is a continuous trade-off between intrusive assistance
and skilled use. This trade-off can be explored very easily; a flexible
development tool like HyperDoc enables the designer to modify the
behaviour of buttons to perform complete tasks identified through
applying the help assistant.

7. Further work

Our approach provides a flexible, reliable and very adequate form of help,
which can be analysed quantitatively. In comparison it is surprising how

15

inconsistent and unreliable other systems’ help systems are — with the
user sometimes not comprehending what the help is suggesting.

For example the Apple Newton has an assist feature that can
sometimes do operations, but will sometimes only tell the user about how
to do them. Moreover, in telling the wuser, it often uses obscure
terminology (e.g., “Tap the appointment marker,” and the user may not
know which of various symbols is that marker) when it could perform the
operations itself. Some things it could give help on are not provided.
There are innumerable inconsistencies — all of which could have been
avoided by constructing the assistant automatically, as we suggest in this
paper.

We see, then, that an important area of further work would be to
devise ways of specifying (or implementing) complex systems so that they
can be annotated as we have done for finite state machines, and have the
benefit of their manuals and help being automatically derived. Current
programming languages, even ones that are object oriented, have no
objects that correspond closely enough to our states for this to be easily
done.

7.1. Adaptive help

Previously we have shown that answers can be provided for serious
guestions by finding least cost paths. If the costs of transitions are all equal,
then the answers will give the actions that require the least number of
button presses. But there are many other possibilities. For example, on a
cash machine (ATM) the costs could be expected financial costs, and the
answers would then provide the cheapest options for the user (or perhaps
the bank.)

Clearly weights can be varied so that answers better suit different
requirements; in particular they can be dynamically adapted. There are two
forms of adaptive help, whether the weights are adjusted based on the
user’s current behaviour or on previous training. In the first case, adaptive
help can easily provide answers that use familiar routines that the user
frequently uses; in the second case, the help can be trained on certain styles
of use, such as emergency response or expert use. Suppose the question is
“how do | switch off and eject the tape?” — one answer, based on weights
from the current user would be based on how this user (or this machine)
generally reaches the intended state. The other answer could be based on
how an expert might reach that state.

7.2. Designing new buttons

HyperDoc could enable the meaning of a button to be set to the answer of
an assistant question. Thus, if the question is “how do | make the record
indicator stay on and the pause light go off?” a new button’s transitions
could be initialised to achieve this condition from all states. The designer
specifies a set of invariants (e.g., “record indicator on”) and a set of
termination conditions (e.g., “pause light off”). The button would do
nothing in those states not satisfying the invariant. Of course, the designer
can subsequently edit a button’s behaviour. Again we note the pleasing
symmetry between the needs of the user and the needs of the designer.

16

7.3. Tracking manual writing

Keeping track of writing the manual entries is a task that HyperDoc could
do even better. A conceptual indicator could be introduced to mean a
state’s annotation has not been written. We could then define a goal set to
include all states where this indicator is set.

To write a complete manual, then, all the designer need do is write
any manual entry, and then ask the assistant how to get to a state that does
not have a manual entry, write its manual entry, and so on. Following
this process guarantees every state is annotated.

7.4. Tracking user testing

Similar methods to tracking manual writing could be used to help in user
testing to ensure every state is tested. Additional types of annotation may
be permitted so that test users can record their comments about states (e.g.,
that their indicator lights are incorrectly set, or whatever). These
annotations can be gathered in exactly the same way that a manual would
be created, but to summarise the user’s criticisms.

The existing feature of weighting edges to provide better advice
could also be summarised so that evaluators know what routes users have
been taking. (At present, the weights matrix is only available as a
Mathematica expression — but one can do anything with it.)

7.5. Other work in HyperDoc itself

There are many approaches to calculating path costs between two states to
answer questions, such as the “How to?” Answers can be optimised based
upon traversing routes of states most often entered — in this case,
providing help based upon familiarity to the user (i.e., “you’ve done this
sort of thing often before”); or help can be optimised based upon
traversing routes of states never entered — in this case, providing a style
of user instruction (i.e., “you’ll learn something new going this way”). The
current version of HyperDoc weights each action with a number that can
be edited by hand, but which is not automatically adjusted.

Since it is generally undesirable that the assistant ever provides
answers suggesting that the user visit error states, it is a simple matter to
run the assistant over all pairs of states and flag — to the designer — any
anomalous answers. Any such answers indicate that the system design
and/or the weights need modifying.

