
14

Treat people like computers?†

Designing usable systems for special people

Harold Thimbleby

Editor’s introduction
It was pointed out in the Preface that the term handicap applies to the effects a person’s
limitations have on their ability to function in their environment. This chapter explores
that concept in a very important direction: it advances the proposition that the average
human-computer interface is so badly designed that anyone who uses it is handicapped
by it. Moreover, it suggests a practical way to start to respect the user, based in the
theory of computer science. It should therefore appeal to the computer scientists and
programmers who design interactive systems.

14.1. Introduction
Three true stories:

• An old and disabled woman makes a special trip to visit her electricity utility, to
make a payment on her monthly credit book. The clerk refuses to accept payment
because the date for the next instalment is tomorrow, and the computer cannot
process early payment. The woman goes to the local newspaper, and the story that
gets printed includes the clerk’s manager’s complaints about the computer system:
it is not only badly designed for customers, but it also disables staff in how they can
handle customers.

• I was recording a live TV broadcast on my video recorder. The adverts came on, so
I pressed Pause, to pause the recording. When the adverts finished, I pressed the
wrong button, and the VCR did something I’d never seen before. I got confused.
The frustration I felt was so intense, I did not want to waste my time with this
gadget ever again! — effectively disabling myself from gaining its possible benefits
in the future.

• The ticket regulations for travelling with British Rail are so complex that passengers
can often be seen anxiously trying to understand their ticket, as the Senior Ticket
Collector for the train announces that only he is sufficiently qualified to answer any
queries. The ticket regulations are so complex that they disable people.

Thus badly designed systems handicap all users. Attitudes, too handicap users: users
are generally blamed for their own difficulties. Didn’t they know? Didn’t they read the
manual? Are they too old for this technology? The designers thereby avoid any
responsibility for the users’ difficulties. Their attitudes handicap users and deflect
attention from the engineering design of systems.

† To appear in Extraordinary People and Human-Computer Interaction, A. Edwards, editor,
Cambridge University Press, 1994.

1



In this chapter, it will be argued that improvements should be sought in better
engineering, and that there are the means to do so. This chapter may make the reader
question who is handicapped and what is the cause of that handicap.

Inevitably, this chapter complains about the disabling design of interactive
systems, although a longer chapter would also include disabling designs in intelligent
homes for the elderly, through to all areas of interactive technology. If the reader thinks
that such complaints are overdone, or that the problems complained of are obvious —
then why are such problems so common? Why do designers or manufacturers not
notice them and not avoid them? They cannot be so obvious to designers, or perhaps
designers, despite knowing, do not know how to recognise or avoid the problems.

As well as providing ammunition for people who want to complain about the
problems, more constructively this chapter will make two central contributions. First,
we will point out an analogy with automobile safety: informed consumer pressure can
change things, and usability (drivability and safety) is an engineering issue. Second, we
will point out an analogy between user and computer: designers (who can program)
implicitly know how to do the engineering properly. We discuss the imbalance that
computers get better treatment than users, to the point of making the almost outrageous
suggestion that if humans were treated with at least as much care as computers are,
then computer users’ lives would be improved.

14.2. The automobile analogy
In 1963 the American Association of Casualty and Surety Companies reported a
common fault found in many cars, that they sometimes ran back against the parking
brake. The solution they suggested was to educate the driver to get into the habit of
putting his foot on the foot brake pedal when pulling on the parking brake. The foot
brake would apply a greater force on the brake shoes than could be applied by hand
alone, thus ensuring that the shoes engaged properly and the parking brake held. The
advice they provided was that there was no problem … if a driver trains himself to do
this. Put like this, the solution clearly lay in the area of driver psychology: most drivers,
for instance, did not read the car manual. How could drivers be educated to drive
properly?

