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As code is now an inextricable part of science it should be supported by competent
Software Engineering, analogously to statistical claims being properly supported
by competent statistics.

If and when code avoids adequate scrutiny, science becomes unreliable and
unverifiable because results — text, data, graphs, images, etc — depend on
untrustworthy code.

Currently, scientists rarely assure the quality of the code they rely on, and rarely
make it accessible for scrutiny. Even when available, scientists rarely provide
adequate documentation to understand or use it reliably.

This paper proposes and justifies ways to improve science using code:

1. Professional Software Engineers can help, particularly in critical fields such
as public health, climate change, and energy.

2. “Software Engineering Boards,” analogous to Ethics or Institutional Review
Boards, should be instigated and used.

3. The Reproducible Analytic Pipeline (RAP) methodology can be generalized
to cover code and Software Engineering methodologies, in a generalization
this paper introduces called RAP+. RAP+ (or comparable interventions)
could be supported and or even required in journal, conference, and
funding body policies.

The paper’s Supplemental Material provides a summary of Software Engineering
best practice relevant to scientific research, including further suggestions for RAP+

workflows.

“Science is what we understand well enough to explain to a computer.”
Donald E. Knuth in A = B [1]

“I have to write to discover what I am doing.”
Flannery O’Connor, quoted in Write for your life [2]

“Criticism is the mother of methodology.”
Robert P. Abelson in Statistics as Principled Argument [3]

“From its earliest times, science has operated by being open and transparent
about methods and evidence, regardless of which technology has been in
vogue.”

Editorial in Nature [4]
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1. INTRODUCTION

Unreliable, often unstated and unexplored, code and
computational dependencies (including using AI or
ML) in science are widespread. Furthermore, code is

rarely published or made accessible in a usable form;
it is generally too onerous or impossible to verify or
scrutinize. Ironically, computers should be able to make
reproducibility easier, yet too often code and results
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claimed do not contribute to reliable science, and do
not support verification, replication, or reproduction on
which future science can be firmly based.

This paper makes an explicit analogy between the use
of statistics, which has clear standards for reliable use
and presentation, and the use of code. Like statistics,
code is often relied on to support key results in scientific
publications, yet code is generally informal, inaccessible
and incorrect. Just as sound experimental methods
and sound statistics generally rely on professional
specialist input, it is argued here that good use of
code must rely on professional Software Engineering
input [5, 6], and more strategically on professional
Computational Thinking [7, 8] — an accessible form of
Software Engineering that consciously applies the ideas

universally, far more widely than just to software and
coding.

This paper was initially motivated by concerns
about the poor quality of code used in high-profile
epidemiology research because of its significance for
informing and driving public health responses to the
COVID-19 pandemic. A pilot survey implies that
such problems are ubiquitous and by no means limited
to epidemiology: see tables 1 & 2 for a summary
of the sample, and see the Supplemental Material
for further details of the survey. In the survey, no
papers claimed or provided evidence that their code was
adequately tested or rigorously developed; none used
methodologies like RAP or RAP+ (described below).
Only one paper mentioned any Software Engineering
methods, albeit simplistic and without technical details.

In the survey sample 81% of papers were published
in leading journals that have code policies (which
themselves are weak), but 42% of surveyed papers
published in those journals breached their own policies.
One paper declared it had accessible code, but
the relevant repository was and still remains empty.
The findings are comparable to problems increasingly
recognized for data and data access (reviewed in section
2.a): code problems form part of the reproducibility
crisis [e.g., 12, 13] discussed throughout this paper.
This paper therefore argues that code should be

developed and discussed in a professional, rigorous, and
supportive environment that facilitates quality science
with clear presentation and appropriately rigorous
scrutiny of code. Its main contribution is to suggest
straightforward ways to enable this. The proposals may
not be “the” right or best ways, but it is hoped the case
studies and arguments presented here persuade readers
that the proposals are at least a productive way to start
pointing in the right direction, and to inform raising
the profile and constructively debating the issues more
widely.

An extensive online Supplemental Material appendix
to this paper provides additional resources, including
brief details of many Software Engineering practices
relevant to supporting quality science. The supplement
will be of particular interest to research software
engineers supporting non-software-specialist scientists.

