26/01/2014 19:18

From logic to manuals

Harold Thimbleby Peter Ladkin

Computing Science Technische Fakultat
Middlesex University — Universitat Bielefeld
GB-London, N11 2NQ D-33501 Bielefeld

Abstract

We demonstrate a simple language that combines specifications and
manuals. This shows: first, that a user manual can be automatically
reconstructed from a logic specification that is effectively identical to the
original logic (up to ambiguities in natural language); second, that such an
automated process can help detect errors. The process is fast, and suitable for
use in participatory design.

29 February 1996; revised 5 September 1996. Published in Software Engineering Journal,
11(6), pp347-354, 1997.

Introduction

To use complex systems safely and efficiently requires appropriate training and
documentation, based in turn on an understanding of the systems themselves. Systems
are (or should be) based on a specification of what they are to do. We will take a
requirements or design specification henceforth to be a (logical) predicate in a precise
language that a system is required to satisfy. This specification puts conditions on certain
state variables of the system. A system satisfies the specification just in case it exhibits
no behavior that is proscribed by the specification, and it fails to satisfy a specification
just in case it may exhibit behavior that is proscribed by the specification. How do we tell
the users how to use the system? How do we ensure that our instructions are logically
compatible with the specification?

It is widely recognised that requirements change and systems evolve, amongst other
reasons because of design needs, and in response to user feedback [SwaBal82] [Boe86].
In systems where users form an essential part, it is common practice to involve the users
in the design process. As users increasingly understand a system, they may help change
its design for the better. Logically accurate user documentation is desirable in itself, and a
reliable, fast method for generating it could improve the design-trial-redesign loop. We
describe a simple prototype tool, implemented by the first author, that accomplishes

10f 20

26/01/2014 19:18

this.

Aircraft control and flight management is a human-in-the-loop system. We use it as an
example in this paper, partly because some actual user manual pages have been reverse-
engineered by the second author [Lad95] and now exist in a form on which we can
demonstrate the forward-generation of new manual pages; and partly because it is pilot
folklore that Flight Crew Operating Manuals (FCOMs) are in constant need of
improvement [Buc94]. However, the technique we illustrate is applicable to derivation of
accurate documentation in general, and the tool we describe is not limited to particular
types of systems.

Deriving documentation from specifications is not new. [LevHeiHil94] and [HeiLev96]
describe the provision of full formal requirements specifications for TCAS Il avionics
systems. [ParMadlgl94] and [ParMad95] describe the documentation of the software
design process: "The validation of design documents [...] is a major part of engineering.
[...] Documentation can be used both as a design medium and as the input to subsequent
analysis and testing activities." The IDAS project [ReiMelLev95] aimed to derive technical
documentation in readable natural language, aimed at "technicians and other experts
[rather than] 'the man in the street’ (e.qg., aircraft maintenance manuals, not VCR
operations manuals)". In contrast with Leveson et al., we do not aim to document
requirements. In contrast with Parnas et al., we do not aim to document a development
process for engineering purposes. We do aim to support the provision of a complete,
consistent, usable end-user manual for a process-control system. We assume the system
requirements and development as given. In contrast to the IDAS work, we do not aim to
automate the production of natural language instructions, and we are more concerned
with documenting real-time systems to enable timely user response in changing
situations, such as needed in FCOMs. This does not preclude eventual synthesis between
the approaches.

Documenting Avionics systems

With the introduction of so-called fly-by-wire airplanes in commercial transport, avionics
now encompasses all aspects of piloting. A pilot of such an airplane is interested in what
the specification says about only the state variables that are immediately 'to hand' - say,
position of thrust levers and its relation to measured engine power - and their changes.
Other variables such as those describing, say, engine fuel-flow controller state are more
important for design and maintenance engineers than for flying the aircraft. So the
pilot's view can be regarded as an abstraction of the design specification of the whole
aircraft, namely a predicate in a restricted vocabulary of state variables that is logically
implied by the design specification.

It is important to distinguish the particular needs of an operator from the general need
to document the development and design of a system. An operator will in general not

2 0f 20

26/01/2014 19:18

care how, or using what process, the system was developed. A pilot only cares how the
airplane functions right now and how to control it. A pilot flying a landing go-around will
use features of the design (position of the controls, for example) in order to command
the aircraft to fulfil certain requirements (in this case, performance requirements). One
can expect an operations manual thus to contain information from both requirements
and design.