This problem was reported in Ralph Nader’s now classic book Unsafe At Any
Speed (Nader, 1965). But looking back, with the benefit of the consciousness raised by
Nader’s book it is now obvious that a proper solution would have been to solve the
engineering problems in the parking brake. The parking brake should have worked
properly, and not have required the additional assistance of the foot brake! The solution
was not in getting the driver to read the manual, but in designing the system such that
no comment even needed putting in a manual. This point of view is now widely
accepted. Yet in computer systems, we can see from the standard warranties provided
with proprietary software that designers or manufacturers are not and do not want to be
responsible (Thimbleby, 1990a and 1990b). The purchaser is given no effective come-
back on product defects, of which there are many. There is a veil of secrecy over
crippling product defects.

Today, computers, whether PCs or embedded inside domestic products and
other machines, are designed quite as badly as 1960s cars. Most are partially unusable.
They rely for their apparent success on the long sufferance and dogged perseverance of
the user. The similarity between the poor design of cars thirty years ago and modern
computing systems is indicated by the agony columns in many computing magazines,
and the sorts of solutions to readers’ problems that are suggested there. Hence the title
of an article, “You’re right about the cure, don’t do that” (Thimbleby, 1990a),
reflecting on a piece of agony column wisdom, where a reader was told that the only
way around a bug was to give up and avoid a useful facility.

2



Computers are (occasionally!) useful, and users are very often justifiably pleased
with what they can achieve with their help. Indeed, the more so the less the user could
do, previously, in comparison with what they are now able to do with computer
support. That may explain why users tend to put up with computer limitations without
complaining: on balance, users are better off with computers than without them. When
a computer crashes (due to a software error) the user, like a laboratory rat, soon learns
not to do whatever caused the crash — that is, if the user is fortunate enough to see any
discernible reason why the crash occurred. Soon, the user will learn how to work the
computer reliably, or modify their work so that only reliable parts of the computer
system are required.

Another reason why users tend to down-rate usability problems is that the
computer represents a major investment in financial terms and training time. Admitting
problems is tantamount to admitting wasting time and money. It is easier to believe that
the computer is ‘alright,’ and that with even more effort, more money or more training,
one would get used to it. With today’s consciousness, it seems easier to admit being
technically incompetent than to wasting time and money.

This is the same user oppression as the 1960s driver oppression: engineering
problems are passed off as user handicaps, and the users acquiesce.

If problems are the user’s handicaps, who is responsible for the problems? Not
the designers, manufacturers or dealers! Should we have a government initiative in
technology literacy, so that users can better put up with the oppression? Should users
(perversely) feel proud with the sophisticated skills they learn (Thimbleby, 1993)?

It is a truism that we, as humans, are all handicapped with respect to our
potential. The discussion above indicates that everyone is reduced by current
technology. If you start off being handicapped, you are made much worse off, in ways
that are not always obvious, but in ways that both manufacturer and user conspire to
conceal and deny.

The exploitation of users is technically avoidable. Although improvement will
result from action at all levels, political, consumer action, litigation, human factors
consciousness, the aim here is to argue that technology itself has better to offer users.
Improvement will result from better engineering, and a more professional attitude from
designers.

14.3. The computer analogy
A user has to put up with poor systems. A user has to adapt their work patterns to fit in
with or avoid quirks and bugs. Yet if the human user was instead a computer, and had
any such problems, then obviously the designers would have to fix the problem. A
computer cannot choose to do other than what it is told, and therefore it is obvious that
its problems (say, dividing by zero) must be caused by bad programming. It is not
sensible to criticise or blame a computer for being uninformed, stupid, old or incapable.
Its problems have to be fixed by the programmer responsible. When a user has
problems, however, responsibility is evidently not so obvious.

In all of the many millenia before the age of computers, people were talking to
each other without worrying too much about their own idiosyncrasies, their
grammatical errors, their interruptions, their ways of resolving misunderstandings, and
so forth. All humans share the same skills and the same defects, and so they are hard to
see. We (as humans) often do not realise just how limited and error-prone we really
are.

