Design of Interactive Systems

Harold Thimbleby,
Stirling University,
Scotland, FK9 4LA.

Email: harold@uk.ac.stir.cs
Phone: +44 786 73171

October 1, 1998

Abstract

This chapter presents an overview of major issues and techniques in user interface design.

To appear in,
J. A. McDermid, ed. The Software Engineer’s Reference Book, Butterworths, 1990.

1 Introduction

It would be a truism to say that no computer could be used without a user interface, yet the user interface
is often an afterthought in the design process: it is tagged on at the end, and many opportunities are
missed. It has been said, and not in jest, that many user interfaces are outgrowths of the debugging
tools built into the prototype program.

Problems start to become apparent after systems have been shipped and the first real use of them is
being made. By then it is often too late to change early design commitments, and the best that can be
done is to palliate the problem—or offer the user the expense of an alternative system. Various studies
have been made of the cost of rectifying design errors in the user interface, and estimates put it around
60% of total software development cost. Of course, the end users also have consequential costs that this
‘60%’ does not measure, arising from being trapped into using systems that are not as good as they
could be. It has been repeatedly shown that simple improvements to many user interface designs result
in increases in productivity and decreases in error rates—and leading to reduced training time, greater
job satisfaction and reduced staff turnover.

Overview

This chapter is arranged to be read from start to finish. It starts with an overview—confirming that
user interface design is hard—then examines design choices and principles. The principles do not so
much answer questions (“should we include this?”) so much as raise important issues. Design, however,
is not just a matter of thinking about principles, but having methods to put them in to practice.
The chapter therefore describes various design tools, evaluation methods and general approaches. The
chapter concludes with a case study: this may be taken either as an example or as an exercise.

2 1It’s harder than you think

The Three Laws of Interactive Systems Design are
1. Know the user
2. Know the task

3. Allow for design errors—don’t assume you can follow rules 1 and 2.

Rules 1 and 2 are often summarised as ‘use the user’s model,” the user’s model being the user’s
‘program’ that determines what they do and how they interpret their actions. The user’s model, then,
is normally established before any contact with a computer system, and the designer should go to some
lengths to find out how users perform their activities—including error recovery and concealment!—prior
to computerisation.

Rule 3 arises for two reasons: first, you can never really know enough to do a good design, and
secondly, even if you could, the user will change his mind, or the very existence of your system will
suggest new ways of doing the job better. Rule 3 suggests an important design strategy, iterative
design, which is the deliberate attempt to design, test, and design again.

User interface design is only visible when a system can be used, and the standard ways of evaluating
interactive systems do not generate useful data for design, as opposed to redesign.

One can measure the user’s training time, his error rate, his productivity and so on, but if these are
unacceptable it is not necessarily clear what part or parts of the design should be reappraised. And,
besides, once a system has developed far enough to be evaluated, too much software investment has
gone into it to make the sorts of radical changes that may be needed.

Given this dilemma, the two best ways to design a system are:

e To copy or develop an existing system known to be successful. This approach has several merits,
not least that of reducing user training.

e To design the system abstractly, making full use of prototyping tools, to minimise the investment
in development before it can be evaluated.

Conventional user interface design relies heavily on evaluation by users: put cynically, the design
is not perfect, but the users will be able to fix it. This tends to result in bottom-up design, as users
provide information about isolated aspects of the system: this needs changing, that needs adding. If a
design is to survive the insights of evaluation—useful as they may be—it must have a structure by which
suggested modifications can be judged. Thus some modifications will be inappropriate, but others may
have consequences elsewhere in the system that the users could not have reasonably anticipated. Top-
down, principle-led, design is much harder than bottom-up ad lib design, and it is only comparatively
recently that it has become a plausible way to design interactive systems of any complexity. This
advance is primarily because of the leverage provided by formal methods at the early stages of top-
down design. At present, much of the application of formal methods in interactive systems design is
still at the research stage and probably cannot be used very effectively for large projects. Nevertheless
the ‘motto’ of formal methods—thinking attention to detail—can most profitably be adopted in user
interface design. Formal methods is not merely pedantic description, but by expressing ideas lucidly
gives an opportunity to test those ideas on paper and, if they fail, to refine them. Without formal
methods, or at least a formal inclination, you get none of: the clear expression of ideas, the attempt to
prove ideas, the attempt to refute them, the attempt to improve on them [6]—and hence none of the
improvements.

3 Choose a style

Different applications and different available hardware (and different levels of manpower to implement
the system) impose certain constraints on the interface. There are three broad catgories of system:

1. Special purpose—

(a) industrial—e.g., aircraft or military vehicle cockpit control systems. Here special displays
(head up displays, dedicated instruments etc.) and input devices (joysticks, knobs etc.) are
developed. An important consideration is that the user is often involved in multiple tasks
possibly under extreme pressure and will not be able to handle overly-complex systems.
Generally, the relevant industry will impose strict standards.

(b) individual—e.g., to help people with special needs. Although special hardware is readily
available (micro switches, breath control devices etc.), typically the hardware and software
must be tailored to the individual. An important consideration here is that the user will
often be exhausted after ‘small’ efforts to use the system. Paradoxically, predictive systems
(that try to anticipate the user’s next action, to save him the effort of doing it) can be
counterproductive.

2. Simplified—e.g., public operated devices, such as cash-dispensers, travel enquiry booths, arcade
games and complex consumer products generally, such as video recorders, music synthesisers,
calculators and so on. An important consideration with simplified systems is that users are
generally discretionary, that is, they choose to use the system (and probably pay for it), and
will only continue to use the system if it does its job well.

3. Workstation—any application requiring a general purpose computer, typically relying on text and
hence on typewriter keyboards. Workstations now have as standard screen resolutions sufficient
for graphic effects, sound output sufficient for acceptable speech, and analogue data entry devices
(e.g., a mouse or touch screen) to supplement QWERTY keyboards. An important consideration
with workstation systems is the ‘obvious’ fact that workstations can do practically anything, and
therefore they may be doing anything. The user therefore requires additional cues as to what is
happening—cues that may not have been necessary for special purpose designs with characteristic
controls.

Workstations provide the greatest range of possibilities, indeed they may be used to prototype or
simulate interfaces from any other category without the expense of tooling up for special hardware.
Conversely, workstations may inhibit better, but more creative, design! Few musicians, for instance,
would be satisfied with a workstation style interface over a piano-style keyboard.

Within any category of system, there are four broad styles of interaction.

1. The system provides choices for the user. Here the user has little to remember, except how
to choose from among the alternatives presented. This style is therefore ideal for infrequent
or casual use. Example: menu systems, where the system provides a list of alternatives (e.g.,
destinations for a sight-seeing trip). The user can select from the alternatives in various ways: they
may be numbered; they may have buttons adjacent to them; they may be displayed on a touch-
sensitive screen. Note that the menu need not be textual, but can be composed of pictograms or
even sounds. In the special case that the user is allowed to relocate the menu components, giving
a certain sense of physical concreteness, the style is termed direct manipulation.

2. The system provides a structure for the user. Here the user is allowed more freedom than merely
selecting from alternatives, but nonetheless is ‘led through’ the interaction, with the computer
in control. The user again has little to remember. Example: form filling systems, where the
system displays boxes, each of which requires certain data.

