
User interface design with matrix algebra

Harold Thimbleby

UCLIC, University College London Interaction Centre

It is usually very hard, both for designers and users, to reason reliably about user interfaces.
This paper shows that ‘push button’ and ‘point and click’ user interfaces are algebraic structures.
Users effectively do matrix algebra when they interact, and therefore we can be precise about
some important issues of usability. Matrices, in particular, are useful for explicit calculation and
for proof of various user interface properties.

With matrix algebra, we are able to undertake with ease unusally thorough reviews of real user
interfaces: this paper examines a mobile phone, a handheld calculator and a digital multimeter as
case studies. All difficulties in applying the approach correspond to awkward or avoidable com-
plexities in the user interfaces being modelled: using matrix algebra in design therefore encourages
designers to avoid such user interface complexities.

Categories and Subject Descriptors: B.8.2 [Performance and reliability]: Performance Analy-
sis and Design Aids; D.2.2 [Software engineering]: Design Tools and Techniques—User Inter-
faces; H.1.2 [Models and principles]: User/Machine Systems; H.5.2 [Information interfaces
and presentation]: User interfaces (D.2.2, H.1.2, I.3.6)—Theory and methods

General Terms: Design, Human Factors, Performance

Additional Key Words and Phrases: Matrix algebra, Usability analysis

“It is no paradox to say that in our most theoretical moods we may be nearest
to our most practical applications.” A. N. Whitehead

1. INTRODUCTION

User interface design is difficult, and in particular it is very hard to reason through
the meanings of all the things a user can do, in all their many combinations. Typ-
ically, real designs are not completely worked out and, as a result, very often user
interfaces have quirky features that interact in awkward ways. It might be hard
to design an interactive system, but it is even harder to use one that has poor
structure. Detailed critiques of user interfaces are rare, and very little knowledge
in design generalises beyond specific case studies. This paper addresses these prob-
lems by showing how matrix algebra can be applied to user interface design. The

Address: UCLIC, University College London, 26 Bedford Way, LONDON, WC1H 0AP, UK.
URL: http://www.uclic.ucl.ac.uk

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 · H. Thimbleby

paper explains the theory in detail and shows it applied to three real case studies.
Push button devices are ubiquitous: mobile phones, many walk-up-and-use de-

vices (such as ticket machines and chocolate vending machines), photocopiers, cam-
eras, and so on are all examples. Many safety critical systems rely on push button
user interfaces, and they can be found in aircraft flight decks, medical care units,
and nuclear power stations. Large parts of desktop graphical interfaces are effec-
tively push button devices: menus, buttons and dialog boxes all behave as simple
push button devices, though buttons are pressed via a mouse rather than directly
by a finger. Touch screens turn displays into literal push button devices, and are
used, for example, in many public walk-up-and-use systems. The world wide web
is the largest example by far of any push button interface.

For concreteness, this paper will consider handheld push button devices, and
moreover ones that can be represented as finite state machines. Finite state ma-
chines are mathematical structures and as such do not exist in any concrete form
for users: they are therefore at best a design or analysis tool. Finite state machines
have had a long history in user interface design, starting with Newman [10] and
Parnas [11] in the 1960s, and reaching a height of interest in user interface manage-
ment systems (UIMS) work [18]; now the concerns of HCI have moved on [9] — a
continual, technology-driven pressure, but one that tends to leave open unfinished
theoretical business.

Users cannot be expected to reason about the behaviour of finite state machines:
they are (typically) far too big, and as a formalism they are so versatile that they
have no structure that really helps thinking about them. Obviously some finite state
machines will have interesting structure (e.g., ones designed using statecharts [6]),
but in these cases it is easier to think about the structure than the finite state
machine itself. What the user can see, however, is buttons and their effects. This
paper shows that each button is a matrix; it thus turns out that users — whether
they know it or not — are doing matrix algebra when they press buttons.

Matrices have three very important properties. Matrices are standard mathe-
matical objects, with a history going back to the nineteenth century:1 this paper
is not presenting and developing yet another notation and approach, but it shows
how an established and well-defined technique can be applied fruitfully to serious
user interface design issues. Secondly, matrices are very easy to calculate with, so
designers can work out user interface issues very easily, and practical design tools
can be built. Finally, matrix algebra has lots of structure and properties: designers
and HCI specialists can use matrix algebra to reason about what is possible and
not possible, and so on, in very general ways.

Matrices are not a panacea for specifying all manner of user interfaces; on the
contrary, a major advantage is that difficulties in employing a matrix approach
correspond well with difficulties in user interfaces. If designers used matrix algebra,
they would be very likely to avoid such user interface complexities in the first place.
This paper will give many examples of this claim. It is important to note that many
of these poor aspects of user interface design are extremely hard to describe in
everyday words, let alone to describe clearly in words: typical user interface design

1The Chinese solved equations using matrices as far back as 200bc, but the recognition of matrices
as abstract mathematical structures came much later.

User interface design with matrix algebra · 3

methods (and user interface evaluation methods) would be unable to identify and
correct them.

2. FROM FINITE STATE MACHINES TO MATRIX ALGEBRA

Finite state machines are often drawn as transition diagrams. A transition diagram
consists of circles and arrows connecting the circles; the circles represent states, and
the arrows represent transitions between states. Typically both the circles and the
arrows are labelled with names. A finite state machine is in one state at a time,
represented by being ‘in’ one circle. When an action occurs the corresponding arrow
from that state is followed, taking the machine to its next state.

A FSM labels transitions from a finite set. Labels might be button names, On ,
Off , Rewind , say, corresponding to button names in the user interface. In our
matrix representation, each transition label denotes a matrix, B1, B2, B3 . . . , or in
general Bi. Buttons and matrices are not the same thing: one is a physical feature
of a device, or possibly the user’s conception of the effect of the action; the other
is a mathematical object. Nevertheless, except where confusion might arise in this
paper, it is convenient to use button names for matrices. In particular this saves us
inventing mathematical names for symbolic buttons, such as ∨ . Pedantically we
could define a function B that gives the matrix a button denotes, so for example
B

[[
∨

]]
= D; our convention, then, is simply that we omit B, and avoid introducing

arbitrary names such as D.
The state of the FSM is represented by a vector, s. When a transition occurs,

the FSM goes into a new state. If the transition is Bi, the new state is s times Bi,
or sBi. Thus finding the next state amounts to doing a matrix multiplication.

If we consider states to be labelled 1 to N , then a convenient representation of
s is a vector of 0s of length N , with a 1 at position corresponding to the state
number; under this representation, the matrices B will be N × N matrices of 0s
and 1s (and with certain further interesting properties we do not need to explore
here).

Instead of having to draw diagrams to reason about FSMs, we now do matrix
algebra. However big a FSM is, the formulas representing it are the same size:
“sB1B2” could equally represent the state after two transitions on a small 4 state
FSM or on a large 1000 state FSM. The size of the FSM and its details are
completely hidden by the algebra. Moreover, since any matrix multiplication such
as B1B2 gives us another matrix, a single matrix, say M = B1B2, can represent
many user actions: “sM” might represent the state after two button presses, or
more.

There is a significant theory behind matrices. Matrix multiplication is associative,
so the matrix M above has a meaning to the user. If pi,

∑
p = 1, is the probability

that action Bi is undertaken by a user, then

S =
∑

i

piBi

is a simple stochastic probability matrix, which can be analysed to obtain statistical
information about the user or about the design of the user interface. Such statistical
models were explored in detail in an earlier paper [14].

4 · H. Thimbleby

For further information, see [5] for a textbook introduction with applications
of FSMs in HCI. There are many textbooks available on matrix algebra (linear
algebra); Broyden’s Basic Matrices [4] is one that emphasises partitions, a technique
that is used extensively later in this paper. The rest of this paper interleaves
reviewing the necessary theory with progressing through worked examples.

FSMs are not necessarily device-based: there is no intrinsic ‘system’ or ‘cognitive’
bias. Matrix operations model actions that occur when user and system synchro-
nise. Thus a button matrix represents as much the system responding to a button
push as the user pressing the button. Matrices can can represent a system doing
electronics to make things happen, or they represent the user thinking about how
things happen. The algebra does not ‘look’ towards the system nor towards the
user. As used in this paper, it simply says what is possible given the definitions; it
says how humans and devices interact . . .

2.1 Introductory examples

Matrix multiplication does not commute: if A and B are two matrices, the two
products AB and BA are generally different. This means that pressing button A
then B is generally different from pressing B then A. This is not yet a deep insight,
but it is a short step from this sort of reasoning to understanding undo and error
recovery, as we shall see below.