2. BACKGROUND

The discoveries and inventions of scientific technologies
and instruments like microscopes, telescopes, and
X-rays, drove and expanded the sciences. There
are fascinating periods when new ideas and science
unified; for example, thermometers could not measure
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3 Journals
32 Papers:

6 Lancet Digital Health
12 Nature Digital Medicine
14 Royal Society Open Science

264 Published authors
341 Published journal pages

July 2020 Sample month

TABLE 1. Overview of peer-reviewed paper sample, broken down further in Table 2. Survey methodology and data is
provided in the Supplemental Material. (The survey does not include the motivating papers [9–11], none of which provide
code or code summaries; see section 5.a.)

Number of papers sampled relying on code 32 100%

Access to code
Some or all code available 12 38%

Some or all code in principle available on request 8 25%
Requested code actually made available (within 2 years 11 months⋆) 0 0%

Evidence of any software engineering practice
Evidence program designed rigorously 0 0%
Evidence source code properly tested 0 0%

Evidence of any tool-based development 0 0%
Team or open source based development 0 0%

Other methods, e.g., independent coding methods 1 3%
Documentation and comments

Substantial code documentation and comments 2 6%
Comments explain some code intent 3 9%

Procedural comments (e.g., author, date, copyright) 10 31%
No usable comments 17 53%

Repository use
Used code repository (e.g., GitHub) 9 28%

Used data repository (e.g., Dryad or GitHub) 9 28%
Empty repository 1 3%

Evidence of documented processes
Evidence of RAP/RAP+ or any other principles in use to support scrutiny 0 0%
Adherence to journal code policy (if any)

Papers published in journals with code policies 26 81%
Clear breaches of journal code policy (if any) 11 42% (N = 26)

⋆Time of 2 years 11 months is wait between code request and date of generating this table.

TABLE 2. Breakdown of pilot survey of peer-reviewed science papers relying on code.

Level 0 Level 1 Level 2 Level 3
Journal encourages code
sharing – or says nothing.

Article states whether code is
available and, if so, where to
access them.

Code must be posted to a
trusted repository. Excep-
tions must be identified at ar-
ticle submission.

Code must be posted to a
trusted repository, and re-
ported analyses will be re-
produced independently be-
fore publication.

TABLE 3. The TOP committee’s recommended levels for journal article code transparency. Level 0 is provided for a
comparison that does not meet any TOP requirements. Concerns about the interpretation of “reproduced independently,” as
required at level 4, are raised in section 5.b.
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temperature in any meaningful way until the underlying
science was mature. For over a century, there was
no agreement on definitions of temperature, how to
calibrate thermometers, or what units they measured
in.

Paradoxically the science could not mature until
there was consensus in scientific methodologies for
thermometry, and having that consensus in turn
depended on reproducible thermometer measurements;
for example, scientists working in different places
needed to know they were working with the “same
temperatures” yet there was for a long period no
consensus on what that meant. Contributing to
reliable science depended on a thorough understanding
of principles, including gradually fixing the confounding
factors that were misunderstood [14].1 Science matured
from no quantitative interest in temperature, through
a complex process of hand-in-hand theoretical-and-
technical maturation, until today, when we have robust
off-the-shelf instruments that measure temperature in
reliable, repeatable, internationally standardized units,
that follow international quality standards.

Computers are a unique, new technology, far
more flexible and challenging than thermometers.
Understanding computers and integrating them into
science is far harder than the tortured development of
modern thermometry. Computation not only expands
science’s paradigms and supports new discoveries
(particularly with AI), but it also does new science
— almost all modern laboratory instrumentation,
including thermometers, is heavily computerized.
Relying on computer models has become routine. The
dependency of modern science on computers is far more
tangled and complex than the now-resolved dependence
on reliable temperature measurement; computers affect
how scientists in all disciplines think.

Pushing the boundaries of science, then, now involves
pushing the boundaries of computer science. The
synergy runs deep: for instance, while particle physics
relies on powerful supercomputers, quantum physics
itself is developing more powerful quantum computing.

“Computational science” has come to mean a
particular style of science based on developing and using
explicit computational models, but, really, all of science
is now computational in this sense.