It is very useful to distinguish between spatial and temporal structure. A temporal structure
usually manifests itself as a series of questions and answers—the computer asking the questions.
The user is very restricted, particularly if he notices an earlier mistake that has ‘misled’ the
direction of questioning. Care must be taken to permit the user to go back over earlier answers,
unless this style of interaction is employed for security reasons (e.g., what is your name? what
is your clearance? what is your password?). In contrast, a spatial structure allows the user to
provide answers in any order, and they can see all relevant questions (and their answers!) at once.
(Note that a series of spatial structures can be imposed on the user as a temporal structure.)

The computer can often use the context (e.g., prior knowledge of the user’s task, or of his previous
answers) to suggest the user’s answers. Such suggestions are termed defaults. In a temporal
structure, the user will require an ‘accept default’ button, but in a spatial structure, no special
provision for defaults is necessary—the user can simply avoid changing the default.

Figure 1 shows a typical temporal structure in the question-and-answer style. The four ques-
tions are asked in order, and no question is asked till the previous one has been answered. The
question, copies? must be asked first, since if the user answers 0, the other questions need not
be asked. Note the arbitrary abbreviation i for inches, and that each answer must be followed by
a delimiter, in this case shown as «—, but often the ASCII character return or escape.

Note that once the user has typed i <, he is not given an opportunity to change to mm. It
might have been better to ask the user to type each measurement with its own units, but this
would have been not only more tedious but would have relied on the user remembering the more
complex form of answers required.

Contrast this with Figure 2 which shows the equivalent spatial structure, in this case a so-called
dialogue box. The number of copies to be made has not yet been specified; the user can request

copies? 1 «
inches or mm? i «
width? 14
height? 7.75

Figure 1: Temporal structure: question-and-answer style

Fapersize ..

N

{ Help } {Tancel)

Figure 2: Spatial structure: form filling style

help, can cancel this paper specification, or can request the computer to proceed (by pressing
‘0OK’). Note that the fields can be filled in in any order, for example, the user can change the
units of measurement before, after or even during entering the numbers. The dialogue box is
probably best used with a keyboard (for entering the numbers) in conjunction with a pointing
device such as a mouse, however this is not necessary. For example, pressing tab, a certain key,
could move the typing position between the various fields, or alternatives. Since all data the user
enters is expected to be numeric, typing H, C or 0 can be used to select help, cancel, or OK as
appropriate. There may, of course, be other conventions for help, cancel and OK and these should
be used—mnote that abbreviations such as C for cancel are language specific, and may not work if
the system is exported to another country.

. The user provides ‘free form’ input. Here the user is assumed to be skilled in the application.
Examples: a drawing system allows the user to draw lines and curves freely on the screen; a
command-based system allows the user to type statements in some language. In both cases, the
computer will impose some syntactical structure (e.g., about how lines may join into polygons),
but in distinction to style 2, the parsing happens after the user has submitted input. Since
there are so many approaches to parsing, little specific can be said about style 3 in this chapter,
except that the designer should take advantage of known parsing algorithms (including language
processing tools such as compiler-compilers) where ever possible.

The previous example of paper-size setting is accomplished by the user typing, say, papersize
14 7.75 (assuming inches are defaulted). Note that the command can in principle be entered at
any point where a command is expected: the user does not have to wait for questions or a dialog
box to type papersize. On the other hand, the user has to remember the command name for
setting paper size (here, papersize), and the correct way to use it. Usually one command, say
? will print out all available command names, and composite commands like ?pap will print out
information on all commands starting with pap, or containing pap in their name.

An alternative way to specify paper size is to use gestural input, rather than by using symbolism
which has so far been illustrated. With a gestural interface, the user will provide input by some
analogue means, for instance by drawing a full scale rectangle the size of the required paper
(e.g., by using some suitable measuring device, like a tablet)—thus avoiding the question of units
of measurement, but however introducing potential inaccuracy (or even permitting the user to
specify non-rectangular paper!)

4. The user can program the system. A rough distinction is usually made between programming
in the system (increasing its functionality) and programming on the system (merely providing
aliases and short-cuts, accelerators). Spreadsheets are a good example of programming in;
programming on is usually provided by a macro processing scheme (and is often also available
in spreadsheets) or more simply by customisation.

Macros allow the user to define certain symbols (keystrokes or words) to expand to useful se-
quences, primarily to save typing effort, indeed, to save memorising long sequences. The advan-
tage of programming on is that it can be implemented separately, as-it-were lying between the
user’s keyboard and the underlying application; the disadvantage of programming on is that it
can interfere with the underlying application, for example by ignoring any syntactical constraints
that should be imposed. In particular, consideration must be given to the manner of handling
error messages that arise during the use of a macro—that is, not directly arising from the user’s
explicit input to the system.

Again, the designer should always take advantage of accepted styles of programming language,
and beware of the standard traps (e.g., the dangling else problem). Far too many systems have
been marred by ad hoc and incomplete languages when a subset of Pascal, Forth or LISP would
have been quite adequate.

Since the four styles of interaction represent increasing flexibility for the user at the expense of
greater load on the user’s memory, it is sensible to provide help, a means to simplify the style of
interaction temporarily. For example, in a style 3 interaction, the user may ‘be lost for words.” Pressing
a help button (preferably one permanently reserved and engraved as such on the keyboard, or ‘virtually’
displayed on the screen) could bring up a menu of choices, or if this is not possible, of documentation
that the user can browse to understand his problem.

4 Use principles

It is generally held that to use principles in user interface design is better than not using principles,
even if these principles are arbitrary. Systems are easier to use if their component parts are mutually
consistent even when their parts are unconventional—for example, the complete system should only
use one algorithm for abbreviating long names, whatever that algorithm. However, there are plenty of
approved principles to deploy (including algorithms for abbreviations) and there is rarely any need to
diverge from conventional principles.

The reader is referred to [11] for a substantial collection of principles. Here we give a very brief
list, omitting such ‘obvious’ principles as providing rapid feedback to the user’s actions. Notice how
principles are not necessarily consistent with each other in the limit: the designer has to seek resolutions
dependent on the particular circumstances. Also, in certain circumstances there are good reasons to
flaunt these principles: for example if security is an issue, it is better if the user cannot use the system at
all than be reminded of his password! Intriguingly, systems that look identical may need quite different
design principles: arcade missile games and real missile control systems being a case in point.!

4.1 Be consistent

Everything should work the same way. This is surprisingly difficult to achieve, not least because it
limits the ways in which an existing system can be improved by specific enhancements. Consistent
user interfaces avoid the severe problem of carry-over, that the user’s skills learnt on one system are
‘carried over’ onto the present system, whether appropriately or not. Carry-over happens particularly
when the user is under stress, say, after causing a serious error, and may in turn cause further errors.

Consistency applies to output: the symbols used and screen layouts should be consistent. A good
visual consistency is often called a style and can be used in a variety of situations; a style may be
explicitly designed, e.g., by a typographer.

Consistency also applies to the relation between input and output, which is the next principle:

n this comparison, a careful distinction must be made between ezcitement on the one hand and alertness on the
other.

4.2 Enforce compatibility

Input and output should be compatible, so that in principle the computer’s output could be supplied
as its own input and vice versa. For example, if the system asks for a date in a certain format (like 10
January 1989) then it should also display dates in this same format throughout.

4.3 Use confirmation

1. redundant coding—Contrary to the principle of compatibility, when the user provides input, it is
useful if the computer confirms the data incompatibly. For example, suppose the preferred date
form is 10/1/89, if the user submits 3/7/89 it is useful for the system to confirm the date as 3
July 89, in case the user thought he had entered the date March 7, 89.