In a direct manipulation interface, a user might click on this or click on that in
either order. It is important that the end result is the same in either case. Or in a
pushbutton user interface there might be an array of buttons, which the user should
be able to press in any order that they choose. Both cases are examples of systems
where we do want the corresponding matrices to commute. We should therefore
either check Click1Click2 = Click2Click1 by direct calculation with matrices, or we
should design the interface to ensure the matrices have the right form to commute.
Just as allowing a user to do operations in any order makes the interface easier to
use [16], the analysis of user interface design in this case becomes much easier since
commutativity permits mathematical simplifications.

You might think that pressing the button OFF is a shortcut for the two presses
STOP OFF , for instance as might be relevant to the operation of a DVD player.
Let S and O be the corresponding matrices; in principle we could ask the DVD
manufacturer for them. The simple calculation SO = O will check the claim, and
it checks it under all possible circumstances — the matrices O and S contain all
the information for all possible states. This simple equation puts some constraints
on what S and O may be. For instance, assuming S is non-trivial, we conclude
that O is not invertible. We prove this by contradiction.

Assume SO = O, and assume O is invertible. If so, there is a matrix O−1 which
is the inverse of O. Follow both sides by this inverse: SOO−1 = OO−1 which can be
simplified to SI = I, as OO−1 = I. Since SI = S we conclude that S = I. Hence
S is the identity matrix, and STOP does nothing. This is a contradiction, and we
conclude that if O is a short cut then it cannot be invertible. If it is not invertible,
then in general a user will not be able to undo the effect of OFF . What not being
invertible means, more precisely, is that the user cannot return to a previous state
only knowing what they have just done. They also need to know what state the
device was in before the operation and be able to solve the problem of pressing the

User interface design with matrix algebra · 5

right buttons to reach that state.2

3. EXAMPLE 1: THE NOKIA 5110 MOBILE PHONE

The menu system of the Nokia 5510 mobile phone can be represented as a FSM of
188 states, with buttons ∧ , ∨ , C , and NAVI (the Nokia context sensitive button:
the meaning is changed according to the small screen display). In this paper we
have used the definition of the Nokia 5110 as published in [15].

First, we describe the user interface informally in English. The menu structure is
entered by pressing NAVI and then using ∧ and ∨ to move up and down the menu.
Items in the menu can be selected by pressing NAVI , and this will either access a
phone function or select a submenu. The submenu, in turn, can be navigated up
and down using ∧ and ∨ , and items within it selected by NAVI . The C key is
used for correction, and ‘goes up a level’ to whatever menu item was selected before
the last NAVI press. If the last press of NAVI selected a phone function, then C
cannot correct it — once a function is selected, the phone does the function and
then reverts to the last menu position. The phone starts in a standby state, and in
this state C does nothing.

We may hope or expect the Nokia’s user interface to have certain properties. It
may have been designed with certain properties in mind. Perhaps Nokia used a
system development process that ensured the phone had the intended properties.
Be all this as it may, we will now show that from a matrix definition of the Nokia
we can reliably deduce and check properties.

We represent the buttons and button presses by boxed icons like ∧ and C , and
we would normally represent the matrices they represent by mathematical names
like U and C, which for the present model of the Nokia are in fact 188 × 188
matrices. But the buttons and matrices correspond, and they are essentially the
same thing: we may as well call the mathematical objects by names which are the
button symbols themselves. So although our sums look like sequences of button
presses, they are representing matrix algebra.

We can establish, amongst others, the following laws:

∧ ∨ = I

∨ ∧ = I

∧ C = C

∨ C = C

C
i �= C

j
for 0 ≤ i ≤ 3, i �= j

but C
i

= C
4

for 4 ≤ i

Here, as usual I is the identity matrix. These are not just ‘plausible’ laws the
user interface happens to obey or might often obey, or we would like it to obey: we
calculated these identities: they are universally true, facts that can be established
directly using the 188× 188 matrices from the Nokia specification we started from

2Or the user needs to know an algorithm to find an undo: for instance, to be able to recognise the
previous state, and be able to enumerate every state, would be sufficient — but hardly reasonable
except on trivial devices.

6 · H. Thimbleby

(in fact, we wrote a program to look for interesting identities — we had no real
preconceptions on what to find).

Some of these identities are not surprising: doing up then down (or down then
up — one does not imply the other) has no effect; although it might be surprising
that it never has any effect, which is what the identity means.

Up or down followed by C is the same as if C had been pressed directly; on
the other hand, NAVI C is not the same as C , since when NAVI activates a phone
function the C key cannot correct it.

Finally, direct calculation shows that C
4

= C
5
, and moreover that this is the

least power where they are equal. If they are equal, they will be equal if we do the
same things to both sides, so C

4
C = C

5
C and hence C

5
= C

6
. By induction,

C
i
= C

i+1
for all 4 ≤ i, and hence

C
i
= C

4
for 4 ≤ i

The identity means that if C is pressed often enough, namely at least 4 times,
further presses will have no effect. In fact, Nokia recognise this: if the C key is held
down continuously for a couple of seconds, it behaves like C

4
.

3.1 Inverses

Matrices only have inverses if their determinants are non-zero. A property of de-
terminants is that the determinant of a product is the product of the determinants:
for any matrices A and B:

det(AB) = det(A) det(B)

In a product, if any factor is zero, the entire product is zero — zero times anything
is zero. So if any determinant is zero, the determinant of the entire product will
be zero. What this means for the user is that when they do a sequence of button
presses corresponding to the matrix product B1B2 . . . Bn, if any of them are not
invertible (not undoable), the entire sequence will not be invertible. So buttons
with matrices that have zero determinants (i.e., are singular) are dangerous: if
they are used in error, there is no uniform way to recover from the mistake. The
user might have fortuitously kept a record of or memorised their actions up to the
point where they made the mistake, and then they might be able to recover using
the device’s buttons, but if so they are also having to use this additional knowledge,
something external the device cannot help with.

If a matrix cannot be inverted (because it is singular) the user cannot undo
the effect of the corresponding button, but even if a matrix can be inverted in
principle, in practice the user may not be able to undo its effect: they may not
have access to all buttons that are factors of the inverse. The user is only provided
with particular buttons and hence particular matrices. A routine calculation can
establish what the user can do with their actual buttons; a designer may wish to
check that every button’s inverse is a product of at least one other button. For
example, the determinants of ∨ and ∧ on the Nokia mobile phone are both −1,
which is non-zero, and these matrices can be inverted. The user might have broken
the ∨ button. In this case, as ∧ is still invertible as a matrix, but the user cannot

User interface design with matrix algebra · 7

undo its effect (at least, without knowing a lot about the Nokia and the way ∧
works in each menu level).

In contrast to ∨ and ∧ , the matrices C and NAVI are both singular, which
means they cannot be inverted. In other words, there is no matrix M such that
C M = I or NAVI M = I. Since there is no matrix, there is not even a sequence of
button presses that achieves this. But if there is no matrix, there is no such product
— whatever the buttons. In user interface terms, this means that if C or NAVI are
pressed by mistake, the user cannot in general recover from the error — at least
without knowing exactly what they were doing. If a matrix is not invertible, it
means the device no longer knows what it was doing, and therefore it cannot go
back.

4. PROJECTING LARGE STATE SPACES ONTO SMALLER SPACES

Although it is possible to use matrices to model entire systems, often it is undesir-
able to do so. We may want to reason closely about a few buttons, and ignore the
rest of the system. In fact we did this with the Nokia example in the last section:
the Nokia mobile phone had a model of 188 states, and while this completely de-
scribed the menu subsystem of the Nokia phone it did not cover any other features,
such as dialling or SMS (short message service, for sending text messages). This
was a pragmatic decision, and one that can be justified because other buttons on
the phone (such as the digit keys) are ‘obviously’ irrelevant to how the menu system
works. But are they really?

We need a systematic and reliable approach to getting at the states of systems we
are interested in. This section shows how matrices can be used to reliably abstract
out just the features that are needed.

To project a large state vector to a smaller space, multiply by an appropriate
projection matrix. Simply, if the large state space has M states, the projection
matrix P has M rows and N columns, then the projected state space vector sP
will have N columns (or equivalently, N states). We then consider button matrices
operating on sP rather than on s: these matrices will be square N × N matrices,
possibly much smaller than the original M × M size. Suppose the fully explicit
button matrices are B and the projected matrices are B′. All we require is sBP =
sPB′ (i.e., that BP = PB′) to associate with any button matrix (or button matrix
product) B the smaller projected matrix B′.

For concreteness consider a digital clock, and we will be interested in the be-
haviour of the tens of hours setting button, TENS , and the on/off arrangements.
Such clocks must display 24 hours and 60 minutes; they therefore need 24 × 60 =
1440 states just to display the time. We also need an extra state for off, when
the clock is in a state displaying no time at all. The state occupancy vector s is
therefore a vector with 1441 elements, which is too big to write down explicitly.
Our clock has four buttons to increment the corresponding digits, so that a user
can set the time. These buttons could be represented fully as 1441×1441 matrices.