Today, many people interact with computers, but computers have very different
skills and defects than humans. Thus when ordinary people interact with computers,
they become acutely aware of the mismatch between their skills and the computers’.
The very human skills of conversation repair do not help with computer defects any
more than a computer’s skill helps it cope with human quirks. The computer makes no

3



concessions for the differences and incompatibilities: always, it seems it is the human
who has to adapt to the idiosyncrasies of the computer.

We must ask: “What is common to both computers and humans, and how can
we ensure that interactive computer systems are designed to be at least up to the
common baseline?”

At least the first part of question is a familiar and foundational issue in computer
science. There is a standard and uncontentious answer, and it provides a rigourous
standard for what is minimally acceptable behaviour in programmable systems —
whether human or computer. We will briefly discuss the standard answer, and then we
will be able to argue that this standard is higher than present computer systems manage
to achieve; yet because the standard is so straight-forward and well-researched, there
are very many practical opportunities to improve the state of the art. Otherwise, until
systems are routinely designed to this standard, humans will be brought down to the
subhuman standards of badly programmed computers.

Turing Machines were defined (by Alan Turing) specifically to get rid of the
distraction of special and particular skills to determine exactly what, in a formal sense, a
person could do. People are Turing Machines.

If we say that humans are Turing Machines, we run the risk of being
misunderstood. Turing Machines sound like robots, and people are certainly not robots.
However, an anatomist would have little problem understanding a human as a
particular sort of mechanical machine, whose levers were bones. A physicist, going to
a further extreme, would have little problem understanding a human as a point whose
only characteristic was mass. Neither view demeans the human. Likewise a computer
scientist should have little problem understanding a human as a Turing Machine.
Saying this is no more contentious than saying “drivers are point masses” to a
physicist. People obey the laws of mechanics in quantifiable ways; ergonomics is the
discipline that uses their mechanical properties to make people’s environment and work
more comfortable and effective for them.

The Church-Turing Thesis posits that all forms of computation are
fundamentally equivalent. There is considerable weight of evidence for the Church-
Turing Thesis, and it has the standing of a natural law. Perhaps there may be an
experiment (as yet to be devised) that refutes it, but until then we may believe that
everything, whether computer, human or otherwise, acts in accordance with the laws of
computation.* The important point is that what is impossible for a Turing Machine to
do is impossible for any other concept of computing, including human beings, be they
disabled or exceptionable. Such problems are termed non-computable, in distinction to
the computable problems that computers can solve.

When a car designer makes a car that does not protect the driver from minor
collisions, he is implicitly hoping the driver can miraculously escape the consequences
of physical laws. The unfortunate driver who obeys the law of conservation of
momentum — and he cannot fail to do otherwise — has an unfortunate tendency to fly
through the windscreen or to hit the steering wheel. (One wonders why safety belts
took so long to be adopted.)

Likewise, by accepting the Church-Turing Thesis, we are able to make a
distinction between two sorts of usability problem. There are designs that merely
hinder the user, and there are designs that try to make the user break the natural law by
requiring them to do something non-computable. It happens rather more often than

* There is a technical quibble about quantum mechanics. But nobody is suggesting that to
rely on quantum mechanical effects at the human level would be advisable. The same
goes for intuition and spiritual aspects: these are subtle human qualities that computers
apparently do not share, but to rely on them would generally be a burden to impose on
users.

4



might be expected. (Perpetual motion machines are continually being invented, and
some of them run for an impressive time before succumbing to reality!)

The consequences of setting humans non-computable tasks is as disabling as
ignoring the conservation of momentum in the design of car safety features. There is
no argument: designers must give users computable systems. It follows that users
must have or be given an algorithm (i.e., a ‘program that does something computable’)
to operate the system; the algorithm may of course be constituted in a vague way from
the user’s world knowledge, or it can be more precisely defined in a manual or
operator’s guide.