We are interested in deriving end-user manuals from requirements or design
specifications. The meaning we give to the word 'specification' allows a precise, correct
statement of what the operator 'sees' also to be described as a specification. A system
may thus have many specifications of this type. (We take it as one of the advantages of
the logical approach to specification that it handles this form of abstraction so trivially.)
The FCOM is an important end-user document recalling essential information for the
pilots, and is legally required to be on board an aircraft in flight. It omits information
maybe necessary for engineering but of little help in the cockpit, as well as much
information on the system design pilots would have learnt in a training course. A crucial
feature of the FCOM is that the airplane (and the pilots!) should behave exactly in the
way detailed in the FCOM. The FCOM thus should be a specification in our sense, for
some part of the total behavior of the aircraft.

The second author [Lad95] analysed part of the FCOM for the Airbus A320 airplane from
this point of view as a logical document. He showed that the FCOM for a particular A320
(the one reported in [MCAAI94]) has shortcomings if treated as a rigorous definition;
namely, ambiguities and omissions. He rewrote the FCOM pages concerned as Predicate-
Action Diagrams [Lam94a], a way of describing finite state machines in which states and
transitions between them are labelled with predicates with precise semantics in the
Temporal Logic of Actions (TLA). TLA is a temporal logic designed for system specification
and verification [Lam94b].

What we regard as logical shortcomings in an FCOM may have origins in the conflicting
needs of pertinence, coverage and brevity, as well as in simple error. Some shortcomings
may arise from a psychological judgement of how best to promote recall of systems and
emergency procedures that pilots have learnt in training but are seldom required.
Desiderata for operating manuals may thus conflict. However, we suggest that
consistency with specifications is not in conflict with any other desideratum. We call such
a manual accurate. (It follows that accurate manuals must be specifications in our
sense.) To fulfil other desiderata, a method generating accurate manuals should allow
optimisation possibilities according to different criteria. Our method does this, starting
from specifications whose accuracy we assume is given.

There is a legal requirement in aviation for accurate flight crew operating manuals. Buck
[Buc94] strongly makes the point that manuals frequently fall short of what pilots need
in a difficult situation, that pilots in such situations often must improvise, and that this is
becoming particularly difficult with the introduction of complex avionics. Avionics

30f 20

26/01/2014 19:18

systems can be considered interactively complex and tightly-coupled [Per84]. A suitable
illustration may be derived from a recent accident to a Birgen Air Boeing B757 aircraft in
February 1996 [Lad9x]. There are two relevant features of this accident, which illustrate
the difficulties of writing quickly-usable manuals when the system is interactively
complex.

® The captain, who had suffered and identified a failure of his airspeed indicator
(ASI), called for the center autopilot to be turned on. However, the captain's ASI
gets its information from the Left Air Data Computer (ADC), as does the center
autopilot. The captain's ASl indicated increasing airspeed with increasing altitude (a
phenomenon known to all pilots as consistent with a blocked pitot-static system)
and the center autopilot, following the false airspeed data, raised the nose, causing
the airplane to slow down and stall. Although there are standard pilot workarounds
(‘alternate' data paths, and a mechanical back-up) which could (one may speculate
'should') have been used, it is hard to imagine that the captain deliberately used an
autopilot which he knew to be receiving false data. It could be argued that this is a
consequence of interactive complexity: precise information on the center-
autopilot/LADC coupling does not appear to be in the Operating Manual (which
must be concise and quickly-usable, and thus compromise on the amount of
information included), but it is included clearly in the much larger systems
description document, which is a training and reference manual not intended for
quick reference in an emergency [Anon96].

e The US National Transportation Safety Board (NTSB) suggested an improvement to
the Operating Manual. During the accident sequence, the crew appeared to be
confused by two advisory messages, RUDDER RATIO and MACH/SPD TRIM, which
appeared on the cockpit Indication and Crew Alerting System (EICAS) display. They
are displayed when the stabilizer trim and asymmetry module computer compares
the several airspeed sensor inputs and discovers a discrepancy of more than 10
knots. The Operations Manual apparently did not inform pilots that these two
advisories together indicate an erroneous airspeed indication. The NTSB has
recommended to the US Federal Aviation Adminstration that the manual be
revised.