We define a matrix P that projects the state space onto a smaller space, the space
we are interested in exploring in detail. Suppose we want to work in the tens of
hours space, in which case P will project 1441 states to 4 states: off, or displaying
0, 1, or 2 in the tens of hours column. Thus P will be a matrix with 4 columns and
1441 rows.

8 · H. Thimbleby

There is not space here to show P explicitly because it has 5764 elements, and
in any case that number of elements would be hard to interpret. The defini-
tion of P depends on how states are arranged. We have to choose some con-
vention for the projected state space and for the sake of argument take sP =
([off?] [displaying 0?] [displaying 1?] [displaying 2?]), where [e] means 0 or 1 de-
pending on whether e is true — a convenient notation due to Knuth [7]. If we
assume the state vector s is arranged in the obvious way that state 1 is off, state
2 is displaying time 0000, state 3 is time 0001, state 4 is time 0002 . . . state 60 is
time 0059, state 61 is time 0100 . . . state 1441 is time 2359, then P will look like
this:

P =

1 0 0 0
0 1 0 0
...

...
...

...
0 1 0 0
0 0 1 0
...

...
...

...
0 0 1 0
0 0 0 1
...

...
...

...
0 0 0 1

one row, for off
 600 rows the same, for displaying 0

 600 rows the same, for displaying 1

 240 rows the same, for displaying 2

A possible definition of the tens of hours button matrix3 is this:

TENS =

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

The TENS button leaves the clock off it is already off, and otherwise increments
the digit displayed by the tens of hours digit. We can confirm this by explicitly
working out what TENS does in each of the four states:

(1 0 0 0) TENS = (1 0 0 0)

(0 1 0 0) TENS = (0 0 1 0)

(0 0 1 0) TENS = (0 0 0 1)

(0 0 0 1) TENS = (0 1 0 0)

If we are only interested in the on/off switch, we do not even care what digit is
displayed, and we can project the clock’s 1441 states on to just two, on and off.
A new projection matrix Q with 1441 rows and 2 columns is required, but it is

3To avoid typographical clutter we write TENS rather than TENS
′
.

User interface design with matrix algebra · 9

clearer and easier to define Q in terms of P , rather than write it explicitly — here
we see another advantage of projecting a huge state space onto something more
manageable.

Q = P

1 0
0 1
0 1
0 1

The clock might have an on/off button:

ON-OFF =
(

0 1
1 0

)
The other buttons on this clock do not change the on/off state of the clock, so

in this state space they are identities, e.g.,

TENS =
(

1 0
0 1

)
Or perhaps the clock has two separate buttons, one for on, one for off?

ON =
(

0 1
0 1

)
, OFF =

(
1 0
1 0

)
This looks pretty simple, but we can already use these matrices to make some user

interface design decisions. Suppose for technical reasons, when the clock is switched
off the digits stay illuminated for a moment (this is a common design problem: due
to internal capacitance the internal power supply keeps displays alight for a moment
after being switched off). Users might therefore be tempted to switch the clock off
again, assuming that their first attempt failed (perhaps because the switches are
nasty rubber buttons with poor feedback). It is easy to see from the matrices that
a repeated (specifically, double) use of ON-OFF leaves the clock state unchanged,
whereas any number of pressings of OFF is equivalent to a single press of OFF .
Under these circumstances — which are typical for complex push button devices
like DVD players, TVs and so on4 — we should prefer a separate off button that,
unlike the ON-OFF button, cannot be used to switch the device on by accident.

The scenario does not require an on button; what, then, about switching on? We
could arrange for all of the time-setting buttons to switch the clock on, e.g.,

TENS =
(

0 1
0 1

)
We now have a clock with five buttons. This is the same number of buttons as

one with a single ON-OFF button, and therefore the same build price. Furthermore,
it has the nice feature that if the user attempts to set a digit by pressing a digit

4The JVC HR-D540EK has the additional complexity that pressing OPERATE slowly (what it calls
the button we call ON-OFF in this paper) enters a child lock mode which disables the device.

10 · H. Thimbleby

button (say, TENS) that button always changes what is displayed. Pressing TENS
would change nothing to 0, change 0 to 1, change 1 to 2, and change 2 to 0. To
define this behaviour requires the previous 4 state model:

OFF =

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

 , TENS =

0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 , and other buttons . . .

A similar approach could be used for TVs and DVD players of course.

5. EXAMPLE 2: THE CASIO HL-820LC CALCULATOR

Calculators differ in details of their design, and so to be specific we will base our dis-
cussion on a particular calculator, the Casio HL-820LC, which is a market-leading
and popular handheld (5.5×10cm) calculator. It is a current model and can be
readily obtained: the discussion below should be easy to check if required. This
section closes with a brief comparison with some differently designed Casio calcula-
tors, but our primary concern for this paper is to illustrate the matrix approach; a
more general critique of calculators (and a wider range of calculators) can be found
elsewhere [13].

The previous section ended by showing how a designer can project a large FSM
down to a manageable size. Similarly, users have models of systems that are typi-
cally much smaller than the actual implementation model of the systems. We start
by drawing a simple arrow diagram representing what happens to the inside state
s of the calculator when a button is pressed:

s
press B−−−−−−→ sB

The user has no reasonable way of working out or understanding this because it
involves understanding the calculator’s program or its specification, both of which
are technical documents of no interest to calculator users; after all, the whole point
of the calculator is to do the work! Instead users have some sort of perception of
the device and mental model, that somehow transforms something of the internal
state s into a mental state. We can call the user’s model of the state m, and the
user’s model of the button matrix B . We then obtain this diagram:

implementation: s −−−−−−→ sB�
�

user model : m −−−−−−→ m B

For considering the display and memory of a calculator, the user’s model of the
state m need only be two numbers, which we can represent as a vector of two
elements: (display memory). The matrices B will then be 2 × 2 matrices, that
operate on these vectors. Although a user is very unlikely to think explicitly using

User interface design with matrix algebra · 11

matrices, an advantage of 2 × 2 matrices for this paper is we can easily show and
reliably calculate what the user can (perhaps not so reliably) work out.

As it happens, for the calculator and a display/memory user model the trans-
formation can be represented as a matrix. To show this, for simplicity imagine a
calculator that can only handle numbers 0, 1, and 2. The matrix M that represents
the user transformation of the system FSM would be something like this:

M =

0 0
0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2

This nicely transforms a 10 state implementation into a simple 2 number model
that makes more sense to the user. Here we have simply, m = sM . Note that, for
illustration purposes, we added a ‘dummy’ state 0 that the user’s model does not
distinguish from state 1. Perhaps this is the off state, or an error state, or something
else that the user is ignoring for the purposes of understanding the display/memory
issues more clearly.

In summary, for working through display/memory issues, we can represent the
user’s model of the state of the calculator by a row vector (display memory),
which we will abbreviate to (d m). We will take d and m to be real numbers, but of
course we know that any calculator will implement them using some finite binary
representation (or possibly a binary-coded decimal representation). Since we are
not going to do serious arithmetic (not even division by zero) in our analysis, the
issue of whether d and m are finite or not, what their precision is, how the calculator
handles overflow, and so on, will not arise.

Each of the calculator’s functions can be represented as a matrix multiplication,
as expected. Thus the key AC , which on the Casio HL-820LC clears the display
but does not change the memory corresponds to a matrix C where

C =
(

0 0
0 1

)
.

Multiplying the calculator’s state by C changes it to (0 m), as can be seen by
working through the calculation:

(d m)
(

0 0
0 1

)
= (0 m)

This is what AC does: it sets d = 0 and leaves m unchanged. Curiously, then,
the button called AC does not mean All Clear!

Many calculator users press AC repeatedly. We can see that pressing AC twice

12 · H. Thimbleby

has no further effect:

(d m)
(

0 0
0 1

) (
0 0
0 1

)
= (0 m)

In fact, since (
0 0
0 1

)n

=
(

0 0
0 1

)
for all n > 0

it is clear that pressing AC has no effect beyond what can be achieved by pressing
it just once (in technical terms, it is idempotent). Users are superstitious — or not
certain that the AC button works reliably.