14.3.1. Styles of computation
The Turing Machine is only one of many equivalent ways of formulating
computability. Strictly, we should have been writing ‘Turing Machine Equivalent’
above, since we are not trying to impose the Turing Machine’s particular approach to
computation as an approximation of human computation. Indeed, since Turing
Machines are formal conceptualisations, they conjure up a rather idiosyncratic approach
to computation that would never be used for practical computation! The point, which is
easily made, is that in principle all models of computation, including human, can be
reduced to Turing Machine configurations. Just as mechanics can be reduced to a few
basic types of lever does not mean that every machine is a heap of levers.

The Turing Machine approach is imperative, to some extent a Pascal-style of
computing. There are several alternative, non-imperative approaches, represented, for
instance, by the computer programming languages Prolog (declarative), ML
(functional), and others. Just as a programmer chooses an appropriate computational
model from this wide choice, we intend an interactive systems designer to make a
similar wide choice about the style of interaction based on the user and the user’s
specific tasks.

For a worked example see Thimbleby (1990b, chapter 15), which is a discussion
of logic programming applied to user interface design. For exactly the same reasons
that logic programming is promoted as an approach to programming, for user
interfaces it provides additional flexibility.

14.4. What impact for design?
A precise and brief summary of the above discussion is that systems that are meant to
be used by people should support computable algorithms for their use. (For some
tasks, like education, one might want mystery and surprise, but this should be done
deliberately rather than by default whatever the user is supposed to be doing.) Without
algorithms, systems are far harder or more error-prone than they need be.

We give some examples now of the change in perspective this view brings to
user interface design. None of the examples is pursued in much depth; nor is the
repertoire by any means exhausted by this short list. The purpose of the examples is to
show the potential of the approach, and secondly to stimulate the reader.

14.4.1. Physical disability
Various forms of physical disability reduce the speed and energy that can be put into
conversation and typing. There are many algorithms for text compression: if typing is a
burden for the user there are algorithmic approaches to improve the user interface. It is
pleasing, then, to report on the success of some recent work motivated in this way
(Darragh and Witten, 1992, and see also Chapter 6), that is an application of computing
theory to usability.

5



14.4.2. A word processor
Few word processors distinguish in the way they display spaces, tabs and nothing at all
(e.g.,the nothing beyond the end of a line). All are blank regions on the screen, yet they
behave differently. Suppose now that a user wishes to move the word processor’s
cursor  from where it is, to land on a position they have in mind, perhaps to correct a
spelling. Because blanks can be different things, the user is in principle unable to work
out (that is, is unable to compute) how to move the cursor to the desired goal. Word
processors that use a mouse have a similar problem, and one that is sometimes more
mysterious. There are places on the screen that the mouse can be positioned in, yet
where it is not possible to type. How does a user detect such places without wasting
time?

This is a very simple, but common, example of a user interface assuming that the
user can somehow circumvent the limitations of computability. In practice, therefore,
the user must experiment: try and move the cursor where it is wanted, and if it ends up
somewhere else, try to move it from there to where it should be. As a rule, the user will
be able to do this, so the way the cursor moves will not be that surprising.
Nevertheless, the word processor requires the user to solve a problem that a computer
would fail at. (It would be amusing to challenge a programmer to write a program to
use a word processor via the standard user interface of that program.)

Software designers get away with nonsense (like the example illustrates) and
everyone else gets so used to it that they even start to expect it. Indeed, many expert
word processor users may fail to see the problem as described so briefly here. Users,
and some designers, evidently, are being trained to be masochists. It is an impressive
brain-washing manoeuvre that makes handicapped users feel proud of skills that keep
them handicapped.

The proper solution to the word processor problem is trivial: design the system
so that the cursor motion is not affected by what the cursor is moving over (then the up
arrow key, for instance, will always move directly up, which is reasonable). There are
many other solutions (Bornat and Thimbleby, 1989). The point is: users put up with a
little unnecessary mental effort, some surprises, and some unnecessary but unavoidable
experimentation, in this example, to get a cursor exactly where they want it. A
computer would not readily tolerate such unpredictability: why should a human?