Manual-writing for an interactively complex system is a task that is not easily optimised.
The functionality provided by our simple tool could be expected to help. We adopted a
re-engineering approach, respecifying existing manual fragments and applying
consistency and completeness checks by hand [Lad95]. This was followed by forward
development of the new manual using our tool from these specifications. The contents-
in-the-large are determined by the domain experts; we analyse these contents for
certain formal properties and preserve those properties during regeneration. The tool
we describe here is

® simple,

4 of 20

26/01/2014 19:18

e fully implemented,
® runs on real, if simple, examples,
® and produces a manual that is comparable with the original.

Our tool has been used as part of the DiDoLog system [Bar96], a simple experimental
forward-generation tool for operating manuals. DiDoLog allows finite state machines to
be built graphically using TLA definitions annotated to the states and transitions. TLA+
specifications are automatically generated from the annotated state machines, and
finally a logical manual is generated with the tool described in this paper. (DiDoLog
requires Tcl/Tk [Ous94].)

We demonstrate the tool by taking the re-engineered logic specification of the A320
braking subsystem from [Lad95] and construct precise FCOM pages from it, below. Apart
from their precision, these pages are comparable in content and structure to the
original. Their layout is also comparable, though we chose to use tables rather than
bullet lists (as are used in the FCOM). When our automatic construction techniques are
applied to appropriate specifications, the result is also a specification, presented in a
more human-oriented way.

This entire paper (rather, its electronic version as submitted to this Journal) is itself the
result of a single actual run of the tool. The example input is included as source, along
with the text body of the paper as meta-comment (see below). The output of running
the tool on the source of the paper then yields the text, the example input, plus the
output to the examples, formatted as you read below. We did no cut-and-paste on the
examples, nor any other post-editing of the paper.

The system is simple, and so are the examples. But that's partly our point. Specifications
of user interfaces of critical systems are designed to be simple. We are describing a
preliminary tool that handles examples of the appropriate order of complexity. However,
in the average FCOM, there will be many such examples. Keeping track of the
interconnections can be complex without automated help. This is partly why the
traditional 'by hand' approach to manual writing is prone to lose rigor.

The usual benefits of automatic generation include the ability to maintain a correct
manual under changes of the specification. This aids in collaborative design [Thi96], in
which users are involved in assessing designs and hence improving their effectiveness or
safety, as practiced with human-in-the-loop systems. We have mentioned that our
approach facilitates the design-trial-redesign loop. In principle, this could be extended to
concurrent engineering, in which technical authors would maintain documentation and
evaluate it with operators at the same time as engineers maintain a complete system
specification. We have discussed elsewhere techniques to allow technical authors to
improve the quality of language used in manuals without compromising the guarantees
of automatic generation [ThilLad95].

5of 20

26/01/2014 19:18

A language for manuals

Ladkin's preferred FCOM specification is in Predicate-Action Diagrams [op. cit.], which
have a rigorous formal translation into TLA though use of the temporal-logical operators
in his paper is pro forma. For the present paper it suffices to use Boolean logic.

Our language has Boolean expressions, using !, & (or dot), +, => and <=> as the Boolean
operators not, and, or, implies, equivalent; others are easy to add. Operator precedence
is standard; association is to the left. Two print operators evaluate and print minimised
expressions: >e prints a minimised equivalent to e; and ?e prints a minimised and
factored table in HTML (the hypertext markup language used on the World Wide Web

[NCSA96]).

In addition, rewrite rules can be used to simplify expressions. A rule of the form r := e
allows that the expression e is rewritten by r. Since rewrite rules may overlap (as in
r:=a8b; q:=b&c; ?a&b&c;), their application requires minimisation. Use of rewrite rules is
illustrated in the examples below.

Since one may not wish to print an explanation of something that is trivial, there are two
more more operators. The slash makes printing using either > or ? conditional; thus >e/p
prints a minimised equivalent of eif pis true. Secondly, the expression [e] reduces to
true iff eis a contingency (that is, iff e is neither strictly true nor false).

The language also provides for name bindings, including functions. To follow the
examples below, we mention the following details: comments are taken from % to the
end of the line; variable names are either strictly alphabetic strings, or anything between
qguote symbols (including \" or \\ which represent " and \ in the conventional way).

Our language may not be formally the most elegant or complete. It was implemented to
prove a concept, and it works. We do not provide a formal definition in this paper for
several reasons: the program is available from the authors, we would rather encourage
others to develop our work rather than take it as definitive, and anyway - a point already
emphasised - it is a simple system that takes only a week or two to implement. We
would like to encourage other workers - particularly in industry - to adopt the concepts,
not the specific prototype. The next sections give some examples of real runs with it.