The Casio HL-820LC has other buttons. What are their corresponding matrices?
Here are some definitions:

M+ =
(

1 1
0 1

)
add display to memory

M- =
(

1 −1
0 1

)
subtract display from memory

AC =
(

0 0
0 1

)
clear display

MRC =
(

0 0
1 1

)
recall memory

MRC MRC =
(

0 0
1 0

)
recall and clear memory

Other buttons on the calculator are equals, digits, and the usual operators for
addition and subtraction, etc. We will not look at them here. However, for com-
pleteness we need a ‘do nothing’ or identity operation:

I =
(

1 0
0 1

)
do nothing

Anything multiplied by I is unchanged. (This standard bit of notation is useful
in much the same way that 0 is useful in ordinary arithmetic to represent nothing.)

Note that MRC MRC is defined specially by Casio; it does not mean the same as
MRC pressed twice, which we can work out:

MRC MRC(
0 0
1 1

) (
0 0
1 1

)
=

(
0 0
1 1

)
Thus, if MRC has the meaning as we defined in the matrix, then pressing it twice

should have no effect: the multiplication shows that apparently MRC MRC = MRC .

User interface design with matrix algebra · 13

But on the calculator, MRC MRC is instead defined to clear the memory after putting
it in the display. Hence we defined a special matrix for it, but later we shall see
how this ambiguity creates problems for the user — which the calculations above
warn it may.

If MRC MRC does not correspond to the matrix for MRC , aren’t we contradicting
ourselves about the user doing matrix algebra? What it means is that our initial
understanding of the user’s model of the calculator, namely the state space (d m),
was inadequate. The state space should account for whether MRC is or is not the
last button pressed. (It is possible to extend the state space to do this, but it
becomes much larger.) Casio seem to think MRC MRC is a single operation that the
user should think of as practically another button: in this sense we are justified
in giving it an independent matrix (it also allows the rest of this paper to use
2 × 2 matrices rather than larger ones). However, the calculator does nothing to
encourage the user to think of MRC MRC as a single button: pressing MRC then
waiting an arbitrary time then pressing MRC again (as might happen if the user
goes for a cup of tea) is treated as the special MRC MRC . In this case, the user
would have no sense of MRC MRC being a single ‘virtual’ button.

In short, the problems we are glossing indicate a design problem with the HL-
820LC: if we were designing a new calculator and had the ability to influence the
design, we would have made different decisions.

What does MRC MRC MRC mean? Since Casio define MRC MRC to mean something
special, then MRC MRC MRC could mean either (MRC MRC) MRC or it could mean
MRC (MRC MRC) — which is the same thing the other way around.5 It would not
matter if both of these alternatives had the same meaning. But as

MRC MRC MRC MRC MRC MRC(
0 0
1 0

) (
0 0
1 1

)
�=

(
0 0
1 1

) (
0 0
1 0

)

we have established that the three successive key presses MRC MRC MRC is ambigu-
ous: it could mean either (MRC MRC) MRC or MRC (MRC MRC) — and it matters
which!

When we look at the calculator to find out how Casio have dealt with this ambi-
guity, we find that we did not fully understand what MRC does. In fact, as one can
establish with some experimenting that MRC only recalls the memory to the display
if the memory is not zero; if the memory is zero, MRC does nothing, and MRC MRC
sets the memory to zero. What MRC MRC MRC means, then, is “recall memory to
display and zero the memory”: on the Casio it means exactly the same as MRC MRC .

5Provided we consider MRC MRC as a ‘logical’ button, this is an issue of commutativity. Instead, we
could consider the matrix M for MRC directly, where our calculation shows M(MM) �= (MM)M ,
and this would be a failure of associativity. But matrix multiplication is associative! The problem
this indicates is that M is bigger than a 2× 2 matrix, and our calculations projected onto a 2× 2
matrix are incorrect if we want to capture these idiosyncracies. Had we been designing a new
calculator, rather than reverse engineering an existing one, the formal difficulty of representing
MRC MRC as defined for this calculator might have encouraged finding a simpler design. Certainly
it highlights a design issue that needs further exploration, whether empirical or analytic.

14 · H. Thimbleby

MRC =

m �= 0,

(
0 0
1 1

)

m = 0,

(
1 0
0 1

)
We now have a standard problem. The real calculator behaviour suggests we

should extend our user model to handle what it actually does: the MRC button is
not a simple 2× 2 matrix! Or if we were Casio, we could redesign the calculator so
that it has a simpler algebra — this is a route I’d prefer, but of course we cannot
now change the HL-820LC. What we will do here in this paper is be careful that
we never rely on doing MRC when the memory is zero. Since that is the simplest
course for us, it is probably also the simplest course for a user. The exception in
the button almost certainly makes the calculator harder to use. If the user is doing
some sums and repeatedly using M+ and M- they also and additionally have to keep
track of whether the memory ever becomes equal to zero: if it does, pressing MRC
will behave unexpectedly. If the memory is m, the user expects MRC to leave the
calculator in the state (m m), including (0 0) if m = 0, but as Casio designed the
calculator it will leave it in state (d 0) in this case! Put another way, modes are
messy (as we knew), and the matrix approach makes this very obvious.

In general, we have a useful design insight: if we can’t capture a device’s semantics
easily, then possibly the device’s design is at fault. Difficult semantics must mean,
in some sense, that a device is harder to use than one with simpler semantics.

We can find some nice properties; we will look at just two.
First, MRC followed by M- sets the display to the memory and clears the memory.

It is the same as Casio’s interpretation of MRC MRC :

MRC M- MRC MRC(
0 0
1 1

) (
1 −1
0 1

)
=

(
0 0
1 0

)
This seems so simple, was the idiosyncratic interpretation of MRC MRC necessary?
Secondly, M+ and M- are inverses of each other:

M+ M- =
(

1 1
0 1

) (
1 −1
0 1

)
=

(
1 0
0 1

)
= I

Matrix algebra tells us immediately that pressing the buttons in the other order
will have the same effect. We can also show this by explicit calculation:

M- M+ =
(

1 −1
0 1

) (
1 1
0 1

)
=

(
1 0
0 1

)
= I

So M+ is the inverse of M- and M- is the inverse of M+ . If you press M+ by
mistake, you can recover by pressing M- and vice versa.

By calculating determinants, it is easy to see that for the Casio calculator, none
of the buttons apart from M+ and M- can be inverted. As we showed in Section 3,

User interface design with matrix algebra · 15

above, this means that a user cannot undo mistakes with any of the other buttons
we have defined (of course a user would end up using digit keys and other features
we have not mentioned here).6

5.1 Solving user problems

We have defined simple matrices for the memory buttons and the clear button.
The Casio calculator can obviously add to memory (using M+) and subtract from
memory (using M-). The question, now, is what else would we reasonably want a
calculator like this with memory functions to do?

If the calculator’s state is the vector (d m) then plausibly we want operations to
get to any of these states:

Zero display (0 m)
Zero everything (0 0)
Zero memory (d 0)
Show memory (m m)
Store display (d d)
Swap memory & display (m d)

Most of these operations are easy to justify in terms of plausible user require-
ments. The final one, ‘swap,’ which seems more unusual, might be useful for a user
who was not sure what was in the memory. One swap will confirm what is in the
memory, and used again will put it back and restore the display as it was.

We can do some of the operations listed above very easily: for instance, AC
achieves zero display (without changing the memory), as we noted earlier. Showing
the memory is also done directly, but by MRC :

(d m) MRC = (m m)

because

MRC =
(

0 0
1 1

)
and

(d m)
(

0 0
1 1

)
= (m m)

To zero everything is fairly easy, since (with the special meaning of two consec-
utive MRC presses):

MRC MRC AC =
(

0 0
1 0

) (
0 0
0 1

)
=

(
0 0
0 0

)
which will take (d m) to (0 0). However, doing these operations in the other order
is not the same at all:

6A careful reader will notice that the buttons we have defined do not allow the user to change
the calculator’s state from (0 0), so there is no problem if buttons have no inverse, because the
calculator can’t be got into other states anyway! In other words, our 2 × 2 model is too small to
make all the points we’d like to from it.

16 · H. Thimbleby

AC MRC MRC =
(

0 0
0 1

) (
0 0
1 0

)
=

(
0 0
1 0

)
= MRC MRC

The operations do not commute; the user has to remember the right way round
of using them. Indeed, doing MRC AC MRC is different again (as can be confirmed
by calculating the product)!

The remaining three operations, storing the display, zeroing the memory and
swapping, are a lot more tricky than these first few examples.

Imagine the user has the calculator displaying some number d and they want to
get it into the memory. They must effectively solve this equation:

(d m) M = (d d)

It is not difficult to solve this equation in matrix algebra:

(d m)
(

M11 M12

M21 M22

)
= (dM11 + mM21 dM12 + mM22) = (d d)

so M11 = 1, M21 = 0 and so on. Putting it all together we get

M =
(

1 1
0 0

)
This is not one of the matrices we have got directly available. No button press

corresponds to M . Of course users (apart from us!) don’t solve matrix equations
explicitly, instead they will have to do some rough work and hard thinking. In
the examples here, the complexity suggests it is very likely that no users (except
mathematicians) would be able to work out how to do things — the Casio appears
to be far too complex if we think the tasks listed above are reasonable for it to
support.