Computational science is not just restricted to spe-
cialized fields like computational chemistry, genomics,

1One example: if the volume of mercury is chosen to measure
temperature, a confounding factor is that the volume of the
container measuring the volume of mercury also increases with
temperature (but at a different rate), so the volume measurement
is inaccurate.

big data . . . in all fields of science, computation is used
at every step, from calculations of course, through note
taking, sound and image processing, literature searches,
analysis and statistics, correspondence with co-authors
and editors, through to typesetting, distributing and
archiving the final publications. All areas of science are
being profoundly computerized. Furthermore, develop-
ments in computer science themselves drive science such
that earlier science is even becoming obsolete as the
computer technology moves on [15].

2.a. Code quality concerns

Publishing high quality computer code has been
strongly advocated since the earliest times, such as
the Communications of the ACM in its first issue in
its first volume published in 1958, where it outlined
its algorithm publication policy. The new policy was
illustrated with a square root algorithm [16]. However,
publishing code in the computer science literature is
distinct from publishing high quality general science
that depends on code, which is the particular concern
of the present paper. Of course, as a special case,
Computer Science too can also benefit from improving
ways to reliably use code in general science.

In almost all published science, the code it relies
on is taken for granted, just as in routine chemistry
the quality of the glassware is not at issue. While
chemists are trained in reliable methodologies, so taking
quality glassware for granted is reasonable. Code is
a newer innovation, and quality code is a current
research programme in its own right, and has resulted
in calls for a Grand Challenge research effort [17].
Inevitably, because of these reasons taken collectively,
much published science depends on unreliable code
that is not explicitly discussed, was not peer-reviewed,
and is not open to scrutiny, reproduction, or reuse
by the scientific community. The situation with code
is analogous to chemists using contaminated glassware
with no awareness how its effects might be controlled
or might affect results.

Is it a problem? A study of 863 : 878 Python-coded
Jupyter notebooks [18] found a 76% failure rate for
code to complete execution successfully. Trisovic et
al. [19] performed a study of 9 : 000 research codes
written in the language R on Dataverse, an open-
source repository maintained by Harvard University’s
Institute for Quantitative Social Sciences. They found
a comparable result that 74% of the code files analyzed
failed. These results are consistent with this paper’s
findings, as summarized in tables 1 & 2.

The authors of [18] make technical recommendations
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to improve reproducibility, such as “Abstract code into
functions, classes, and modules and test them.” It will
not be obvious for most practicing scientists how to do
this, so, more generally, the authors of [19] recommend
establishing Working Groups to support reproducible
research — and in fact Dataverse (the source of the
[19] data) has already done so. These ideas may be
compared to the present paper’s proposal of Software
Engineering Boards (SEBs), as discussed in detail in
section 6, supported by more specific suggestions in the
Supplemental Material.

These concerns about code are part of the
reproducibility crisis for science generally [12, 20–23].
Concern has led to new journals, Journal of Open
Source Software (JOSS) [24], ReScience C [13], and
others, to explore and encourage the explicit replication
of previously published research.

To start to address code quality issues the
Transparency and Openness Promotion Committee met
in 2014, and has since been promoting Transparency
and Openness Promotion, TOP, starting with journal
publication policies [25]. TOP covers citation
standards, replication standards, and code standards
amongst others. TOP recommends levels of compliance
to their recommendations, where level 0 does not
meet the standard, and levels 1 to 3 are increasingly
stringent. The TOP levels for code are shown in table
3. The TOP standards continue to develop, and are
now maintained on a wiki at URL osf.io/9f6gx/

wiki/Guidelines [26]. TOP can be compared with
the Findable, Accessible, Interoperable and Reusable
(FAIR) initiative, which places greater emphasis on
data rather than code; FAIR itself is critiqued in section
5.d.

As the present paper argues, developing quality code
is widely under-appreciated, which leads to a vicious
cycle of lack of acknowledgement, invisibility, and
being unable to recruit adequately competent coders
(see section 3). The term research software engineer
was coined in 2012 to help address this problem,
and to stimulate thinking about researchers’ career
paths. The Society of Research Software Engineering
(URL society-rse.org) has been established to
further promote research software engineer interests.

There is no shortage of computational tools available
to help address the problems. However, it should be
noted that such tools are not a panacea, as the study
[18] cited above makes clear. This suggests that human
support for improving coding and reproduction quality,
perhaps in the form of Working Groups or Boards, as
this paper suggests, will be critical.