Examples

We distinguish input and output in our examples:
% Use a long variable name. ..
> "This is a simple example using a function we define";

This is a simple example using a function we define

6 of 20

26/01/2014 19:18

% Define a function equals (one of many ways to do it)

equals(a, b)
=a+b=>aé&b;

> equals(a, a);

true

> equals(a, true);

a

> equals(equals(a, b), equals(b, a));
true

> "Equals commutes”
/ equals(a, b) <=> equals(b, a);

Equals commutes

Minimisation becomes more interesting when it is given problems that do not reduce so
simply, such as Exercise 1.16.A.3 from Zissos's textbook [Zis72] on digital circuit design:

Z15S0S
=la&d+!b&cé&d+a&!b& (c+d +!b&!Icé&!d;

> ZiSSos;

d& la+!c& !'b+ 'b&a

This result is different from the model answer, as the term !c&!b is not given: there is a
mistake in the Zissos textbook.

Further, with the automatically generated tabular form, we see that !'b can be factored
out from two terms:

7 Z15s0S
<- "Zissos example”;

|not Qland|n0t C

|or|| n | " |g

or d and
not a

Zissos example

Note how the <- operator specifies a label for the table. The same label is used in the
glossary that is automatically generated at the end of this paper.

7 of 20

26/01/2014 19:18

Extracts from the A320 FCOM

Following the simple examples, we now turn to the A320 FCOM. Ladkin's paper gives
extensive examples of ambiguities in the FCOM. We shall be content merely to show one
example, that an unambiguous section of the FCOM can be duplicated.

Extract from original FCOM:
NORMAL BRAKING

Braking is normal when:

e green hydraulic pressure is available
e A/SKID and N/W STRG switch is ON
e PARKING BRAKE is not ON.

Anti-skid is operative and autobrake is available.

There is additional prose in the FCOM that is descriptive rather than logical. It can be
directly copied to the manual generator's output using 'long' variable names, as shown
in the examples above, or by using meta-comment.

Ladkin defined appropriate logical variables and determined the normal braking
condition to be normal = green hydraulic and a/s and n/w strg and not park brake and
antiskid and autobrake.

Writing Ladkin's formulas together with some explanatory rewrite rules gives the
following manual specification:

"both power supply and BSCU operational"
;= I("BSCU failure" + "power supply failure")
-> "Power normal.";

"both green and yellow hydraulic pressure insufficient”
:= I("yellow hydraulic" + "green hydraulic")

-> "Hydraulics failure.";

"nosewheel steering switch is ON"
= "n/w strg";

"nosewheel steering switch is OFF"
= I"n/w strg";

% (some specification details omitted for brevity)
normal

= "green hydraulic" & "a/s" & "n/w strg" & !"park brake" & antiskid &
autobrake;

8 of 20

26/01/2014 19:18

% Group lines of input together to get clearer output...

¢
> "<h4>NORMAL BRAKING</h4>";

> "Normal braking mode is achieved when:";
7 normal
<- "Normal braking mode"

J;
NORMAL BRAKING

Normal braking mode is achieved when:

parking brake is OFF and

green hydraulic pressure available and
antiskid mode active and

autobrake armed and

antiskid switch is ON and

nosewheel steering switch is ON

Normal braking mode

We have chosen to display the formula as a table; we believe this to be clear and concise
(see also [OkuMatHir96]). We could use different styles of presentation. In HTML, the
variable names (possibly rewritten) are automatically-generated hypertext links to
additional explanations of the variables or states being specified.

The tabular representation we chose is a minimal disjunctive normal form (DNF)
equivalent to the original formula, with each line in the table being one term from the
normal form. This representation closely matches the original form of the FCOM. The
DNF lends itself to expressing precisely what the original FCOM chose to represent as
bullet lists (one difference remarked by Ladkin [op. cit.] is that some of the bullet lists in
the FCOM had obscure semantics).