2. checkpoint—ask the user whether he wishes to proceed with costly or irreversible actions. Figure
2 shows checkpoints ‘cancel” and ‘OK’ in use. Be aware that the user’s response may become au-
tomatic if he too often needs to reply ‘OK’—some other style of confirmation may be appropriate,
or (better still) make more actions reversible so that they do not need confirmation.

4.4 Be clear

Be very careful about wording. For example, “Quit without saving data: yes, no or cancel?”
is ambiguously worded. Putting the question positively (“Save data before quitting?”), although
good practice to improve clarity does not help in this case: the user might say no, thinking he did not
want to quit, but even so the computer might quit, ‘thinking’ the user did not want to save! (In this
case, it would have been better if confirmation was not a simple answer, but a command, as in “If you
really want to quit without saving data, type REALLYQUIT”.)

It is advantageous if all phrases can be configured in case they later turn out to be inappropriate,
e.g., by having a file of standard messages. This simple technique, incidentally, not only makes it easier
to export systems to foreign countries but also allows users to work with specialised terminology if
necessary (consider a stock control program used in different sorts of business).

4.5 Minimise data entry

The less the user has to enter, the less likely the user is to make mistakes. Nevertheless, errors will
still occur, and minimising data entry should not be taken so far that accidental input has devastating
consequences.

4.6 Provide for flexibility

It is hard to anticipate in what order the user will want to accomplish a task, in fact, the user may
perform the same task in different ways on different occasions. Systems should therefore not have a
fixed order for progressing through a session. Word processors are the classic example of flexibility: a
word processor allows the user to write his document in any order: starting from the beginning working
to the end, starting from headings and fleshing sections out, or even adding bits here and there in any
order.

4.7 Reduce display clutter

Put as little as possible on the screen. Do not fill the screen with lots of unrelated information (and
don’t use lots of colours—even allowing for colour blindness).

4.8 Make inertial displays

Change the screen as little as possible (the principle of display inertia), and keep regions of it effectively
constant (for example, titles). In particular, if menu selection causes side-effects (such as highlighting)
then when a menu is redisplayed it should show its last highlighting. This often gives the user a helpful
indication of what he has most recently done in that menu.

4.9 Exploit redundant information

For example, order entries in a menu alphabetically, then the user will be able to locate them faster.
Or allow users to select from menus by alternative means, by typing the entries (abbreviated or in full),
by using their key numbers, or by pointing at them.

4.10 Allow for closure

Closure is best illustrated by example: when a user goes to a cash dispenser (autoteller), they will
complete their task—reach closure—when they get their money. The user first has to push their plastic
card into the machine, type a few numbers, then get their money. At this point the user will have
reached closure, and may walk away leaving his card behind. It is therefore essential that the user is
given his card back before he has reached closure; that is, the user should be given his money as the
last step after all other details have been completed.

4.11 Provide context sensitive help

If you want to know what I mean, type help ...

There is a great deal of advice available about writing good and effective help (see the bibliography).
Briefly, make help affirmative or positive, “do this, do that” rather than negative, “avoid this, never
do that.” It also helps greatly to order actions even within sentences in exactly the order they are
required; for example, don’t write, “eject the disc after checking you have saved your data,” but write
“check you have saved your data, then eject the disc.”

Note that when writing manuals that your perspective is different from the user’s. Typically, the
user comes to a manual with a problem and wants to find a solution: that means that indexes, cross-
referencing and so on, should tell the user what things do as well as what they are called. Who, for
instance, would think of looking up rm if they wanted to delete a file?

Users often work in groups, and you may want to provide a specific mechanism so that they can
help solve each other’s problems, for instance by a simple form of email or ‘complaints’ field.

But the most useful advice is simply: make help as brief as possible (this will, of course, be easier
than writing copious material!) ... then simplify the system so that what you have written is sufficient!

4.12 Instrument

Provide means to record what the user is doing, how long it takes, what errors are being made, and so on
(with due regard for privacy of personal data). Instrumentation is very useful in identifying bottlenecks
in system usage, and may even be retained once a system has been fully released. For example, if a
system crashes or has other unusual problems, the logs may provide the designer with useful clues.

4.13 Provide undo

Users make mistakes and will frequently want to undo their actions. The computer, too, may have
bugs that cause undesirable effects. In both cases, it is helpful to be able to undo the steps that cause
the problem. In the case of computer bugs, the only general way is to keep a log of what the users
does: when the system crashes, the log can be replayed just up to the point of disaster. This may then
enable the user to recover his work by some other method, if the crash was indeed caused by his actions,
rather, than, say a power failure.

Note that many systems provide a cosmetic sort-of undo that has no real power to recover from
errors. For example: a drawing program might have a rotation command; although any rotation can
be undone by the undo command, the user can ‘undo’ any rotation merely by rotating backwards, yet
he may not be able to recover accidental deletions. Note that undo should be able to delete more than
just the most recent action: it is probable that after deleting everything the user will panic, and not
immediately try the undo command.

4.14 Be non-preemptive

It is not uncommon for dialog boxes to ask a question while obscuring the information the user needs to
answer the question. A preemptive system would require the user to answer the question now, perhaps

even to the extent of not allowing the user to move the dialog box to reveal the necessary information.
A word processor may have a ‘check spelling’ feature, and as it is running—helping the user locate
spelling mistakes—it should not preempt the user, so stopping him making any other changes he now
sees to be appropriate as he fixes spellings. Here preemption is due to the computer only allowing one
task (spelling checking), but the user trying to do two (spelling and editing). Preemption may also
occur when the user has explicitly embarked on several tasks, say, drawing a picture and printing the
previous picture. If the printer runs out of paper, the system can warn the user, but need not preempt
the current drawing to tell him.

4.15 Allow interruption

Conversely from §4.14, if it is a good principle that the system never preempts the user, it is a good
principle that the user be able to preempt the system. The system may embark on some long operation,
but the user now wants to do something else. The user should be able to interrupt the system at any
time, and to resume the interrupted activity when appropriate.

Note that good windowing systems simplify the implementation of non-preemption and interrup-
tion principles.

4.16 Be modeless (or low-mode!)

Each mode is a different way of interpreting the same action. The keystroke R may mean run, replace,
repeat, rotate, or it may be just the letter R—and then it may mean insert the letterR or overwrite with
the letter R. The more meanings any action has the more likely the user is to misinterpret it. Modes
of course allow many actions to be made available from a limited symbol set (e.g., the QWERTY
keyboard), but great care should be taken that a frequently used symbol in one mode is not over-loaded
as a dangerous symbol in another mode. It is generally best if non-standard modes are brief, e.g., only
active for a short period (e.g., for one keystroke).

Note that different windows strictly represent different modes; the spatial separation of windows is
a great aid reducing mode errors, but it is still a frequent error to ‘type into one window while looking
at another,” that is, to enter data in the wrong mode.

4.17 WYSIWYG (what you see is what you get)

Many systems, particularly desk top publishing and direct manipulation systems display a picture
representing something real, or potentially printable. At its simplest, WYSIWYG requires that the
screen display is an accurate rendition of what will be printed. This is harder than it seems, for
instance because of differing resolutions (say, 100 dots per inch on a screen against 300 on a printer),
because of different colour schemes (additive on the screen, subtractive on a printer), because of slight
differences in font metrics—people being very sensitive to typographical issues.? Note that the user
may make implicit judgements, say about the alignment of text in certain fonts on the screen, which
he expects to work just as well on the printer. More strictly, however, WYSIWYG requires that what
the user sees on the screen is just what he has, no more and no less. In a word processor, for instance,
this would have consequences for the handling of blanks (tabs, newlines and spaces) since they cannot
be told apart, all being displayed as nothing. See Figure 3, which shows grey regions that the user has
got but cannot see—a common design error that can easily be fixed.