In addition to unintentional problems with code

quality and reproducibility, actual scientific misconduct
occurs when the outcome is intentional. While pure
plagiarism, which is a form of misconduct, generally
does not affect the quality of reported science, when
data or code is fraudulently manipulated to have
deceptive properties, the results are likely to be
destructive. The notorious Wakefield MMR fraud
claiming to link vaccines and autism published in The
Lancet took 12 years before it was retracted; this
misconduct has been extraordinarily destructive [27].

A recent meta-analysis of surveys of scientific
misconduct estimates that nearly 2% of scientists have
at least once fabricated, falsified, or modified results,
and over a third have undertaken other questionable
research practices [28]. The meta-analysis qualifies the
figures carefully, but these are alarming rates regardless
of the qualifications; indeed, the authors suggest that
as misconduct is a sensitive issue, the rates are likely to
be under-estimates.2

While technical solutions like using AI may help, it
is notable that many misconduct issues can be detected
and constructively managed prior to publication using
exactly the same methods as will improve research
reproducibility, as discussed throughout the present
paper.

2.b. Computable papers

“Electronic lab notebooks” (ELNs) [29], emphasize
computer tools that specifically support laboratory
notebook authoring and editing. In contrast, so-called
“computable papers” aim to support the scientific paper
authoring workflow: the emphasis is that papers should
produce faithful results from code embedded in (or
easily accessible from) the text of the paper.

If, for example, HTML is being used for a
computational paper, the paper’s text could include
Javascript code like
<script>

document.write(responses.total)

</script>

This illustrative code would insert the result of
running it into the paper, perhaps like “We collected
data and obtained 754 responses,” where the 754 is
the value of the variable responses.total when the
paper was formatted. The point is that the number
754 (or whatever) is computed automatically from the
data, so any changes or improvements to the data or
the methodology analyzing it will translate into the

2The present paper’s author’s own survey of scientists
publishing in the Journal of Machine Learning had comparable
results [20].
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published number being updated and inserted into the
paper at the appropriate point.

Systems like LATEX (which was used for the
current paper) can combine advanced typesetting with
computable paper calculations. Here, as a simple
example, we calculate that 10! is equal to 3 : 628 : 800
just by writing the LATEX code \factorial{10} in
this paper, which can calculate arbitrary factorials
and group the result into conventional blocks of three
digits by inserting small spaces. Note that although
factorial is not a standard LATEX function, it was
readily defined by code also in the present paper, so it
can be easily modified by the author for other purposes
as required.

More practically for helping author complex scientific
papers, a separate program can generate a file of LATEX
definitions for data, tables, and cross-references, etc, as
needed for a paper. Here is a small example, where each
generated fact (taken from the present paper’s analysis)
has been highlighted in bold:

For the present paper, as a concrete example of this
approach, the pilot survey analyzed 32 papers with 264
authors. The paper [9], discussed below in section 5.a,
relied on code composed of 229 files, with over 25
thousand lines of code (how this compares with files in
the survey is summarized in table 9 in the Supplemental
Material).

In the “old days” such numbers (32; 264; etc) quoted
above would have been manually worked out, eyeballed,
typed up, and then (hopefully) double-checked by the
authors. Instead, in this paper, those numbers (and
many others) were computed automatically, and were
then inserted into the text of this paper automatically.
They are auditable back to their sources. Furthermore,
they will update automatically — with no further work
from the author — when the data or calculations
change.

The idea is easy to implement. Continuing using
LATEX as the illustrative word processing system, code
could generate text like

\newcommand{\numberOfAuthors}{264}

where the 264 is some number calculated from the
relevant data.

Such a line of text is then saved to a file, which is then
imported into the paper so the value is named and can
be used easily and reliably. Then, when and wherever
the authors write the name \numberOfAuthors in
their paper’s text, the typeset paper says 264, or
whatever the actual value is at the time — it will
update automatically whenever the data or analysis is

improved. Some easy LATEX coding can then present the
numbers in the author’s or publisher’s preferred style,
such as zero, one, . . . nine, 10, 11, . . . , 1 : 000, 1 : 001,
etc, as done more realistically elsewhere in this paper
(for instance, see footnote 5).

The key concept in computable papers is that as the
authors of a paper collect or revise data or calculations
or otherwise update it, the results written up in the
paper also update automatically, and all the statistics,
graphs, and analysis reported in the paper update and
remain correct with no further work from the authors.
Indeed, if an author corrects a mistake, the correction
will apply automatically to all future revisions.