We implemented the language with a minimisation algorithm that outputs minimised
DNF, because it was useful for us. It is also a criterion that can be implemented precisely
and optimally, and not confuse our claims with uncertainty over the exact nature of
presentation heuristics. Minimal DNF helps, amongst other things, to check the logical
meaning of desired manual entries, and that is what we wanted to try with the A320
manual pages. However, our approach is not beholden to minimal DNF. One can choose
other features to minimise. One may prefer to output manual pages which satisfy other
structural criteria (for cognitive reasons, say). We could also generate text that is not
best presented as DNF. For example, many manuals contain conjunctions of implications,
of the form:

((s11 ands12...)implies q1) and ((s21 or s22...) implies g2) and ...
We do not know what users of manuals would like to minimise under what

circumstances, though there is evidence (and supporting argument) that minimisation of

9 of 20

26/01/2014 19:18

some form is desirable [Car90]. For example, would users prefer to minimise the number
of terms in a minimal expression, or the maximum number of factors in any term, or
perhaps the greatest number of non-trivial common factors? There is scope for
experiment, and we would guess that the results would depend on what users (in the
current case, pilots) expect of the documentation. We do not wish to impose a particular
answer. Indeed, one might provide a set of answers to accommodate various types of
intended use.

Checking logical properties

Consider the following completeness condition: each state in the system should be
documented by some mode in the manual, and modes in the manual should (where
appropriate) be mutually exclusive. These and other checks are easy to perform and to
document.

In the following example, we first define a function possible(x) to be true if x is possible,
that is, if x is true or is a contingency. Next, if normal mode without antiskid is possible,
we output the simple text "Alternate without antiskid and normal modes overlap when"
(i.e., treating it as a simple variable name). Finally, we output as a table the conditions
under which normal mode without antiskid is possible. We ran this function as follows:

possible(x)
=x + [x];

normal twout
= qgltwout & normal;

¢

> "Alternate without antiskid and normal modes overlap when:";
7 normal twout

)
/ possible(normal twout)
<- "Overlap example";

Overlap example: Alternate without antiskid and normal modes overlap when:

parking brake is OFF and

green hydraulic pressure available and
antiskid mode active and

autobrake armed and
antiskid switch is ON and
nosewheel steering switch is ON

I;;| " | " |Qower supply failure
Overlap example

and [BSCU failure

We discover that the FCOM description does not explicitly account for power supply
failure or BSCU failure modes. Thus can the tool be used for completeness checking.

10 of 20

26/01/2014 19:18

The organisation of higher-level manuals

The FCOM is a much reduced form of material included in pilot training, which one
would expect to cover items that are omitted or ambiguous in the FCOM. This suggests
that one should be able to pick 'higher-level variables' for comment in the FCOM, but
also that one should be able to go deeper (simply by adding variables to the 'domain’)
and view a specification at a more detailed level. This further suggests a hierarchical tool
that could operate down to whichever level is desired by the user.

The current approach does not do this; it assumes the specification is 'flat.' However,
extension would be easy, such as embedding it within an interactive hypertext system
with some theorem proving capability. It would be important for any such extended tool
to include various 'completeness' checkers. In particular, for a user to be able to request
an abstract manual, the tool should be provided with a suitable summary of what
information is not explicitly represented.

Glossary

It is arguable that a manual should contain a glossary and an index of all names used.
Our software constructs one with simple hypertext features automatically. We
implemented simple features that seemed to us to yield immediate benefits, without
making the language unwieldy, but it falls short of what would be required for
commercial use. The glossary for the examples in this paper was created automatically
by running the source text of this paper through the program.

The glossary appears as follows. Any name, or head token of a rewrite rule, appearing in
an explanation is linked to an entry created for it in the glossary. The glossary contains
any descriptive text that has been associated with the name or rule, and also links back
to the uses of the name. A user of a hypertext version of the manual can click on a
phrase occurring in an explanation to obtain a full explanation of that phrase in the
glossary, and similarly by clicking in the glossary move back to any use of the phrase in
that or other explanations.

Beyond the clear advantages of a complete glossary, our approach closely associates
glossary entries with the uses of the names (this is a 'standard' advantage of
automatically constructed indexing). Thus it is easier to check the specification as it is
being written, and built-in system checks ensure that all entries in the glossary are
annotated.

The language provides three mechanisms to support the hypertext glossary. Any name
or rule followed by -> string has string appended to its glossary entry. For example:

"switch on"

= Ssw
-> "Mains switch.";

11 of 20

26/01/2014 19:18

"switch off"
:= Isw
-> "Mains switch.";

"Mains switch."
-> "The switch is at the bottom of the red console, pull it forwards to make

it 'on.'";

Any expression followed by <- stringis named in the glossary (by the string) as the
context of use for all of the names in the explanation generated by the expression. As
mentioned above, the string also occurs in the explanations generated, as a caption. The
sense is that the right-pointing arrow puts text further on in the document, into the
glossary, and the left-pointing arrow refers backwards from the glossary to the
expression. In the HTML, of course, these forward and backward references are
hypertext links.