Fortunately, we have the huge benefit of having a handy design notation which
makes things much easier to work out. Once we have worked out a solution, we
might say how to use it to solve the problem in the user’s manual: a user does not
need to go over all the work again. Alternatively the calculator could be redesigned
so that it had a button that did M directly: there would then be little need to
explain it in detail in the user manual (or on the back of the calculator). In this
case, of course, we’d need to be satisfied that the feature was sufficiently useful
that it was worth dedicating a button to. Another possibility (which we’ll see
again below) is that it might be possible to choose other functions on the calculator
to make working out M a lot easier.

Given that the Casio calculator design is fixed, we shall have to work M out as
a product from some or all of the matrices we already have. (If Casio had provided
a key with a corresponding matrix M things would have been trivial.) It cannot
be done with the keys we have defined so far. We need to use, for example, the
- and = keys too. We can work out (which as we have seen with MRC and other
keys, needs carefully checking by experiment as well) that

- MRC = =
(

1 0
−1 1

)

User interface design with matrix algebra · 17

with this insight,7 we can establish with more hard thinking (done by Mathemat-
ica [19]) that

- MRC = M+ MRC =
(

1 0
−1 1

) (
1 1
0 1

) (
0 0
1 1

)
=

(
1 1
0 0

)
as required.8 If it’s so difficult — both to work out and to do — why would we

want to do it? Simple: the calculator has a memory and we might want to store
a number we have worked out, currently in the display, into the memory. Surely
that is what the memory is for?

It seems clear that the calculator should have provided a STORE key to do this
operation directly. It would then be very easy to store the display in memory. Note
that with the Casio design as it is, this sequence of operations includes matrices
that are not invertible: if the user makes a mistake, there is no way to recover
(unless the user knows what the state previous was and how to reconstruct it).
One needs to use a piece of paper to keep a record of the sums — and if you’re
using a piece of paper, what real use is the memory?

Next, to get (m d), which is just swapping over the display and memory, we need
to find factors of M in terms of our existing matrices, where

M =
(

0 1
1 0

)
We might want a swap operation so we could work on two sums at once, one in

the display and one ‘backed up’ in the memory. (We could be keeping track of two
tallies.) Another use of a swap is to allow the user to perform any calculation on
the memory without losing the displayed number: for example, with a swap the
user could square root the memory using the standard square root button, and no
special memory-root button would be required.

Now this M is invertible — a swap followed by a swap would leave the calculator’s
display and memory unchanged — so it cannot be a product of any of the existing
matrices except M+ or M- , which are the only invertible matrices. Since M+ and
M- commute, for any sequence of using them (with no other buttons used between
them), their order does not matter. So, to find out what a sequence means, we can
collect them together, say putting all the M- first. The most general sequence is
then

m times︷ ︸︸ ︷
M- M- · · · M-

n times︷ ︸︸ ︷
M+ M+ · · · M+ =

(
1 −1
0 1

)m(
1 1
0 1

)n

=
(

1 n − m
0 1

)
Note that M+

n
= M-

−n
a fact that we will use later. Hence M+

n
can never be

M , for any n; we have proved that the swap operation is impossible on the Casio.

7Fortuituously this particular sequence of keystrokes only requires a 2 × 2 matrix! This simple
matrix definition will fail if there is numerical overflow — because the calculator gets ‘stuck’
when there is an error, and our current two-element state space cannot model this feature.
8There are many other solutions, but this is one of the easier ones.

18 · H. Thimbleby

Incidentally, as a by-product of this line of thought, we now have a formula that
enables us to find out how to do anything on the calculator that requires a matrix

(
1 k
0 1

)
for any integer k

Obviously Casio could provide a special SWAP key which does what we want in
one press, but it is creative to ask what else could be done. First we prove a swap
would have to be achieved in combination with using M- or M+ , assuming no other
buttons than those we have so far defined are available.

If the new button has matrix S and it helps the user achieve a swap, then it must
be the case that there are matrices A and B such that

ASB =
(

0 1
1 0

)
This is not singular (its determinant is −1), and therefore the determinants of

A, S, and B are all non-zero. To solve the equation for S, we get:

S = A−1

(
0 1
1 0

)
B−1

A special case is that A and B are both identities, and then S is, of course, the
swap matrix itself. If A and B are not singular, then they cannot be products of
singular matrices: in short, on the Casio, they can only be composed out of M- and
M+ .

For example if we wanted a new button S that did a swap when used between
M+ and M- , we would solve this equation

(
1 1
0 1

)
S

(
1 −1
0 1

)
=

(
0 1
1 0

)
so

S =
(
−1 0

1 1

)
In words, here S has an English meaning, “Subtract display from memory and

display it.”
Perhaps we could try A = I and B = M- , to find the operation that when

followed by M- gives a meaning equivalent to SWAP . We then need to solve

S

(
1 −1
0 1

)
=

(
0 1
1 0

)
which gives S the English meaning, “Add the display to the memory, and display

the original memory.”
A more general approach is possible. Earlier we gave the general form for any

number of M- or M+ used together, namely M+
n

for positive or negative n. We can
solve the equation for M+

m
S M+

n
= SWAP and get

User interface design with matrix algebra · 19

S =
(
−m 1 + mn

1 n

)
In other words, there are no forms that would give a brief and concise natural

interpretation for a new button S . Moreover, any meaning we might have liked for
S can be achieved using some combination of SWAP , M- and M+ : if we have SWAP
we do not need any of these esoteric buttons.

Overall, then, it would be better to have a SWAP button, or collect persuasive
empirical evidence that users do not want a swap operation!

Finally, consider the zero memory operation. Here we need to find a matrix M
such that

(d m)M = (d 0)

The Casio has no key that does this directly, so — as before — we will have to
find a sequence of button presses B1 B2 · · · Bn whose matrices multiply together
to make M . If we had a STORE key, all this could have been achieved by doing
STORE MRC MRC : the STORE stores the display in memory, then the double-MRC
recovers memory and sets it to zero. We can check our reasoning:

STORE MRC MRC(
1 1
0 0

) (
0 0
1 0

)
=

(
1 0
0 0

)
and

(d m)
(

1 0
0 0

)
= (d 0)

Although the Casio does not have a STORE button, we have already worked out
a sequence that is equivalent to it, namely - MRC = M+ MRC . So to put zero in the
memory, we should follow it by MRC MRC , which would mean this:

- MRC = M+ MRC MRC MRC

but this has got that problematic sequence of three consecutive MRC presses we
examined earlier. We discovered that the Casio would treat this as meaning the
same as

- MRC = M+ MRC MRC

Coincidentally this gives the required matrix, exactly what we wanted. There is
no shorter solution.

Earlier we said that the potential ambiguity of MRC MRC MRC could cause prob-
lems. Yet here it looks like Casio’s design helps. Actually, we did not know Casio’s
design decision would help — we had to work it out by doing the relevant matrix
multiplications. In other words, to find out how to perform a trivial and plausible-
sounding task, we had to engage in formal reasoning that is beyond most users.
This strongly suggests the calculator is badly designed in this respect.

20 · H. Thimbleby

Add display to memory M+

Subtract display from memory M-

Show memory MRC

Zero display AC

Zero memory - MRC = M+ MRC MRC

Zero everything MRC MRC AC

Store display - MRC = M+ MRC

Swap memory & display impossible

Table 1. How the Casio HL-820LC does memory operations (with shortest solutions shown).

5.2 Summary and comparisons with other designs

Table 1 summarises our results for the Casio HL-820LC. There is no inevitablility
about these results: Casio themselves make other calculators that embody different
design decisions.

The Casio HS-8V has a change sign button:

+/- =
(
−1 0

0 1

)
change sign

Since this button is invertible, it provides more ways of attempting to factor the
swap operation. Indeed,

M+ - MRC = M+ +/- =
(

0 1
1 0

)
which is a swap. This harder to do — or at least, longer — than storing the

display in the memory (on either the HL-820LC or this, the HS-8V), and the same
usability comments apply.

The Casio MS-70L does not have an MRC button, instead having an MR button.
The matrix for this is the same as a single press of the HL-820LC’s MRC :

MR =
(

0 0
1 1

)
Further, MR MR = MR : no special meaning is attached to repeated use of this

button (which is what we expect from its matrix definition above). As noted earlier
in this section, the HL-820LC’s idiosyncratic meaning for MRC MRC can be achieved
on the MS-70L by MR M- . In other words, there does not seem to be an intrinsic
reason why the HL-820LC was designed so confusingly.