A modern programmer, writing a program, not for a human but for a computer
to do the editing, would say that tabs or spaces is a detail of implementation and not the
concern of high level operations. Abstract data types and encapsulation are standard
tools for programming computers; why are they not standard tools for user interface
design? Why do the underlying ASCII code details intrude into the user’s editing task
if it would be avoided for the computer’s sake?

14.4.3. Dementia
When a person with dementia is hospitalised or moved to a new home, they can
become disoriented and may deteriorate seriously. Part of the reason for this is the lack
of familiar cues in their surroundings: they are literally lost.

Computers don’t so much get lost: they never knew where they were to start
with. Thus any algorithm for a computer to move around in a conceptual space (a data
structure) must provide for keeping track of what places have been visited, and what
places looked promising for future exploration. There are very many algorithms for
doing this systematically, two of the simplest being breadth-first search and depth-first
search (Thimbleby, 1991b).

No current hypertext systems provide algorithms for their users to avoid the
problems of them getting lost. Instead, users have to rely on their memory, and they
become disoriented, a phenomenon called ‘getting lost in hyperspace.’

6



If this is what happens to people with dementia, they might be helped in a similar
way, by providing the cues that a computer would need to do their tasks. The advantage
of the computer analogy is that it makes abundantly clear what cues are necessary,
though in practice more alternatives might be needed.

In an institution with lots of confusing passages, radio devices could be used, not
only to say where one was, but also to say where one had been — just as one would
provide flags (or whatever) to stop a computer from getting ‘stuck in a loop.’ In fact,
demented people live in the past and would probably not be able to benefit from such
novel technology. But maybe it should not be novel; maybe it is time that as direction
aids (for car navigation) become more widely available they should be better designed,
along these principles. This would improve them, and would help their users as they
age and start to rely on their facilities for day-to-day living.

14.4.4. Permissiveness
Most people are right handed. Although left-handed people grow accustomed to an
awkward right-handed world, a person with a stroke can suddenly lose the use of their
right hand and find things very difficult. They are additionally disabled by any device,
such as a door knob, that assumes the correct way to be operated is to be manipulated
in a right-handed fashion. More generally, the underlying assumption is that there is
one correct way of doing things, in this example, the right-handed way. Users therefore
have to conform to ‘the correct way’ chosen by the designer.

Suppose we are designing a network program, or an algorithm for computers to
talk to each other. We cannot assume that another computer will work the way we
deem to be correct. Any compatible program must cater for several ideas of ‘correct’
protocols. The successful network program has to be designed so that it can cater for
various protocols. If we called the protocols left- and right-handed, the point would be
clear: computers never learn or adapt (change handedness), so we have to cater for
both.

The assumption that there is just one correct way to design any human facility,
even for disabled people, is so deeply entrenched that it is useful to have a word for
deliberately avoiding the narrowness. A system is permissive if it permits itself to be
successfully used in more than one way.

The video recorder example we started this chapter with required the user to
press the correct button. Different manufacturers make different design decisions about
which button is correct. In a permissive video recorder, any of the other buttons that
don’t do anything at this point could be used. Then whatever a user does would be
correct, whether they press the Play, Record or Pause buttons.

The user of a permissive system need not even know that there are alternatives.
The old lady (of the chapter’s first example) faced a non-permissive credit control
system; railway travellers (the third example) face a non-permissive, and obscure, set
of ticket regulations.

(Even human factors experts may assume there is one right design and users
must know it. A case in point (in Nielsen, 1993) was a permissive system that
provided users with alternatives, yet the system design was criticised on the basis that
users did not know how to use it properly if they knew only one of the alternatives!)

14.4.5. Know the user
Few programmers would try to make a program they called efficient without knowing
about the computer it was running on. Few competent programmers would try to
optimise a program without first making measurements about its performance.

Why then do programmers make systems they call usable without knowing
about the users who it works with?