Finally, since manuals are often structured by sections, the same form without an
expression defines a 'global context' for all following explanations - that is, as if they are
in the context of a section with that label. The following example shows both forms in
use:

<- "Mains switch example";

> "<h4>Mains switch example</h4>";
Mains switch example:

Mains switch example

7 sw
<- "The explanation of sw itself",;

|switch on|

The explanation of sw itself

The glossary for all the examples is at the end of this paper.

Guarantees

All good software should come with a guarantee. In many papers, examples are written
by hand, or edited from actual program output. Such massaging can lead a reader to
wonder if what is presented is an accurate reflection of what the program is really doing.
We guarantee that the output the reader sees in this paper is the actual output to the
examples. Here's how.

The features of our language so far discussed allow a manual to be constructed from a
specification, but do not allow the manual to 'talk about' the specification as an object in

12 of 20

26/01/2014 19:18

itself, which (for example) is what the text of this paper does, and what would be
required in various specification documents as a system design is negotiated. Thus we
built a 'meta-mode' for the language.

In normal-mode, the program processes all specifications precisely as described in the
examples. In meta-mode, however, it processes specifications and additional text. The
text is considered as a 'meta'-comment. We have already mentioned the normal '%'
comment, and examples of its use appear in this paper above. Meta-comment has no
enforced typographical style, and the comment markers (which are braces) are not
represented in the output.

This paper was created by meta-mode. The text of this paper, except the examples, was
written as meta-comment. The text was input as 'source,' along with the input to all
examples as described, but no output to any example. The output is the submitted
version of the paper, which is identical up to typography to the version that the reader is
currently reading, complete with output and glossary for all the examples. Evaluation in
meta-mode enforces the font conventions for distinguishing input and output, to
alleviate confusion. The actual source and output is available from both
http://www.cs.mdx.ac.uk/harold/ and http://www.techfak.uni-bielefeld.de/~ladkin/.

Meta-mode is invoked automatically for any specification that uses meta-comments. If
an author uses meta-comments in a source, to talk about the specification, the system
generates a manual representing those comments, the specification, and the
explanation. Meta-comments can also be commented out, and even those comments
can be meta-commented, etc.

Implementation issues

TeX [Knu92], LaTeX [Lam94] or SGML [Bry88] would all have been preferable as output
markup languages. It is no problem to generate them instead: we just find HTML
preferable for collaborating over the World Wide Web. HTML's tables (specifically,
Netscape's tables) are fairly basic and restrict the ways in which a minimal expression
can be represented. There are many alternatives that could be tried, such as decision
trees - especially if we were to take advantage of interactive representations rather than
conventional paper-like forms. Extensions to our approach should permit a choice of
representations for the application. In turn, this would permit evaluation of metrics on
the output; for example, if it is known that the depth of a decision tree relates to its ease
or reliability of use, then the system should summarise such metrics.

The manual specification language was first prototyped as an embedded language within
Prolog. Not surprisingly, as minimisation, factorisation and rewriting are all NP-complete
optimisation problems, the Prolog was too slow for practical use! The program was
rewritten in C, and used the standard low-level programming trick of implementing DNF
with up to 32 variables as a vector of 32-bit words, which gave it acceptable

13 of 20

26/01/2014 19:18

performance. Minimisation uses the Quine-McCluskey algorithm. There are many
alternative algorithms that could also be used (including professional tools for optimising
digital logic circuits).

The C program is limited in the complexity of queries it can handle (because the minterm
algorithm can generate huge numbers of minterms). This has not been a practical
limitation; one could argue that use of a specification that required more than 32Mb of
RAM could involve such a degree of complexity that a mechanically generated manual
would not help much!

Conclusions

We have given a proof of concept that a user manual can be produced automatically,
using straightforward programming, in such a way as to be comparable with a desired
original (modulo typography). This technology shows how easy it is for manual writers to
check completeness and correctness, and indicates that, modulo the goals of particular
manuals, automatic production of correct manuals is a relatively straightforward task.
We have pointed out that the speed-up and quality improvements enable concurrent
design, which should result in better systems through involving operators earlier, and
more effectively, in the design process.