The Casio MS-8V has the MS-70L buttons together with a MC as a single key,
and it has a button MU which has nothing to do with memory but is a kind of
percent key, mark up.

The different Casio designs, MS-70L and MS-8V, both have much simpler seman-
tics than the HL-820LC or HS-8V, and one might therefore imagine they are much
easier to use reliably. However, they both share with the HL-820LC the absence of
the STORE button.

User interface design with matrix algebra · 21

6. EXAMPLE 3: THE FLUKE 185 DIGITAL MULTIMETER

Our final example is a digital multimeter, an electrical measuring instrument. The
Fluke 185 has ten buttons, four of which are soft buttons with context-sensitive
meanings, and a rotary knob with seven positions. It has a 6.5×5cm LCD screen
with about 50 icons, as well as two numeric displays and a bar graph. It has the
most complex user interface of the examples considered in this paper. Furthermore,
it is a safety critical device: user errors with it can directly result in death. For
example, if the Fluke 185 meter is connected to the AC mains electricity supply
but set to read DC volts, it will not warn that the voltage is potentially fatal.
As a general purpose meter, it can be connected to sensors, such as the Fluke
carbon monoxide sensor, and a misreading could lead to gas poisoning — if the
meter is set to AC volts it would read 0 whatever the DC voltage from the sensor.
When measuring amps the meter, cables and the device being tested could overheat
and cause a fire (or even an explosion). And so on; user/design error can lead to
immediate and possibly catastrophic physical consequences.

A multimeter should only be used by competent users, and therefore the trade-offs
between usability and interface complexity are different than general use products
(such as mobile phones). However, unlike a professional interface (such as an air-
craft cockpit), multimeters may be used by users competent in the domain but who
do not fully understand or have forgotten details of the user interface. Thus the user
interface should not have many modes, feature interactions, timeouts or other fea-
tures that are not essential in the domain; where possible it should utilise warnings,
utilise interlocks, and be self-explanatory, etc. Such issues are very important and
require careful consideration, based on a deep understanding of the domain (both
technical and regulatory) and of human error and so on. These issues go beyond
matrix algebra and this paper is silent on them, beyond noting the general point
that there is a danger that technical concerns take precedence over user interface
concerns, and that user interface quality will suffer. As a case in point, the Fluke
185 conforms to seven types of safety standard and a quality standard (ISO9001),
but to no user interface standard.

6.1 Partitioned matrices

Matrices are normally considered as arrays of numbers or scalars; in fact any values
can be used, provided they can be ‘added’ and ‘multiplied.’ Matrices themselves
have these properties, and therefore matrices can be built up, or partitioned, out
of submatrices. Consider a matrix M partitioned into four submatrices:

M =

(
M11

....... M12...........................
M21

....... M22

)

The submatrices (M11 etc) need not all be the same size, though they must
conform (be the right size) for the operations required of them. Thus if this parti-
tioning of M is used to multiply a state vector s, partitioned as (s1

... s2), then the
number of columns of s1 must equal the number of rows of M11 etc. If s and M
conform in this way, the partitions can be multiplied out:

22 · H. Thimbleby

(
s1

....... s2

) (
M11

....... M12...........................
M21

....... M22

)
=

(
s1M11 + s2M21

....... s1M12 + s2M22

)
Mathematically this is necessarily correct, regardless of the structure of the FSM

and buttons we are describing.
We can see, for example, that if M21 is zero, the complete behaviour of the

s1 component of the system can be understood even completely ignoring the s2

component:

(
s1

....... s2

) (
M11

....... M12...........................
0

....... M22

)
=

(
s1M11

....... s1M12 + s2M22

)
Whether a user fully understands s1 or not (they may understand a subpartition

of it), no knowledge of s2 need interfere with their understanding. Whatever be-
falls the s2 component, we can abstract the properties of s1 and M11 independently.
Similarly we can understand the s2 component of the system completely even ig-
noring the s1 component provided M12 is zero, and so on. Since it seems desirable
to design user interfaces where users can understand parts of the system indepen-
dently, designing systems with zero submatrices is a powerful design heuristic. For
the Fluke 185, we will see that zero submatrices occur naturally and repeatedly.

6.2 Specifying the Fluke 185

Since the Fluke 185 is very complex, we will not attempt a full analysis; our purpose
is to indicate how its various features can be handled using matrices.

The Fluke’s rotary knob has the nice feature that its meaning depends only on
its current position. A rotation to ‘off’ can be modelled by OFF , as if it was an
independent button. (If the knob was on a safe, then the security of the safe would
depend on sequences of knob positions, and we would need to model knob positions
as pairs, such as V→OFF if it is turned to off from the volts position.)

The next feature to model is that the meter can be off or on. When it is off, no
button does anything, and the knob has to be turned away from the off position to
turn it on. Assume the off state is state 1; then the state vector (1 ... 0) represents
the meter off, and the state vector (0 ... s) represents it in any state in the subvector
s other than off.

For generality, represent any button (or knob position) other than OFF by B .
Let B represent the effect of any such button when the meter is on (so sB is the
effect of button B on state s when it is on), then the matrix that correctly extends
to an on/off meter is

(
1

....... 0.................
0

....... B

)

If the meter is in state (x ... s), this partitioned matrix transforms it to state
(x ... sB). Thus if it was off (x = 1, s = 0) it is still off; if it was on (x = 0) it is
still on and the on state s has been transformed as expected to sB. Note that no
button B embedded in a matrix of this form can switch the meter off.

User interface design with matrix algebra · 23

The off switch takes every state to off, and its matrix would have the particularly
simple structure as follows (here written explicitly for a FSM with 6 states, including
off, which is state 1):

Off =

1
....... 0 0 0 0 0

1
....... 0 0 0 0 0

1
....... 0 0 0 0 0

1
....... 0 0 0 0 0

1
....... 0 0 0 0 0

1
....... 0 0 0 0 0

This takes any state (x ... s) to (1 ... 0) as required. Repeating off does not achieve
anything further; we can check by calculating Off Off = Off , which is indeed the
case. Mechanically, because OFF is a knob position, it is impossible to repeat off
without some other intermediate operation: thus it is fortunate it is idempotent and
the user would not be tempted to ‘really off’ the meter! (Compare this situation
with the AC key on the calculator.) In short, the knob’s physical affordance and
its meaning correspond nicely [17].

In summary, once we have explored the meaning of off and the general behaviour
of other buttons whether the meter is on or off, as above, we can ignore the off
state and concentrate our attention on the behaviour of the meter’s buttons when
it is on. Partitioning is a powerful abstraction tool, and henceforth we can assume
the meter is on.

The meter has a display light, which can be switched on or off. The behaviour
of the meter is otherwise the same in either case. Introducing a two-state mode
(light on, light off) therefore doubles the number of states. If the ‘light off’ states
are 1 . . . N , then the ‘light on’ states are (N +1) . . . 2N , a simple way of organising
the state space is that switching the light on changes state from s to s + N , and
switching it off changes the state from s to s − N .

Now represent the state vector by (off ... on). The light switch can be represented
by a partitioned matrix L that swaps the on and off states:

L =

(
0

....... I...............
I

....... 0

)

The submatrices I and 0 here are of course all N × N matrices. This works as
required, as can be seen by multiplying out its effect on a general state vector

(x ... y)

(
0

....... I...............
I

....... 0

)
= (y ... x)

For any other operation H (such as pressing, say, the HOLD button) we want its
effect in the light off states and the light on states to be the same. Again this is
achieved using partitioned matrices, but in the following form:

24 · H. Thimbleby

(
H

....... 0...................
0

....... H

)

Here, the submatrix H in the top left is applied to the light off states, and the
submatrix H in the lower right is applied to the light on states. For example,
whatever state the meter is in with the light off, it goes to offH as required; and
if the meter’s light is on, then off = 0 and offH = 0. From this matrix, it is clear
that H behaves as intended, identically in either set of states, and in particular it
does not switch the light on or off. Thus matrices easily model the behaviour of all
buttons.

This recipe for handling any matrix H is independent of the light switch matrix.
Thus we can consider the design of the meter ignoring the light, or we can consider
the light alone, or we can do both. As before, this freedom to abstract reliably is
very powerful. Indeed, if we were trying to reverse engineer the complete FSM for
the meter, building it up from the matrices in this way for each button would be a
practical approach.

Given the partitioned structure of the meter’s button matrices, it is easy to show
that the light switch matrix L commutes with all matrices (except OFF , which
requires L to be a submatrix of itself; see also §6.3), which means a user can start
a measurement and then switch the light on, or first switch the light on — the
results will be the same. Other modes, such as measurement hold, can be treated
similarly.