7



Viewing user interfaces as the realization of algorithms naturally suggests
exploring the many standard books on algorithms (such as Sedgewick, 1988) for ideas
for developing quality user interfaces. This is the first step in making user interfaces
more usable. The second step is to find out about the specific users.

14.4.6. The myth that children can use things adults can’t
Finally, it is claimed that children can cope with modern technology better than adults.
Children can programme video recorders when their parents can’t. This point of view
is disabling, for it suggests that adults are incompetent.

However, there is very little evidence in support of this. When one considers that
children have not paid for the video recorder, are not worried about breaking it, that
they generally have more time on their hands (they don’t have a mortgage at the back
of their minds), then their putative skills with video recorders look less dependent on
age. Maybe the rest of us are not too old! Adults might be too busy, but few people are
oppressed by being made to feel too busy rather than too old.

There is another possibility that I want to suggest, which is amenable to serious
study. That is, children handle technology better than adults because they don’t
understand it. Adults have problems because they understand things ‘too well,’ and the
technology fails to live up to their (quite reasonable) expectations.

In one simple, real, experience, my colleague Ian Witten and I expected a digital
clock to work to the 24 hour clock: it certainly gave clues that it was a 24-hour clock,
like being able to count from 00:00 to 24:59, even to 99:99. We were wrong (actually,
the designers were wrong) and stuck, but the clock didn’t tell us.

Experiments showed that if one made no assumptions about how the clock
worked, if buttons were pressed at random, then the clock could be got working in just
9 or 10 button presses on average (Thimbleby and Witten, 1993). This is much quicker
than we were: we took almost an hour. Since we had ‘misunderstood’ the clock, we
would have been better off flipping a coin to decide what to do, rather than thinking
carefully about it. Tossing a coin, acting randomly, might have led us to do the wrong
thing some of the time, but we wouldn’t consistently have done the wrong thing all the
time, and be stuck — it might have been — forever.

It therefore seems plausible that children are successful with technology not
because they are ‘cleverer,’ but because they do not understand what they are doing,
and nor do they persist in doing any one thing. They play randomly, and that is a good
way of learning how the world works, including digital clocks and video recorders.
Adults, having spent most of their childhood playing, may prefer to work rather than
play: certainly errors with a cooker clock or video recorder are rarely ‘playful.’

It is in the manufacturers’ interests to encourage us all to believe that we are
inadequate when we cannot use their products. I was told I was too old when I
complained that I could not use my video recorder. If I believe that, then my problems
are my own fault, and I am handicapped.

14.5. Why engineering first? Why not human factors first?
When the functions of a product have been decided, perhaps a prototype built, it is
common for designers (stylists) to design a suitable appearance. Users will experience
certain sorts of problems that would be ameliorated by the provision or removal of
certain features. However given the pressures of manufacturing in a competitive
marketplace, by the time anything is known, the engineering effort will have been
completed, and the product has to be ready to ship. Just when users can contribute to
product evaluation, it is already too late to rectify design flaws. The solution can only be
to add another feature.

When the same thing happened with cars, it was termed “the gadget approach to
safety” by Ralph Nader. It was easier for car manufacturers to add gadgets (or let

8



component manufacturers supply them to an after-market) than to make a well-
designed car. There was an after-market in anti-sway bars for General Motors Corvair
that greatly improved the handling of the car. General Motors should have made the car
stable in the first place, or at least taken responsibility for fixing the instability problem
they had created. Once a car is built, however, gadgets are all that can be provided.
Likewise, there is a gadget approach to usability, whereby the more features a system
has, the easier it is assumed to be. Whatever the user wants there is a feature available
to do it. The marketing term for this is ‘feature bouquet.’ The bouquet approach not
only misses opportunities for systematic design and rationalization, that might even
reduce the number of features whilst increasing usability, but also encourages the
provision of third party products to correct defects in the original product. When
manufacturers rely on this approach they soon have less incentive to design properly in
the first place.

Specific examples of how an engineering approach would impact user interface
design have been developed and discussed elsewhere (Thimbleby and Witten, 1993).