A direct manipulation system adhering to WYSIWYG would not use accelerators, i.e., keyboard
equivalents of certain actions with the mouse on visible objects. The accelerators are not visible (in fact,
the entire keyboard is visible, so no particular key is visible!)—an advantage of direct manipulation,
visibility of possible operations, is lost with keyboard accelerators.

Simple hand-held calculators provide another example of failed WYSIWYG. The display shows 84,
say. But what you see does not tell you what you've got: the calculator may have ‘got,” 84 itself or 84+
or 84- or 84= or ..., and the effect of the next keypress is not determined.

2E.g., Figure 3 had to be edited and printed four times to align the gray regions, even though the alignment appeared
correct as displayed on screen!

Ty spanes typed here

Tab typed here

. ey P

v v b v e

- - R LA LR AR

- T Y v S
" L S
- - v v v e
i e Py S - o L - PR g h o - s B E R
SRS Sl il ey A Y v e

A TS ST A T s

A T e

A - v - - - 'x e

- Pl B 3 N R e R 3 P T N

- RS i Sy I i e
e o A A

EEr

- EEr - rr g
- - - By By R

' - - - s
oy - R ot - e oy T .

g Gy R Rr g e

FacniEreraly

-
-

Eeturns byped here

ot o,
A e A othing typed bere

Grey [which iz ot displayed] indicates where the user may type

Figure 3: Incompatibilities with WYSIWYG

4.18 Minimise user’s memory load

Don’t assume that the user can remember how to use the system ... the user may anyway be an
infrequent user of the system. Always provide some form of help, adopting whatever standard is used
in the rest of the user’s environment (e.g., hitting the ? key).

The calculator example above (§4.17) shows that non-WYSIWYG displays rely heavily on the user’s
memory to know what keystrokes have gone before.

Use mnemonics—names—for things in preference to numbers, and chose a consistent way of naming
things (including whether capitalisation is significant). There is no excuse to make the user remember
‘magic numbers’ or numeric IDs. (A macro processor can help sanitise simple interfaces by permitting
names to be defined as numbers or other un-mnemonic symbols.)

4.19 Provide a sense of progress

Except for skilled users (who were anyway once unskilled), users require ‘encouragement’ that they are
getting closer to achieving their goals. Show how many pages remain to be printed. Show how many
words have been typed. Show how far the spelling checker has got through the report. Show how long
rendering a car body has yet to take. In some cases absolute measures will be required (e.g., word
counts, minutes) in others a percentage is sufficient. It is, of course, possible to provide both! Figure 4
shows a simple per cent completion bar, shown both graphically and digitally.

Such indicators also help the user when (unfortunately!) system limits are reached. Without suitable
measures, the user can only guess how to reduce memory loads, but with a memory-remaining indicator,
the user has a good idea how effective his ‘compaction’ is, and also at what stage it is not worth trying
to enter more work.

4.20 Commensurate effort

Every user action causes a response from the computer, some of which is visible, some of which is (for
the moment) internal. The commensurate effort requires that the user’s effort in getting the computer

62% done
15 minutes to go

0% 100%

Figure 4: Per cent completion indicator

to do something should be commensurate (roughly, in proportion) to the work the computer does. In
particular, it should not be possible to destroy information appreciably faster than the user can enter
it.

Here is an example that shows using principles creatively improves interfaces. A desk top publishing
program permits the user to change the point size of his text. Typically this can be done on letters,
words or larger sections. Consider changing the type size of a large section, e.g., the entire document.
The commands available may permit the user to set the point size to 10, 11, 12 etc. But, if so, then other
changes to point size (e.g., in subscripts) within the document will be lost. This is not commensurate
effort—information created by many commands (for each of the previous size changes) is lost. Instead,
the design should cater for the user to increase or decrease the point size (say by %1 point): these
actions, incidentally, are reversible.

4.21 Ask, “Can a computer use it?”

Designing systems for fickle people to use is hard! They change their minds, and probably never really
know what they want until after the designer has implemented something else. A useful and rigorous test
of an interactive system is to try it not on people, but instead on a computer (theoretically or actually).
Thus, the user interface, in order to be usable by a computer, must not rely on ‘insight’ or unrevealed
knowledge. Any questions asked the user must be computable—if the answer is in principle known by
the system (such as the date, or a part number), then it should be accessible for the computer ‘user’ by
some well-defined mechanism.? (If we follow a non-procedural programming paradigm, we might further
want every ‘user’ response to be in principle computable from the task what is visible on the current
screen alone, rather than in addition from information held in the user’s memory of past screens.)

A word processor, for instance, must not conceal information that it ‘expects’ its human user to
know (e.g., whether a certain region of blank screen is spaces or ‘really’ empty), for a computer ‘user’
certainly will not. Of course, a computer could know enough to use any system merely by duplicating
that system’s program: but then that would be like expecting the user to know the system’s program
by heart, an unlikely situation (except for the designer). If the system has reached some limit (e.g.,
the user has typed 6 characters into a 6 character code field), then it should indicate that the limit has
been reached. How is the user supposed to know? Would you want to program in all such little details
into the test computer program?

The ‘Can a computer use it? Test’ helps remind the designer that his task is not just to design an in-
teractive computer system, but he must also ‘program’ the user—provide good enough documentation—
so that the system can be used correctly under all circumstances.

4.22 Be wary of natural language input

Natural language has the impression of being easy to use, and in some sense it is. Unfortunately parsing
natural language is extremely costly, slow, and except in heavily circumscribed applications subject to
ambiguities. Of course the system can always ask the user to clarify which of several meanings he had
in mind (a form of confirmation), but too often the apparently unlimited scope of natural language
will lead the user to impute impossible skills to the computer. Nevertheless, one should not underrate
trivial language processing, as in many adventure games (as in, ‘pick up the red ball’), or basically

3Thus questions must not be preemptive—for if so, then there is no mechanism.

10

‘deceptive’ language processing, where the computer merely looks for keywords, simply ignoring words
not in its vocabulary.

4.23 Think of wider issues

Concessions will generally have to be made for international markets (e.g., for date formats and for
the language used for any natural language text) where appropriate. Thus standard chess notation,
representing Knights by Kt or N (which should be made aliases—alternative names for the same thing—
in an interactive system), is not the accepted international notation: so-called figurine notation is
preferred, where Knights become # and are then unmistakable in any language—and can also be
recognised by people unable to read. So, make full use of clear symbols (icons) where possible—though
note that the editing and layout of symbols is not so easy as text (e.g., there is no alphabetic order).

A surprising number of users are handicapped in one way or another (many of us cannot add up
numbers accurately; many men are colour blind; many users cannot type very well; many users are doing
more than just using the computer—dealing with clients) and providing suitable features enhances the
system generally.

Initially every user of a system is a new user, so provide features to support new users. A recom-
mended way to do this is to provide minimal systems—systems that are syntactically complete but
semantically restricted. Thus menus will show the user what he can do on a full system, but only safe
features are available on the minimal system. The user can use a minimal system quite safely, but is
also naturally exposed to the range of features of the full system. Menu entries can be ‘greyed-out’
if they are inactive, but in general it is better to let the user start advanced features with a warning
that they are disabled but would have done such-and-such (or perhaps, ask for confirmation: the user
may want to learn by exercising on a disabled feature, or may really want to use an ‘advanced’ feature
though still a new user).