At switch on, the meter allows 12 features to be tested, activated or adjusted. For
example, switching on while pressing the soft F4 key causes the meter to display
its internal battery voltage. (Because this is a switch-on feature, the soft key is not
labelled; a user would need to remember this feature.) As so far described, this
is easy to model: the meter has one extra state for this feature, and it is reached
only by the sequence OFF V F4 , where V F4 represents a simultaneous user action.
Its matrix is routinely defined from submatrices. However, as the Fluke meter is
defined, the light button does not work in the new state: rather than switching on
the light, it exits the new state and puts the meter into normal measuring mode
(i.e., the state corresponding to the normal meaning of whatever the knob is set
to). If we are to model this feature, the elegant ‘law’ about the light matrix and
other button matrices needs complicating: again, an idiosyncratic user interface
feature is hard to model in matrix algebra. Although we do not have space to
go into details here, this awkwardness with matrix representation seems to be an
advantage:9 had Fluke used a matrix algebra approach, they would have been
less likely to have implemented this special feature. Indeed, the meter has a menu
system (with 8 functions) that can be accessed at any time: why wasn’t the battery
voltage feature put in the menu, so its user interface was handled uniformly?

The Fluke meter has a shift button, which changes the meaning of other buttons
if they are pressed immediately next. (It only changes the meaning of three buttons,
including itself, all of which anyway have extra meanings if held down continuously;

9It requires a 3×3 partitioning, and no longer has the nice abstraction property; see §6.5 for other
examples.

User interface design with matrix algebra · 25

additionally, the shift button has a different, non-shift, meaning at switch on.) In
general if S represents a shift button and A any button, we want SA to be the
button matrix we choose to represent whatever “shifted A” means, and this should
depend only on A.

For any button A that is unaffected by the shift, of course we choose SA = A.
Since the shift button doubles the number of states, we can define it in the usual way
as a partitioned matrix acting on a state vector (unshifted-state ... shifted-state).
Since (at least on the Fluke) the shifted mode does not persist (it is not a lockable
shift), all buttons now have partitioned matrices in the following simple form

(
Aunshifted

....... 0...
0

....... Ashifted

)

and

S =

(
0

....... I...............
I

....... 0

)

which (correctly) implies pressing SHIFT twice leaves the meter unshifted (since
the submatrices are all the same size and SS = I).

For a full description of the meter, the various partition schemes have to be
combined. For example, we start with a matrix Rbasic to represent the RANGE
button (the RANGE button basically operates over 6 or so range-related states, the
exact number depending on the measurement), and we build up to a complete
matrix R which represents the RANGE button in all contexts. As it happens R
shifted is equal to R, and we can define the shift matrix:

Rs =

(
Rbasic

....... 0..................................
0

....... Rbasic

)

Next we extend Rs to work with the light button. Again, R is the same whether
the light is on or off, so we require:

Rsl =

(
Rs

....... 0.....................
0

....... Rs

)

Now Rsl defines the subset of the RANGE button’s meaning in the context of
the additional features activated by the shift key and the light keys. Note that
Rsl = Rls (the meaning is independent of the order in which we construct it) as
expected — but see qualifications in §6.3. Next we extend Rsl so R works in the
context of the meter being on or off:

R =

(
1

....... 0...................
0

....... Rsl

)

This completes the construction of R with respect to the features of the meter
we have defined so far. Incidentally, this final matrix illustrates a case where the

26 · H. Thimbleby

submatrices are not all square and not all the same size. If Rbasic is a 6× 6 matrix,
this R is 25 × 25.

6.3 Qualifications

Sadly we idealised the Fluke 185, and the real meter has some complexities that
were glossed in the interests of brevity. The main qualifications are described in
this section.

We claimed that the construction of the R matrix to represent RANGE was inde-
pendent of the order of applying shift and light constructions. Although this is true
as things are defined in this paper, it is not true for the Fluke 185, a fact which
we discovered as soon as we checked the claim! The light and shift buttons do not
commute on the Fluke: SHIFT LIGHT �= LIGHT SHIFT . This quirk can only make
the Fluke harder to use (it also makes the user manual a little less accurate, and it
will have made the meter harder to program).10

In fact, the RANGE button has different effects under different measurement con-
ditions, a different effect at power on, and it has a different effect in the menu and
memory subsystems, and another effect when it is held down for a few seconds. The
range feature also interacts with min/max; for example, it can get into states only
in min/max mode where autoranging is disabled. For simplicity, we ignored these
details, which would be handled in the same way (but unfortunately not as cleanly)
as the example features. Such feature interactions make the matrix partitions not
impossible, but too large to present in this paper.

The Fluke 185 has many feature interactions. It seems plausible to conclude
that Fluke put together various useful features in the meter but did not explore
the algebra of the user interface. The user interface, when formalised, therefore
reveals many ad hoc interactions between features, all of which tend to make the
user interface more complex and harder to use, and few or none of which have any
technical justification.

The Fluke also has time dependencies. These can all be handled by introducing
a new matrix τ which is considered pressed every second, however the result is
mathematically messy and not very illuminating. As elsewhere in this paper, we
claim that had the designers specified the user interface fully and correctly, they
would naturally have wanted to avoid such messiness; furthermore, as we can see
no usability benefits of the timeouts, to avoid the mathematical messiness would
have improved the user interface design.

6.4 Reordering states

Section 6.2 made repeated use of partitioned matrices and made claims about the
relevance of the structure of matrices to the user interface. However it is not
immediately obvious that as partition structures are combined (e.g., for on/off and
other features) that any relevant structures can be preserved. This section briefly
considers this issue, and shows that it is trivial.

10If the meter’s program is modularised, this ‘quirk’ requires wider interfaces or shared global
state, both of which are bad programming practice and tricky to get correct. If the meter’s
program is not modular, then any ad hoc feature is more-or-less equally easy to program; but this
is not good practice: because there is then no specification of the program other than the ad hoc
code itself.

User interface design with matrix algebra · 27

A user need not be concerned with state numbering, and in general will have
no idea what states are or are numbered as. From this perspective we can at any
time renumber states to obtain any matrix restructuring we please, provided only
that we are methodical and keep track of the renumberings. Whilst this statement
is correct, it is rather too informal for confidence. Also, an informal approach to
swapping states misses out on an important advantage of using matrices to do the
job cleanly.

Any state renumbering can be represented as consistent row and column ex-
changes in a transition matrix. For example, if rows 2 and 3 are swapped, and
columns 2 and 3 swapped, then we obtain the equivalent matrix for a FSM but
with states 2 and 3 swapped. In general any renumbering is a permutation which
can be represented by a matrix P . If M is a matrix, then PMPT is the corre-
sponding matrix with rows and columns swapped according to the permutation
P . If several permutations are required, they can either be done separately or
combined, whichever is more convenient: e.g., as P1P2MPT

2 PT
1 or as P3MPT

3 .
In short, throughout this paper, when any matrix M was presented, implicitly

a permutation P was chosen to present it cleanly: we wrote down a neat M to
represent PMPT.

6.5 Remaining major features

Consider the Fluke 185 autohold feature. Often a user cannot both look at the
meter and handle the probes. The Fluke 185 provides two features to help: a HOLD
button freezes the display when it is pressed, and the AUTOHOLD feature (holding
down the HOLD button for a couple of seconds) puts the meter into a mode where
it will automatically hold any stable non-zero measurement.

As so far described, modelling this simply requires a 2 × 2 partitioned matrix:
the meter has two sets of state, normal ones and autohold ones. The AUTOHOLD
simply swaps between the two, in the same way as the light on/off button:

Abasic =

(
0

....... I...............
I

....... 0

)

Note how pressing the button again gets the meter out of autohold mode, and
because both submatices are identities, returns the meter to the original state.

In fact, autohold is not available in capacitance measurements.11 There is there-
fore one state where the autohold leaves the meter in the same state, namely the
capacitance state. Introduce a permutation P so that the capacitance state is the
first state, as this allows us to write down the autohold matrix in a particularly
simple form:

11The meter may not implement autohold for capacitance possibly because the meter is unable
to measure capacitance fast enough, and incomplete readings might be confused by the meter for
stable readings. On the other hand, because capacitance measurements can be slow — minutes
— users would appreciate the autohold’s automatic beeping when the measurement was ready.

28 · H. Thimbleby

Acapacitance = P

1
....... 0

....... 0........................
0

....... 0
....... I........................

0
....... I

....... 0

 PT

This is essentially the same matrix as before, except state 1 goes to state 1
(courtesy of the top left 1). One identity has lost a row (and column) because it
no longer takes capacitance to autohold-capacitance; the other identity has lost a
row (and column) because the model no longer has an autohold-capacitance state
to be mapped back to capacitance.