However, there is no structure to using general-
purpose systems like HTML, LATEX, or Rmarkdown,
which means authors may make unnoticed mistakes.
Many authors therefore prefer a more structured
approach imposed by tools designed for the purpose,
where their structure helps impose uniformity and helps
prevent and check for errors.

A taut review of such systems is Perkel [30],
whereas [31] discusses in-depth the design trade-offs
of one powerful approach, Maneage; the paper [31]
includes a substantial and useful literature review (in
its appendix). Here, four representative tools (WEB,
Mathematica, Jupyter, and knitr) serve to sample the
variety of approaches that are available:

• WEB is the earliest tool reviewed here. WEB was
developed by Donald Knuth in 1984 [32,33] as a
batch (non-interactive) tool to support his then
radical new concept of literate programming. The
idea was to facilitate programmers write literate
documentation for their code. WEB combines a
sequential documentation file with code that can
be presented in any order, thus overcoming the
problem that the best explanation of a program is
not necessarily written in the same order as the
code it explains. The original WEB allowed
Pascal programs to be documented in TEX, but
many variants of WEB have since been developed
that are more flexible in the systems they support.

WEB documents an entire program, but there
are variants such as relit [34] that allow arbitrary
parts of programs to be documented, and hence
are useful for normal scientific papers that need to
explain algorithms, but do not need to show or
explain the entire code required for computer
execution.

In contrast to the other tools reviewed here,
literate programming is intended to produce high
quality publications about code, rather than
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publications just using code, inserting output,
such as statistics or graphs, generated by running
it.

• Mathematica is one of the earliest fully interactive
notebook tools for computational papers.
Notebooks were developed by Theodore Gray in
1988 [35]. Notebooks consist of a collection of
“cells,” where cells can be labelled as text or as a
section heading, but if a cell is labelled as code, it
can be run and it will normally generate a new
cell following it as its output. The new cell can be
numbers, tables, mathematics, a plot, an image,
or even more text — the arbitrary output of
running code, in fact. Moreover, a notebook itself
is a Mathematica expression, so it — the paper
itself — can be analyzed or manipulated by code
in any way. The entire notebook structure and
contents can be checked for consistency and
correctness in any way the author chooses.
A Mathematica notebook can be published

directly as a paper, but some code might be
distracting for a publication. Typically the author
therefore optionally hides some or all code cells
that are irrelevant to the narrative of the paper,
but which nonetheless were required to generate
the results presented.
The user manual for Mathematica itself was

written as a Mathematica notebook, which
ensured all its examples actually worked — and
probably helped ensure the correctness of the
Mathematica code used behind the scenes (see
section 6.c). The book is now the largest example
of software documentation in existence: in its
latest edition it runs to over 10 : 000 pages.

• Jupyter was developed by Fernando Pérez and
Brian Granger [36], and takes a similar approach
to Mathematica, but Jupyter is open-source and
not closely integrated with any particular
programming language, as Mathematica is.
Jupyter can be installed on a local computer or
run over the web.
Jupyter is both an authoring tool and a

framework on which to build other tools: thus
Google’s colaboratory is built on top of Jupyter,
using it as a foundation but making stylistic
changes, including providing free computational
resources.
Jupyter is very popular and widely-known.

Many extensive examples of using Jupyter
notebooks (and other good practice, such as using
repositories) to support large scale science

projects can be found at the Gravitational Wave
Open Science Center at
URL www.gw-openscience.org.

• knitr [37] is a powerful culmination of a variety of
tools, Pweave, Sweave, and ideas from literate
programming. Knitr combines a markdown
document with R code, and is a more powerful
approach than the analogous, and perhaps more
familiar, HTML+Javascript example shown above
to motivate this section.

Thimbleby [38] is a 1999 example of a peer-reviewed
paper (about user interface design) written as a
Mathematica notebook, which makes the point that
a distinctive feature of its methodology is that the
Mathematica notebook creates a fully inspectable and
replicable process. The notebook is available on the
author’s web site; it can be checked by others, or easily
extended or repurposed to support new research — and
it still works 24 years later.3

There are many tools to make using code more
convenient and more reproducible, as this section briefly
reviewed, but unfortunately they are rarely used or used
haphazardly, as the next section shows.