4.24 Allow for catastrophe!

The computer will someday crash, there may be a power failure, a virus or some hardware failure.
Therefore build in mechanisms so that the user can recover ‘lost’ work: keep logs of the user’s activities
so that they can be replayed on another working system; don’t allow the user to work for a long
time without making backups of the current session. Following the other principles in this list will
undoubtedly bring ‘percentage’ improvements to any interface; following the final principle may save the
user weeks’ worth of work—perhaps his company as well.

5 Gueps: dual principles

Many of the design principles listed above have an uneasy status. It is not quite clear what they mean for
any particular design, and yet they are undoubtedly ‘true.” Some principles relate to the complexities
of the real world (e.g., design for international markets), but most concern the inter-relatedness of
components of the user interface. As such, they may be formalised and their application in a particular
design reasoned through.

In any contractual situation or where a design team of several people is involved, it is essential
to identify what such principles really mean. Generative user-engineering principles, gueps, are dual
principles that have both formal and informal forms. A principle such as WYSIWYG can be expressed as
a theorem of the system specification, and can also be expressed colloquially in a form suitable for a user
to understand—WYSIWYG itself is practically a colloquial term now! As a theorem it can be shown
to hold (or not) as the case may be, or to interact or conflict (or not) with other formalised principles.
The advantages that accrue are precisely those of formal methods: the designer knows exactly what is
being designed and what its properties are, and furthermore those properties are (presumably) relevant
to the user. In particular, the informal expression of the principles can be adopted in the manuals or
other user-training material (including on-line help) as ‘golden rules’ about how the system behaves.

Figure 5 indicates the idea: the design principles are first agreed and then expressed as dual prin-
ciples, both for the software engineering of the computer system design, and for the ‘psychological
engineering’ of all the other materials (training courses, manuals, etc.) that are part of the product.
The software engineering and pyschological engineering proceed more-or-less in step (though obviously
some revisions may be forced from either side). The end results are respectively a computer program,

11

Design

Principles
Software “Psychological
Engineering Engineering
“User Programs’
Computer User Models and
Programs Documentation
Users

Figure 5: Top down design with dual principles

adhering to the principles and a ‘user program’—a manual, for instance—adhering to the same princi-
ples. The system and its manual therefore agree unusually closely, especially in the nature of limitations,
boundary conditions and ‘bugs.’ In contrast, a conventional design method would have the manual be-
ing written by professional documentation writers after the system was complete, probably at the last
possible moment (to avoid the cost of revising the manual as the system undergoes its own revisions).
This means that insights gained in the ‘psychological engineering’ of composing good documentation
come too late and have to be ignored.
More about gueps can be found in [13]. An application of them is given below in §7.

5.1 Exploit programming language principles

The first problem with gueps is thinking of them! There are two approaches: invent your own, which
is hard, or steal some. A fertile area for stealing them from is programming language design, which we
now consider.

Programming languages such as Pascal have come under constructive criticism from denotational
semantics. The mathematical way of looking at programming languages means that some things are
equally easy to say mathematically, but the language for one reason or another has variations or lim-
itations. Thus, Pascal can only make functions out of commands (so-called procedures) and out of
expressions (its so-called functions). But Pascal involves other constructs, such as declarations, and
once it has been ‘mathematicised,’ there is no reason in principle not to have functions of declarations—
classes, in other words. This is the Principle of Abstraction: that meaningful syntactic categories
(expressions, commands, etc.) can be abstracted, made into procedures. Related programming language
design principles are the Principle of Correspondence, the Principle of Qualification, the Prin-
ciple of Orthogonality and the Principle of Data-Type Completeness; see [12] for examples.
Such principles can be used in user interface design, particularly when the user interface provides a rich
variety of features.

The Principle of Correspondence is perhaps the easiest of these principles to apply to interactive
systems design; however its application is first illustrated by an example from Pascal. In Pascal there
is a semantic correspondence between variable declarations and formal parameter declarations. Thus
the two pieces of Pascal code in Table 1 correspond exactly: both fragments bind the name x to new
storage, initialise it to 3, and invoke write (representing the arbitrary body of the block).

12

var x: integer; | procedure p(x: integer);
begin begin
x := 3; write(x)
write(x) | end;
end begin
p(3
end

Table 1: Pascal declaration correspondence

miniFinder Finder
new file
open file open file
open directory open directory
view directory as text view directory as text
scroll directory scroll directory
— view directory as icons
view directory alphabetically view directory alphabetically

— view directory by date
go to any parent directory
— rename existing file

— change directory of existing file

— copy file

eject disc eject disc

— rename disc

— use menu bar, run other applications etc.
— get information on files

find file within directory from first character?
— find file anywhere from full name

Table 2: miniFinder/Finder correspondences

In general, the correspondence for any such declarations is exact, assuming only that p, the arbitrary
name of the procedure, is not otherwise bound. The correspondence could be ‘tidied up,” by permitting
variables to be initialised when declared (e.g., var x := 3 integer. Furthermore, the correspondence
has not exhausted all declaration and formal parameter mechanisms, and in Pascal there are mechanisms
that do not correspond. Thus, var parameters have no corresponding declarative mechanism (though
it has semantics similar to with declarations), and const definitions have no corresponding parameter
mechanism. Of course, the revised ISO Pascal standard has addressed some of these issues, for instance,
providing constant parameter forms (but has not permitted constant definitions with expressions, which
is immediately suggested by the correspondence of being able to pass constant expressions as actual
parameters).

Now consider a user interface such as exhibited by the Macintosh Finder and miniFinder. The
Finder is the ‘operating system level’ of the Macintosh, allowing users to find and open files; the
miniFinder is an alternative mechanism that allows users to find and open files when they are running
an application. Clearly these two schemes correspond—the correspondence is, however, slight, and
could easily be completed (‘closed’). Table 2 shows the extent of the correspondence, and some of the
missing possibilities.

Overall, then, adopting programming language principles not only inherits a wealth of powerful
research into expressiveness and consistency, but encourages a more systematic interface design.

4Only when opening an existing file, not when creating or saving a file, when typing changes that file’s name.

13

6 Use tools

So far, the discussion has been conceptual. We now briefly review practical programming and evaluation
tools.

6.1 Programming tools

A user interface, say, for a database requires: basic input/output (graphics, mouse and keyboard event
handling), ‘design’ (what should the screens look like?), semantics (what should it do?), data (what does
it do it with?) and integration (how does it work with other systems). Often a ‘minor’ change in the
appearance at the user interface level will require simultaneous changes at all these levels. Obviously
this means that you should try to avoid changes (‘get it right first time,” perhaps by adhering closely
to standards), or use a programming environment where there is little overhead moving between the
levels.

Object oriented programming, particularly in Smalltalk which includes powerful graphics primitives
and standard procedures for interaction techniques (such as menus), is an ideal approach. Unless the
development is one-off, the disadvantage of Smalltalk is that it requires considerable computing resources
which will almost certainly mean that the application has to be recoded in a conventional programming
environment once it has been finalised. But this is a very minor cost, given the flexibility available and
the ease of getting the first implementation to work well-enough for trials. Object oriented programming
for user interfaces has the very significant advantage (for producing quality interfaces) that most user
interface features correspond to specific fragments of program—objects, in fact. Thus improving the
program tends to improve the interface, a relation that does not obtain in other programming paradigms.