8. Conclusions

Humans perform many complex tasks that require interaction with
interactive systems. Many systems provide a vast range of facilities and the
choices open to the user may be unknown or confusing. To apply complex
technology effectively often requires some form of assistance to support
the user’s needs. Yet providing assistance is itself a complex task and one
that requires automation to be done reliably.

Our approach opens up a whole range of possibilities for user and
designer assistance for various systems, and the extent of assistance
provided is powerful, flexible and useful. This paper showed how the user
can be helped in many ways very easily, and several ways how help may
be generated automatically and adapted, if required, to fit users’ or experts’
requirements or adapt to their behaviour. Our approach opens up

17

possibilities, such as training a system to generate different styles of help
provision — for emergencies, routine maintenance and so forth.
However, the main advantage of our approach remains its simplicity and
reliability. We raised a number of issues concerning the provision and
development of interactive systems; and we related these ideas to
HyperDoc, our exemplar which illustrates the approach. Tools like
HyperDoc are sufficiently general to implement many interactive systems.
We would argue, further, that they are reliable, powerful yet so simple
that their implementation cost can be recovered immediately from the
guality and speed gains in the overall design process.

Our work shows that automatically constructed assistance is much
easier for the designer, and much more powerful for the user — and it can
be done consistently and reliably, with guaranteed correctness and
completeness. We showed that all these features can be available
simultaneously — the designer, technical writer, and user can all use the
same tool — and this has huge advantages for clarifying and solving
design issues.

Acknowledgements

This work was supported by SERC Grant No. GR/J43110, “Systems,
manuals, usability and graph theory.” We would also like to thank the
anonymous referees and the journal’s general editor for their helpful
comments.

References

Addison, M. and Thimbleby, H. (1994) “Manuals as Structured Programs,”
in G. Cockton, S. W. Draper and G. R. S. Weir (editors), BCS
Conference HCI’94, People and Computers, IX, pp. 67-79, Cambridge
University Press.

Addison, M. and Thimbleby, H. (1995) “Hypermedia manuals for
interactive systems,” The Authoring and Application of
Hypermedia-based User-Interfaces, IEE Digest No. 95/202, pp. 5/1-
5/4.

Carroll, J. M. (1990) The Nurnberg Funnel: Designing Minimalist
Instruction for Practical Computer Skill, MIT Press.

Carroll, J. M. & Aaronson, A. P. (1988) “Learning by Doing with Simulated
Intelligent Help,” Communications of the ACM, 31(9), pp. 1064-
1079.

Carroll, J. M., Smith-Kerker, P. L., Ford, J. R. & Mazur-Rimetz, S. A. (1988)
“The Minimal Manual,” Human-Computer Interaction, 3(2), pp.
123-153.

Coulouris, G. F. & Thimbleby, H. W. (1992) HyperProgramming, Addison-
Wesley.

Abowd, G. D. & Dix, A. J. (1992) “Giving Undo Attention,” Interacting with
Computers, 4(3), pp. 317-342

Halbwachs, N. (1993) Synchronous Programming of Reactive Systems,
Kluwer Academic Publishers.

Harel, D. (1987) “Statecharts: A visual formalism for complex systems”
Science of Computer Programming, 8, pp. 231-274.

18

Harel, D. (1988) “On visual formalisms” Communications of the ACM,
31(5), pp. 514-530.

Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politit, M., Sherman, R.,
Shtull-Trauring, A. & Trakhtenbrot, M. (1990) “STATEMATE: A
working environment for the development of complex reactive
systems,” IEEE Transactions on Software Engineering, 16(4), pp. 403-
414,

Parnas, D. (1969) “On the use of transition diagrams in the design of a user
interface for an interactive computer system,” Proceedings ACM
24th. National Conference, pp. 379-385.

Thimbleby, H. W. (1990) User Interface Design, Addison-Wesley.

Thimbleby, H. W. (1993) “Combining Systems and Manuals,” in Alty, J. L.,
Diaper, D. & Guest, S. (editors), BCS Conference HCI’93, People and
Computers, VIII, pp. 479-488, Cambridge University Press.

Thimbleby, H. & Addison, M. (1995) “HyperDoc: An Interactive Systems
Tool,” in Kirby, M. A. R., Dix, A. J. & Finlay, J. E. (editors), BCS
Conference HCI’95, People and Computers, X, pp. 95-106.

Wolfram, S. (1991) Mathematica, 2nd. ed. Addison-Wesley.

19