We have done no research into the 'best' form of FCOM, one meeting all the desiderata
in mutually optimal ways. Such questions would need to be addressed in any
development of our work. We showed here that we could provide the FCOM material
with logic and precision, by using an automatic tool. To do that we did not need to
address the human factors questions. Our tool, particularly given its precise
functionality, can be used in controlled experimentation.

Acknowledgements

Thanks to Hagen Barth who ported the program and identified and fixed some
hardware/compiler dependencies. We are grateful to Paul Curzon and to the referees,
who made very useful comments on the paper.

References

[Anon96]: Anonymous Expert Source. Back

[Bar96]: H. Barth, DiDoLog: Automatable Generation of Specifications and Formally
Correct Manuals from Informal Sources, Diplom (Master's) Thesis, Technische Fakultat,
Universitat Bielefeld. Available through http://www.techfak.uni-bielefeld.de/~ladkin/.
Back

14 of 20

26/01/2014 19:18

[Boe86]: B. W. Boehm, A Spiral Model of Software Development and Enhancement, ACM
SIGSOFT Software Engineering Notes, 11(4):14-24, August 1986. Back

[Bry88]: M. Bryan, SGML: An Author's Guide, Addison-Wesley, 1988. Back

[Buc94]: R. N. Buck, The Pilot's Burden: Flight Safety and the Roots of Pilot Error, lowa
State University Press, 1994. Back

[Car90]: J. M. Carroll, The Nurnberg Funnel: Designing Minimalist Instruction for Practical
Computer Skill, MIT Press, 1990. Back

[HeiLev96]: M. P. E. Heimdahl & N. Leveson, Completeness and Consistency Analysis of
State-Based Requirements, |IEEE Transactions on Software Engineering, 22(6):363-377,
1996. Back

[Knu92]: D. E. Knuth, The TeXbook, Addison-Wesley, 1984, 1986, revised 1992. Back

[Lad95]: P. B. Ladkin, Analysis of a Technical Description of the Airbus A320 Braking
System, High Integrity Systems, 1(4):331-349, 1995.
Also available from http://www.techfak.uni-bielefeld.de/~ladkin/. Back

[Lad9x]: P. B. Ladkin, ed., Computer-Related Incidents and Accidents with Commercial
Airplanes, Hypertext Compendium of sources and commentary.
Available from http://www.techfak.uni-bielefeld.de/~ladkin/. Back

[Lam94]: L. Lamport, LaTeX: A Document Preparation System, Addison-Wesley, 1994.
Back

[Lam94a]: L. Lamport, TLA in Pictures, |IEEE Transactions on Software Engineering,
21(9):768-775, 1995. Also available from http://www.research.digital.com/SRC/tla/. Back

[Lam94b]: L. Lamport, The Temporal Logic of Actions, ACM Transactions on Programming
Languages and Systems, 16(3):872-923, 1994.
Also available from http://www.research.digital.com/SRC/tla/. Back

[LevHeiHil94]: N. Leveson, M. P. E. Heimdahl, H. Hildreth & J. D. Reese, Requirements
Specification for Process-Control Systems, |IEEE Transactions on Software Engineering,
20(9):684-707, 1994. Back

[MCAAI94]: Main Commission Aircraft Accident Investigation Warsaw, Report on the
Accident to Airbus A320-211 Aircraft in Warsaw on 14 September 1993, Warsaw, March
1994. Text body without appendices also available from [Lad9x]. Back

[NCSA96]: NCSA, A Beginner's Guide to HTML. Available from http://www.ncsa.uiuc.edu
/General/Internet/ WWW/HTMLPrimer.html, 1996. Back

15 of 20

26/01/2014 19:18

[OkuMatHir96]: H. Okuno, H. Matsumoto & H. Asai, TableSpec: Free Format Specification
Table and Source Code Generation, Software - Practice & Experience, 26(2):213-235,
1996. Back

[Ous94]: J. K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, 1994. Back

[ParMadIgl94]: D. L. Parnas, J. Madey & M. Iglewski, Precise Documentation of
Well-Structured Programs, IEEE Transactions on Software Engineering, 20(12):948-976,
1994. Back

[ParMad95]: D. L. Parnas & J. Madey, Functional Documents for Computer Systems,
Science of Computer Programming, 25:41-61, 1995. Back