In fact, there are several states that are affected like this: capacitance has 9
ranges, covering 5nF to 50mF and an automatic range. Now let P permute the 9
capacitance states we are modelling to states 1 to 9. The single 1 of the matrix
above that mapped a notional capacitance state to itself now needs to be generalised
to an identity that maps each of the nine states to themselves. Of course this is a
trivial generalisation as the relevant states are consecutive:

Acapacitance-ranges = P

I
....... 0

....... 0........................
0

....... 0
....... I........................

0
....... I

....... 0

 PT

Here the top left identity submatrix is 9× 9. Since the permutations P — being
permutations of arbitrary state numberings — do not typically add a great deal to
our knowledge of the system, we may as well omit them, and this is what we did
elsewhere in this paper.

We can make a usability comment on this aspect of the user interface design of
the Fluke 185. The matrix Acapacitance-ranges has more information in it that the
matrix Abasic (even allowing for Abasic to range over all nine states). Understanding
the meter as designed therefore imposes a higher cognitive load on the user; also the
user manual should be slightly larger to explain the exception (in fact, the Fluke
manual does not explain this limitation). It is strange that autohold is not available
for capacitance (perhaps increasing its time constant if necessary), since on those
possibly rare occasions when the user would want it, it would presumably be both
extremely useful to have it and extremely surprising to find it is not supported.

6.6 Soft buttons

The Fluke multimeter has soft buttons, and we have now reviewed appropriate
matrix methods to handle them. The Fluke has four soft buttons, for example
pressing F1 behaves variously as VERSION , AC , BLEEP , Ω or ◦C .

In some set of states, F1 means AC and in another set of states it means BLEEP ,
and so on. Let P be a permutation of states that separates these sets of states.
The matrix for F1 can then be written clearly:

User interface design with matrix algebra · 29

F1 = P

VERSION.......................
AC.......................

BLEEP.......................
Ω.......................
◦C

PT

We may be interested in, say Ω alone, but it is a rectangular matrix. We can
define square matrices like

Ω = Q

(
I

....... 0...............
Ω

)
QT

and this definition of Ω effectively means the same as a Ω button that is available
at all times, but when pressed in states where (as a soft button) it would not have
been visible it does nothing, by its identity submatrix.

7. CONCLUSIONS

It might be argued that it seems obvious that users do not engage in matrix algebra
when using typical user interfaces. Of course users do not do explicit matrix algebra
(after all, most user interfaces are supposed to make tasks easier, not require the
user to work out exactly what is going on!); but users do do implicit matrix algebra.
They do so in much the same way that putting an apple in a pile of apples “adds
one” even if you do not want to do the sums. Users of apple piles will be familiar
with all sorts of properties (e.g., putting an apple in, then removing an apple leaves
the same quantity; or, you cannot remove more apples from a pile than are in it;
and so on) even if they do not do the mathematics explicitly. Likewise, users will
be (or could well be) familiar with the results of matrix algebra even if they do not
do the sums. Only a philosophical nominalist could disagree [3].

Our use of matrix algebra in this paper reveals persuasively that some apparently
trivial user interfaces are very complex. We suggest that the arbitrary complexity
we uncovered in some systems is a sign of bad design (it certainly is bad engineering,
if not bad user interface design), though more precisely the arbitrary complexity
begs usability questions that should be addressed by employing empirical evaluation
methods. However, this paper raises a question:

If some usability issues are so complex they are only describable with mathe-
matics, how can ordinary usability evaluation methods uncover them?

In areas of safety critical systems, this is a very serious question. At least one
response is to design systems formally to be simpler, so that there are plausibly no
such overwhelmingly complex usability issues to find or fix. Another response is to
use formal approaches to support design, such as matrix algebra, so that designers
know what they implementing: the results of usability evaluations can then be used
to help fix rather than disguise problems.

30 · H. Thimbleby

Reasoning about user interfaces at this level of detail (if not avoided) is usually
very tedious and error prone. Matrices enable calculations to be made easily and
reliably, and indeed also support proofs, of both general and detailed user interface
behaviour.

In fairness to Casio is should be pointed out that the user interface problems
identified arise mainly because the calculator only provides the three memory keys
MRC , M+ and M- . Many calculators made by Casio and other manufacturers are
similiar in this respect and will therefore have similar usability problems (though
perhaps the meanings of their MRC MRC or AC AC repetitions will differ, etc).

Very likely, as suggested in the box above, the extreme complexity of doing
memory operations are why users, designers and usability professionals have all
ignored the poor usability of calculators. They are far too hard to think about!
With the digital multimeter, for example, the intricacy and specificity of feature
interactions apparently encouraged them to be overlooked; they were probably
considered by designers, if at all, as exceptional and unusual behaviour.

For the time being it remains an unanswered empirical question whether the
apparently unnecessary complexities of the Casio calculator or the Fluke 185 make
them superior designs than ones that we might have reached driven by the æsthetics
of matrix algebra. However, it is surely an advantage of a formal approach that
known (and perhaps rare) interaction problems can be eliminated at the design
stage, and doing so will strengthen the validity of any further insights gained from
employing empirical methods. Certainly, in comparision with informal evaluations
(e.g., [12], which comments on other Fluke instruments), a matrix algebra approach
can provide specific insights into potential design improvement, and ones moreover
that are readily implemented. There is much scope for usability studies of better
user interfaces of well-defined systems, rather than (as often happens) studies of
how users cope with complex and poorly defined interfaces.

Many centuries of mathematics have refined its tools for effective and reliable
human use — matrix algebra is just one example — and this is a massive resource
that user interface designers should draw on to the full.

Acknowledgements

Harold Thimbleby is a Royal Society-Wolfson Research Merit Award Holder, and
acknowledges their support. The author is also grateful for very constructive com-
ments from David Bainbridge, Ann Blandford, George Buchanan, Paul Cairns and
Matt Jones.

REFERENCES

[1] M. A. Addison, & H. Thimbleby, “Intelligent Adaptive Assistance and Its Automatic
Generation,” Interacting with Computers, 8(1), pp51–68, 1996.

[2] J. L. Alty, “The Application of Path Algebras to Interactive Dialogue Design,” Behaviour
and Information Technology, 3(2), pp119–132, 1984.

[3] J. R. Brown, Philosophy of Mathematics, Routledge, 1999.

[4] C. G. Broyden, Basic Matrices, Macmillan, 1975.

[5] A. Dix, J. Finlay, G. Abowd, R. Beale, Human-Computer Interaction, 2nd. ed., Prentice
Hall, 1998.

[6] I. Horrocks, Constructing the User Interface with Statecharts, Addison-Wesley, 1999.

User interface design with matrix algebra · 31

[7] D. E. Knuth, “Two Notes on Notation,” American Mathematical Monthly, 99(5),
pp403–422, 1992.

[8] L. Lamport, “TLA in Pictures,” IEEE Transactions on Software Engineering, 21(9),
pp768–775, 1995.

[9] B. Myers, “Past, Present, and Future of User Interface Software Tools,” in J. M. Carroll,
editor, Human-Computer Interaction in the New Millenium, Addison-Wesley, 2002.

[10] W. M. Newman, “A System for Interactive Graphical Programming,” Proceedings 1968
Spring Joint Computer Conference, 47–54, American Federation of Information
Processing Societies, 1969.

[11] D. L. Parnas, “On the Use of Transition Diagrams in the Design of a User Interface for an
Interactive Computer System,” Proceedings 24th. ACM National Conference,
pp379–385, 1964.

[12] J. Raskin, The Humane Interface, Addison-Wesley, 2000.

[13] H. Thimbleby, “Calculators are Needlessly Bad,” International Journal of
Human-Computer Studies, 52(6), pp1031–1069, 2000.

[14] H. Thimbleby, P. Cairns & M. Jones, “Usability Analysis with Markov Models, ACM
Transactions on Computer Human Interaction, 8(2), pp99–132, 2001.

[15] H. Thimbleby, “Analysis and Simulation of User Interfaces,” Human Computer Interaction
2000, BCS Conference on Human-Computer Interaction, edited by S. McDonald,
Y. Waern and G. Cockton, XIV, pp221–237, 2000.

[16] H. Thimbleby, “Permissive User Interfaces,” International Journal of Human-Computer
Studies, 54(3), pp333–350, 2001.

[17] H. Thimbleby, “Reflections on Symmetry,” Proc. Advanced Visual Interfaces, AVI2002,
pp28–33, 2002.

[18] A. I. Wasserman, “Extending State Transition Diagrams for the Specification of Human
Computer Interaction,” IEEE Transactions on Software Engineering, SE-11(8),
pp699–713, 1985.

[19] S. Wolfram, The Mathematica Book, 4th. ed., Cambridge University Press, 1999.