HyperCard is a simple programmable database with simple bit-mapped graphics and is ideal for
developing experimental user interfaces. The major contribution of HyperCard to user interface de-
sign is the ease of moving between the various levels of implementation. Furthermore, HyperCard is
extensible and can be augmented—programmed in—with ‘external commands’ written in conventional
programming languages such as Pascal. Unlike Smalltalk, HyperCard runs well on cheap hardware (Ap-
ple Macintoshes) and has inspired a number of imitations on other computers. For some applications
a HyperCard system will be quite adequate as a final system, though error handling is often tricky, if
not actually impossible in some cases. Note that in general the chosen programming system’s exception
handling mechanisms can have a significant effect on the style and quality of the final interface.

There are a number of interface design tools, called UIMS (User Interface Management Systems).
These tend to impose a specific style of interaction on applications: they are not equally suitable for
all jobs. It will help if the UIMS generates source code (e.g., in Pascal), in case subtle changes need to
be made by hand, though this step may compromise maintenance at a later date.

The distinction between UIMS and normal programming support environments is becoming eroded
as programming environments become more sophisticated. Thus systems such as interface libraries,
MacApp, X/windows, even spreadsheets and database systems, provide many features overlapping with
UIMS. Some text editors (e.g., EMACS) are programmable and can be extended almost indefinitely,
especially useful to prototype text processing applications. A good UIMS, however, should not only
provide an environment for rapid prototyping, it should also provide some analysis of the user interface
(can the user get trapped? does every sub-system have the same exit command? how many commands
are needed to get from here to there?) and be able to generate code that can be incorporated into the
rest of the application. (Or wvice versa: maybe the application can be incorporated into the UIMS code.)

At all levels of design it should go without saying that appropriate programming tools be employed:
parser generators, lexical analyers, etc. Do not underestimate the power of those tools, pencil and
paper—both for thinking and for prototyping. Users can often help assess a very prototype design
shown them just using hand-drawn illustrations and hypothetical questions, “You did that, now the
computer will show something like this, and ask you to do this.”

6.2 Assess

Most users know more about what they are doing than designers (though designers may have useful
insights). Only users know why they are puzzled, only users know what they wanted to do, only users
know what they thought was happening.

A very simple technique, the think-aloud method, is a powerful and cheap way of evaluating user
interfaces. Put simply, the think-aloud method is to get a designer to sit down with a user who is

14

working with the system in question and to encourage the user to think aloud about what he is doing.
The user is encouraged to say whatever comes into his head as he tries to use the system.

The advantage of sitting with the user and encouraging him to think aloud as he works is that many
things would otherwise be quickly forgotten. Giving the user a questionnaire (a standard technique,
but requiring careful design and administration) afterwards may be too late. In fact a new user may
not know whether he is making mistakes, but the watchful designer can make a note of any problems.

A few simple rules for the think-aloud method need to be observed:

e The user must be encouraged to feel at ease thinking aloud. The designer should make it quite
clear that this is a test of the system, and not a test of the user! Thus every problem the user has
is valuable to hear about.

e The think-aloud method creates an artificial situation: the designer has to be there, but he must
not give special help to the user even if he is asked for it. This may seem rude, and the designer
should explain and apologise in advance. The designer should explain that he needs to see how
the user sorts out problems for himself. Nevertheless there will be times when the designer needs
to intervene and provide hints: this will be when the difficulty has been noted, and it is apparent
that the next design can fix the problem—there is no point holding the user up any further.

e [t is useful to remember that being helpful is a temptation to be avoided—especially because you
as designer know far more about the system! The more help that is given, the less useful the
think-aloud work will be about the current design being tested.

Think-aloud can be used not only for helping debug the computer system, but can also help with
the design of documentation, and to help discover discrepancies between the documentation structure
and the way people use the system to perform their tasks.

Think-aloud is so effective in leading to design improvements that an n person design team will often
better split up as an n — 1 member team, with the ‘lost’ person doing something else. When the system
is almost ready, the ‘lost’ designer returns to be the ‘user’ for think-aloud debugging. Because he has
not seen the system, and has not been party to the reasons—or excuses—why the system has turned out
the way it has, he will have startlingly good insights into the user interface design! The end result will
be far better, and can be done with fewer man-month’s work. (Clearly a designer will tend to generate
different sorts of insights about the system than a more typical user. They will still be interesting but
may be more technically oriented.)

6.3 The Wizard of Oz

Instead of implementing a complete system, for some purposes—particularly during development—it
is sufficient to pretend to implement a full system. A human, called the wizard, monitors the user’s
interaction and intevenes as necessary so that the user sees a more-or-less fully developed system. Figure
6 shows this diagramatically. A simple application of the wizard is to convert prototype error messages
(such as Error!) into something more relevant to the user’s task (such as You can only print one
master copy). Presumably, the human wizard knows that the user is trying to print a master copy,
but the prototype system does not yet recognise the context. When the wizard’s interventions are
examined, various ways of enhancing the interface become apparent. A very powerful way to use the
Wizard of Oz technique is to simply place untrained users in front of a system and tell them to use it, to
print invoices or whatever. Here the users have no preconceptions about the syntax or vocabulary, and
the wizard must convert whatever the users generate into valid commands. If many users use similar
forms, then these may be candidates for adoption in the final system.

Usually, the wizard should see exactly what the user sees on his screen, plus any other useful
information. Whenever errors occur, and in certain other situations, the wizard can take control and
provide input directly. The wizard will also need to be able to edit unsuitable output from the system
before the user sees it. The wizard will probably need to perform experiments (e.g., to find a file the
user seems to be referring to) without the user being aware.

Note that the Wizard of Oz is not only a powerful development technique, but in suitable form can
also be retained in a final system to enable skilled users to help their colleagues. (Imagine that one user
has got stuck; he requests help from another user; that user becomes a wizard for the first and helps
him out.)

15

nser

Figure 6: The Wizard of Oz

7 A simple, effective design method

Given the wide range of environments and range of user skills for which systems may have to be
developed, it might appear that there would be a correspondingly large range of design methods. It is
however possible to summarise a powerful method for user interface design that applies to the entire
range of human-computer interfaces, from programming language designs (not very interactive; user
relaxed and alert) to airplane control (real-time and highly interactive; user stressed and fatigued).
The method can be summed up as Utter Honesty plus Occam’s Razor,® and is worked out as follows:

1. Document the intended system from the user’s point of view. The more detailed the documenta-
tion the better. If you can’t be bothered to document something, take that as an indication that
perhaps the feature is not worth having anyway.

2. Describe all known bugs, provisos, limitations, side-effects etc. If there are known ways around
the bugs (‘work-arounds’), write them down too (then ask yourself why the program cannot do
them for the user).

3. Improve the system by simplifying the documentation. In particular, you will improve the system
by (truthfully) being able to remove the bug warnings that you entered into the documentation
under Rule 2.

In practice, these steps will be iterated and interleaved with implementation and developing produc-
tion documentation. It is possible to compromise the method by designing only the core of the system
in the way suggested: this results in a minimal manual. Minimal manuals, which correctly describe
a subset of the system, have been found to be very effective for user training, but to be effective they
require a way to ‘block off’ the user from the advanced features that are not described in the minimal
manual.