[Per84]: C. Perrow, Normal Accidents: Living With High-Risk Technologies, Basic Books,
1984. Back

[ReiMelLev95]: E. Reiter, C. Mellish & J. Levine, Automatic Generation of Technical
Documentation, Applied Artificial Intelligence 9(3):259-287, 1995. Also available through
http://www.dai.ed.ac.uk/daidb/staff/personal pages/chrism/idas.html Back

[SwaBal82]: W. Swartout and R. Balzer, The Inevitable Intertwining of Specification and
Implementation, Communications of the ACM, 25(7):438-440, July 1982. Back

[Thi96]: H. W. Thimbleby, Creating User Manuals for Use in Collaborative Design, ACM
Conference on Computer-Human Interaction, CHI'96, Vancouver. CHI Conference
Companion, M. Tauber, editor, 279-280, 1996. Back

[ThiLad95]: H. Thimbleby & P. B. Ladkin, A Proper Explanation When You Need One, in M.
A. R. Kirby, A. J. Dix & J. E. Finlay (eds), People and Computers X, Proceedings of the BCS
Conference on HCI'95, 107-118, Cambridge University Press, 1995.

Also available from http://www.techfak.uni-bielefeld.de/~ladkin/ Back

[Zis72]: D. Zissos, Logic Design Algorithms, Harwell/Oxford University Press, 1972. Back

Appendix

HTML Comments

Although HTML is generated, the system does not interpret HTML itself. Thus HTML tags
may be used in variable names and in meta-comments. These tags have side-effects on
the mark-up of the manual. One use of this is defining variables with names that are
HTML section headings, as in some of the examples. This feature was also exploited in
this paper to omit some detail not relevant for our exposition.

16 of 20

26/01/2014 19:18

We have noted that details of the specification were omitted. This was done by enclosing
the specification between HTML start and end comment tags, themselves enclosed
inside meta-comment braces, as follows:

% material omitted... (this is a comment that does appear)
{<!--}

text that is processed, but does not appear in the paper
{-->}

Thus the program processes the complete specification, yet allows us to present a briefer
paper uncluttered with the detail in the specification needed for completeness with
respect to the original.

A production system would be likely to control such freedom of expression closely.
Consider that, though masquerading in the description above as a processed line of text
("text that is processed..."), in fact it was not processed.

The prototype provides a very coarse control switch. It is possible to generate a manual
with either full copying of input (as in this paper) or with no copying. The former is
useful for working with a specification when seeing its manual; the latter is useful for
using a manual without its logic specification intruding. The switch, then, allows a single
file to be used for both development/debugging and use, hence further helping to
reduce errors in manuals.

Back to top.

Web home pages of authors:
Peter Ladkin: http://www.TechFak.Uni-Bielefeld.DE/techfak/persons/ladkin/
Harold Thimbleby: http://www.cs.mdx.ac.uk/harold

Support: Peter Ladkin, 1996-09-03

Glossary

Used in:

Zissos example

antiskid mode active

Used in:

17 of 20

26/01/2014 19:18

Normal braking mode
Overlap example

Specification:
antiskid

antiskid switch is ON

Used in:

Normal braking mode
Overlap example

Specification:
a’s

autobrake armed

Used in:

Normal braking mode
Overlap example

Specification:
autobrake

Used in:

Zissos example

BSCU failure
The double channel Brake Steering Contol Unit (BSCU) controls the anti-skid system
via the alternate servo valves.

Used in:

Overlap example

Used in:

Zissos example

18 of 20

26/01/2014 19:18

Used in:

Zissos example

green hydraulic pressure available
NB, check yellow hydraulic available too.

Used in:

Normal braking mode
Overlap example

Specification:
green hydraulic

nosewheel steering switch is ON

Used in:

Normal braking mode
Overlap example

Specification:
n/w strg

parking brake is OFF

Used in:

Normal braking mode
Overlap example

Specification:
not park brake

power supply failure

Used in:

Overlap example

switch on
Mains switch. The switch is at the bottom of the red console, pull it forwards to
make it 'on.'

19 of 20

26/01/2014 19:18

Used in:

The explanation of sw itself in Mains switch example

Specification:

SW

Document processed 1:02 PM on Sunday, February 09, 1997. (Source last modified 1:01
PM on Sunday, February 09, 1997.)

20 0f 20