14.6. Conclusions
Systems can be made easier to use, and there are rigourous technical standards
available. A start in the right direction is to treat the user at least as well as a computer
would be treated: to make the user interface computable, and to provide algorithms for
the user to succeed in their work with the system. Present systems do less than this,
and thereby exploit the user; and there is a culture to keep things this way. Sadly, users
are caught up in this culture and blame themselves for not being clever enough, not
being young enough, and not having read and understood the manual, they are not even
qualified to comment.

In reality, rather too many usability problems are straight forward engineering
problems. Car parking brakes should be designed properly. It is obviously not the
drivers’ responsibility to learn work-arounds or to read agony columns about driving
techniques to avoid dangerous features. Yet when it comes to working with computers,
or video recorders, or microwave cookers, the user lives in a world of restrictions and
enforced work-arounds. When a user becomes pleased with their technological
prowess manufacturers have profoundly handicapped somebody.

How can we encourage designers to respect users a little more? Even to respect
them at least as well as they would computers? (The current standards of usability are
substandard from a computer’s point of view.) When we take the Church-Turing
Thesis seriously we see that by treating users as non-computers, we are treating them
as far less than human. In other words,

To treat humans as less than computers is disabling,
and it is avoidable.

Humans are Turing Machines (and more besides) and are only held back by poor
interfaces to bad technology.

Designers should work out algorithms to ensure that their designs are usable, at
least in the computability sense. Only then should they go to human factors consultants
to finish the design. Otherwise the necessary human factors contribution will only
palliate or camouflage engineering defects, or even condone work-arounds! Too often
cosmetics (including gratuitous features) are used to gloss fundamentally unusable
designs.

In aircraft cockpits, we may talk of computer-encouraged error (Race, 1990), but
the pilot is still blamed. In cars, radios have caused accidents, and this is hardly
surprising when you look at one and try and understand it. Many have over twenty
buttons with meanings that depend on what text 2mm high says. What driver can read

9



that when concentrating on driving? Not to put too fine a point on it, accident survivors
are often disabled for life. Such observations are poignant when seen in the context of
Ralph Nader’s efforts of thirty years ago to improve car safety. The mechanical
engineering has improved, but the interactive usability has decreased.

References
R. Bornat and H. Thimbleby (1989). “The Life and Times of Ded, Display Editor,”

Cognitive Ergonomics and Human Computer Interaction, 225–255, J. B.
Long and A. Whitefield, editors, Cambridge University Press.

Darragh, J. and Witten, I. H. (1992). The Reactive Keyboard, Cambridge University
Press.

Nader, R. (1965). Unsafe at Any Speed, Pocket Books.
Nielsen, J. (1993). Usability Engineering, Academic Press.
Race, J. (1990). “Computer-Encouraged Error,” Computer Bulletin, Series IV, 2(6):

13–15.
Sedgewick, R. (1988). Algorithms, Addison Wesley.
Thimbleby, H. (1990a). “You’re Right About the Cure: Don’t Do That,” Interacting

with Computers,  2(1): 8–25.
Thimbleby, H. (1990b). User Interface Design, Addison Wesley.
Thimbleby, H. (1991a). “The Undomesticated Video Recorder,” Image Technology,

Journal of the British Kinematograph, Sound and Television Society,
73(6): 214–216.

Thimbleby, H. (1991b). “Can Humans Think?” Ergonomics, 34 (10): 1269–1287.
Thimbleby, H. (1993). “Computer Literacy and Usability Standards?” User Needs in

Information Technology Standards, 223–230, C. D. Evans, B. L. Meek
and R. S. Walker, editors, Butterworth-Heinemann.

Thimbleby, H. and Witten, I. H. (1993). “User Modelling as Machine Identification:
New Design Methods for HCI,” Advances in Human Computer
Interaction, IV, 58–86, D. Hix and H. R. Hartson, editors, Ablex.

10