For example, one word processor manual warns the user that it is not possible to delete more than
100 paragraphs in one go. But to follow Rule 3, the system should now be changed so that this bug
warning is no longer necessary. Maybe the system was written in Pascal with an array of 100 elements

5For an essay on utter honesty see [3].

16

... but surely the program could be changed so that if the user tried to delete more than 100 paragraphs,
the program iterated, deleting no more than 100 paragraphs per iteration. This should be easy enough
to implement, and doing so would simplify the manual, and improve the system.

Simple, complete documentation is a good thing, and making it so improves the system. In the
absence of any agreed ways of evaluating success with design, the length of the documentation is a good
indicator. Reduce the length of documentation, not by glossing bug warnings, but by fixing bugs in the
implementation.

This three-step approach is of course facilitated by gueps (§5), particularly because of the active
role of developing documentation enabled by gueps: improvements are led by the documentation, not
by the computer implementaton.

8 An exercise

As an exercise (whether real or imagined) consider designing a system to play chess. Although this
example has been deliberately kept simple, note:

o How many alternative design options are available. Tradeoffs are not very obvious ‘in the abstract,’
and almost certainly a prototype system must be built and assessed.

e How many features that are useful for design and evaluation of the system can also form useful
features for the user; notice, too, that a ‘simple’ self-contained application like chess throws up
very many creative possibilities, and that the designer has to make careful tradeoffs.

e How very soon a very detailed knowledge of the application (in this case chess) is essential to
implement a satisfactory system. (Indeed, too many chess programs currently available do not
correctly implement the basic rules of chess!)

Chess is a well-known application, and you can assume that users will know how to play the game
(but do you want to provide tuition features?) Implementing the chess ‘engine’ itself is relatively
straight-forward, indeed you may have access to a suitable program whose interface can be modified
(either by reprogramming or by filtering the chess program’s input and output).

Chess can of course be played on a board with real pieces—a Category 2 interface (§3)—but more
usually you will implement a chess program on a workstation, possibly making use of graphics to provide
a display of the board in photographic realism (with perspective and lighting effects?) or in symbolic
form (as used in conventional printed chess boards). There are clearly a wide range of choices for the
representation of the board; and there is a complex tradeoff between realism and obtaining an adequate
speed. There is a subtle tradeoff that the more effort put into the interface, the more the system will
exploit idiosyncracies of the hardware it is running on, yet the more the designer may wish to amortise
his design effort by making the system portable across many different sorts of hardware.

If the user has few choices (perhaps only one), the system may highlight alternatives for him. In
fact, the user may want the computer to make the best move for him, that is, to accept the default
offered.

There are many alternatives for input styles. Direct manipulation is feasible: the user simply
points at a piece and moves it to its destination square. All moves apart from promoting pawns (the
user will normally promote to a queen, but need not do so) are strauight forwardly handled by direct
manipulation.

Chess has various symbolic notations which suggest alternatives to direct manipulation. Instead of
physically moving a pawn, the user might type d4—meaning move a piece (e.g., the pawn previously on
d2) to square d4. The standard notation provides ample scope for defaults. Command completion
is a technique where the computer, anticipating what else the user will input, completes the user’s
command. For example, if the user types a and the only piece he can move on the a file is a pawn
at a3, the computer could complete the command thus: a3-a4, saving the user typing four characters
(or beep if that piece could not be moved). Command completion can be annoying (because it doesn’t
always happen), so it is usual to provide a completion button: command completion then occurs only
when this button is pressed—it amounts to accepting a default given a user-specified prefix.

An equal opportunity interface would allow the user to move either by direct manipulation or by
standard notation. If the user moves a piece by pointing and dragging, then the computer generates the
symbolic form; conversely, if the user types the symbolic form, the compter moves the piece. It will be

17

neat to permit parts of moves to be made either way; thus, typing a4 makes the piece of square a4 flash
(just as it would if it had been selected by pointing); alternatively, selecting a piece by pointing at it,
then typing ab moves the selected piece to square ab. In short, equal opportunity removes distinctions
between input (e.g., the typed commands) and output (the changes to the board). More generally,
equal opportunity suggests allowing the user and computer to exchange sides (viewing the computer’s
moves as its output responding to the user’s moves as its input), anyway a useful feature to consider
for a chess program.

An advantage of standard chess notation, and written notations in general, is that a log can be kept
of the interaction for perusal later. Obviously in chess, a chess player is probably interested in his choice
of moves that led to a certain outcome—but the designer is also interested in the log (especially if it is
annotated with times and errors) to see how the user interface might be improved. The user, too, will
want to annotate the log, e.g., with insights about the position, or alternative moves considered—a point
confirming the view that designer tools make good user interface features for users. On a workstation
in may be desirable to show the complete log of the game at all times; since this may be too large to
fit, there will need to be some mechanism to scroll it (to move it vertically).

People often make mistakes, and although it is strictly illegal in chess, there are cases (e.g., solving
set problems) where the user will want to try out moves ‘to see what happens’ and if the outcome is
unwanted to undo his previous move. In general, the user should be able to undo moves right back to
the start of a game, and indeed to redo undone moves in case he undoes too far back.

Chess is often played under time constraints. The system should display a time to completion
indicator. In chess this need only show total time remaining, but in other applications it is more useful
to show time remaining before the user next can reply, sometimes as a per cent done indicator, as
shown in Figure 4. (In some games, players may be required to move within a certain agreed time
per move.) It is interesting that on time-shared computers that time to completion can be estimated
accurately merely by being conservative: any excess time can be spent on other tasks. The user benefits
because the time to completion is reliable.

As in many applications, the user may have to suspend a game (e.g., while he goes for a cup of
tea); the computer may have to be switched off or the session terminated by logging out. In all cases,
then, the computer should provide a way of saving and restoring games. In general, a player may
want to have more than one game in progress, so there should be a way of identifying suspended
games for later recall. (This is analogous to, say, word processing where a user may be typing several
documents, ‘suspended’ documents being called files, identified by name.) It is good practice to provide
an integrated way to save games on alternative media, in case of hardware faults rendering the system
inoperable. In particular, hardcopy is usually desirable and in the last resort the user can always retype
a game by hand—a requirement which in turn requires the user to be able to specify the computer’s
moves.

Chess provides an obvious application of the use of the Wizard of Oz technique. Instead of playing
the computer, the computer merely acts as an intermediary for another human player (perhaps hidden
in another room, so that the actual user does not know the difference). The user can be his ‘own’
wizard if the system allows players to change sides!

Chess is a good vehicle for experimenting with the use of speech and sound, to diagnose user errors
(illegal moves) and to announce moves, mate and so on. An interesting design principle would be,
“a game can (in principle) be played with your eyes shut,” meaning that the sounds provide enough
information for the player to know exactly what the board position is. Blind or blindfold chess players
might enjoy this, but most players would certainly benefit from the redundant output confirming
what they can see happen. (If the computer makes moves using ‘direct manipulation,” speech would
disambiguate similar moves such as a bishop or pawn taking a piece.)

It is possible that users could be taught playing strategies by viewing, for example, end games
animated at high speed. Equally designers could replay interactions at high speed to identify salient
features of interaction. Colour (or gray level) could be used very effectively for indicating certain sorts
of positions (e.g., forks, the ‘square of the pawn,” or the combined force threatening a particular square).

Unusually for such a simple application, chess also provides interesting possibilities for programming.
A user may want to play the Sicilian or other book opening, or castle, or to chase the black king into the
corner. More interesting possibilities are to change the rules (e.g., to play Scotch chess) or to introduce
pieces that move differently.

There are many formal interface design principles applicable to the chess application; here we list a
few that are readily formalised and also expressed colloquially as ‘golden rules.” Some principles seem

18

obvious—but consider how similar rules are flaunted in many interactive applications, such as word
processors or spreadsheets.

1.

10.
11.

12.

13.

The system must have levels: each level selecting a different set of laws of its behaviour. One
level certainly has to restrict behaviour to FIDE tournament rules,® another level allows setting
up of arbitrary positions, another level allows imposing handicaps (e.g., removing a queen). And
SO on.

Although the user can change levels at will, it is reasonable to impose laws about level-changing.
Thus it should not be possible to set the level to tournament rules after ‘cheating’ by operating
at a different level! Nevertheless, the user may want a level so that the system acts as if at the
tournament level.

All errors are notified by a beep and by an explanatory message on the screen. The message
disappears when the cause of the error is rectified.

A distinction is made between preemptive and non-preemptive errors/warnings: at some playing
levels, all errors must be preemptive (to stop cheating); at others, some errors (e.g., that a player
is in check) may be because the user is constructing a position, further pieces have yet to be
placed.

The system displays the complete state. That is, it must display the board, all pieces (in their
proper places and colours), indicate whether castling and check have occurred for each side, time
remaining for each player, move number, moves since a piece has been taken, repetition count
etc. If games can be suspended, then their names (or other unique identification) must also be
displayed.

A saved game saves all the state.

Every state must be reachable (at the appropriate playing level). Thus the user must be able to
set up any position, including specifying previous castling and checks.

Undoing a move always causes the computer to take back the corresponding move; redoing a move
causes the computer to replay the original move (and not some alternative). Thus undo-redo are
inverse operators.

Defaults (command completion) are only suggested when there is exactly one move. (Though
other playing levels may provide ‘suggestions’ rather than defaults.)

Abbreviated moves (e.g., d4 or Nd4 instead of Nb2xd4) are only accepted when unambiguous.

Since users make mistakes, and when the playing level permits it, there should be a way to delete
typing mistakes. Typically, when the user hits DEL, the previous keystroke is deleted. The relevant
principle, therefore, is that the system should revert to exactly the state it was in before that key
was pressed. (Thus, any command completion should be taken back; any visual feedback on the
board part way through a move showing the selected piece should revert.) A second principle
(at the appropriate playing level, if any) is that there is no limit on the number of DELs that can
be typed ... even deleting back through previous moves. (Note: DEL acts at an interface level,
undoing actions such as keystrokes, whereas undo acts at an application level, undoing actions
such as moves.)

Whenever there is a delay (e.g., the computer is considering its move), the screen should show a
suitable indication that something is happening. Typically, the cursor will change to a ‘watch’ or
‘hour glass’ symbol. This wait symbol is a special case of the percent done indicator and can be
used more generally.

If the log is displayed and scrollable, then no changes occur to undisplayed parts of the log. Thus,
when either player makes a move, the log must scroll to the appropriate position (presumably the
end, unless this move is an undo or redo of earlier moves). This is a special case of the rule: when
things change, the user can see them change.

6‘FIDE rules’—you need to know what these are before implementing a chess program!

19

9 Summary

The user interface is often left till last, as obviously (?) the ‘real,” underlying, part of the system
must be implemented first. The user interface tends, then, to be very much an afterthought (often a
development from the system debugger!) and the opportunities for creativity within the constraints of
top-down design are lost. User interface design is no less of a challenge than programming the intricate
algorithms of the application, indeed, it is more of a challenge because of the uncertainties of the user’s
needs and behaviour. It deserves to be designed in step with the rest of the system; the designs of the
underlying application and interface mutually suggesting improvements.

This chapter raised many of the salient issues in user interface design and suggested various ap-
proaches to the effective design of interactive systems. It has not covered psychological techniques, for
instance, to find out what users really do or want, or how they really go about using computer systems
when nobody is watching them. Instead it has promoted principle-led design, and allowed that even
with the best intentions bugs arise, and these must be acknowledged, and their acknowledgement can
lead to improvements in the overall system design.

References

[1] Apple, Human Interface Guidelines: The Apple Desktop Interface, Addison-Wesley, 1987.
> Proprietary guidelines for developers of Macintosh applications; much more restricted, then, than
[11], but collectively impose a distinctive and effective style. The emphasis is on direct manipulation
interfaces.

[2] R. W. Bailey, Human performance engineering: A guide for system designers, Prentice-Hall, 1982.
> Practically all the psychology and ergonomic information that a designer should be aware of.

[3] R.P. Feynman, Cargo Cult Science, in Surely Your’re Joking, Mr. Feynman! Bantam Books, 1985.
B> The final chapter of this brilliant book is an appeal to do science honestly. It seems to me that a
lot of computer science, particularly user interface design, would be the better for honest standards.

[4] M. D. Harrison & H. W. Thimbleby, Formal Methods in Human Computer Interaction, Cambridge
University Press, 1990. >Summarises recent research in formal aspects of HCI, in particular bring-

ing software engineering techniques to bear on the HCI design process. Also discusses prototyping
and UIMS, etc.

[5] M. Helander, editor, Handbook of Human-Computer Interaction, North-Holland, 1988. >A mas-
siwe guidebook to human factors (psychological/ergonomic) engineering in all aspects of user in-
terface design; summarises both research and recommendations. Unfortunately does mot discuss
implementation issues.

[6] I. Lakatos, Proofs and Refutations, Cambridge University Press, 1976. >A play exploring and
developing the creative side of mathematical proof; relevant here for its implications on the creative
application of formal methods in ‘even’ user interface design.

[7] D. Levy, Computer Chess Compendium, Batsford, 1988. > A collection of computer chess articles,
ranging from the classic Shannon and Turing papers on computer chess, through the de Groot,
Chase and Simon psychological studies of skill in chess. Alan Turing mentions paper simulation to
help design chess machines; but the only comment about user interfaces as such relates to checking
for illegal moves—and is dated 1958, when punched cards were the state-of-the-art user interface!

[8] B. Myers, Creating User Interfaces by Demonstration, Academic Press, 1988. >4 useful discussion
of UIMS, particularly concentrating on the author’s system, Peridot. Peridot enables interfaces to
be built largely by ‘demonstration.’

[9] W. M. Newman, Designing Integrated Systems for the Office Environment McGraw-Hill Interna-
tional, 1986. >Complements [10] with very good descriptions of many office systems, including
networks, graphics, integrated systems.

[10] B. Shneiderman, Designing the User Interface, Addison-Wesley, 1987. >4 good survey of the
human side of interactive systems design. Intermediate between [2] and [13] in orientation towards
computers.

20

[11] S. L. Smith & J. N. Mosier, Guidelines for Designing User Interface Software, Technical Report
NTIS No. A177 198, Hanscom Air Force Base, MA. >A massive compendium of user interface
design guidelines. This collection has been repeatedly revised in the light of new studies: more recent
editions may be available.

[12] R. D. Tennent, Principles of Programming Languages, Prentice-Hall, 1981. >An introduction to
the design principles underlying programming languages.

[13] H. W. Thimbleby, The User Inteface Design Book, Addison-Wesley, 1990. > This chapter is based
on this book, which is a more abstract survey of user interface design than [10], promoting formal
methods and their creative potential in design.

21