2.c. RAP: Reproducible Analytical Pipelines

Writing a paper typically starts with a word processor
(such as Microsoft Word or LATEX), sketching an
outline, writing boiler-plate text (such as the authors’
names and standard section headings), and then
gradually building up the evidence base (including
citing the literature) that the paper relies on.
This workflow will be concurrent with many other
activities — grant writing, writing up lab books,
negotiating authorship, protecting IP, workshops,
finding publication outlets, and so on.

Table 4 illustrates the core pipeline of how
experiments and data are used to provide information
on which analysis and calculations are based, the results
of which are then collected and edited into a paper.

3Mathematica is an example of a proprietary system: using it
requires a paid-for license, which is a limitation on reproducibility;
worse, in the long-run the system owners may go out of business
and the code would potentially be unusable at any price.
However, these limitations are also limitations that impact free
software: versions may become obsolete, and the community
may move on and stop maintaining old systems. The impact
on reproducibility is much the same as with proprietary systems.
The common solution is to code in whichever language is chosen
in as portable a way as possible, to chose a system that uses a
well-defined notation in an open representation (such as XML or
ASCII), so that if the worst happens the old code, or at least the
key parts of it, can be translated to run on a new system.
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Data sources → Models and analysis → Select results → Submit for
for write up publication

Experiments Hand calculations
Standard data Packages Copy & paste
Search engines SPSS etc


and edit data Final paper

Literature Graphics packages (text, images, graphs, etc)
Sensors Specially-written code, into paper

C, Python, R, Mathematica, etc
...

...

TABLE 4. A simplified schematic of the publication pipeline. For clarity, the pipeline has been linearized; in general, there
will be repetitive cyclic iteration and refinement. The RAP and RAP+ approaches encode the normally manual steps in the
pipeline workflow so that they can be run automatically, and hence reproduce the results that underpin the final paper. The
encoded RAP+ algorithms can be shared with other scientists, scrutinized, simplified and optimized, and themselves turned
into publishable objects — they are scientific instruments, just like thermometers or DNA sequencers. Additional schematics
are provided in section 10.f in the Supplemental Material.

1 Peer-review is used to ensure the workflow followed is reproducible and to identify improvements

2 No or minimal manual interference; for example copy-paste, point-click and drag-drop steps replaced using computer code
that can be inspected by others

3 Open-source programming languages so that processes do not rely on proprietary software and can be reproduced by others

4 Version control software, such as Git, to guarantee an audit trail of changes made to code

5 Publication of code, whenever possible, on code hosting platforms such as GitHub to improve transparency

6 Well-commented code and embedded documentation to ensure the workflow can be understood and used by others

7 Embedding of existing quality assurance practices in code, following guidance set by recognized organizations

Adopting RAP principles is not necessarily about incorporating all of the above: implementing just some of these principles will
generate valuable improvements.

TABLE 5. A minimum standard of RAP, based on the UK Statistics Authority summary [39].

For clarity, the schematic pipeline in table 4
omits many steps in the creative scientific workflow.
Furthermore, each step is iterated and modified as the
research progresses, and, indeed, as referees require
revision. The point is that in typical scientific practice
each step in the table is largely or entirely manual,
typically selecting and copying output from the previous
phase, and then pasting and editing the results into
the next. The pipeline of data → · · · → paper is then
iterated by hand as the various components are refined
and improved until the authors (and funders, editors,
and referees) are happy with the final paper.

As problems are found in a paper, the data,
calculations and code are debugged, refactored, and
refined. The workflow is rarely systematic, and even less
likely to be documented — after all, the atomic steps
seem to be innocuous copy and paste actions. The final
paper and the ideas it embodies are what matters.

The insight of the reproducible analytic pipelines
(RAP) proponents is that every time any step in the

pipeline is performed it could have been automated
[40–42]. If automated, it could then be repeated reliably
— unlike a manual cut and paste which is potentially
different and certainly error-prone every time it is
performed. If automated, any part of the workflow can
be reliably repeated if any experimental data, literature,
or other knowledge changes; the paper’s analysis will
brought up to date with ease. In particular, any other
researcher, whether part of the authorship team or a
later reader of the paper, can reproduce the paper and
its results reliably provided that the RAP workflow is
made available. Table 5 provides a brief summary of
RAP principles.

For example, if the paper in question is a systematic
review, it could be kept current by automatically re-
running the programmed atomic actions that it was
built with. Indeed, this ability is one of the original
motivations of RAP, so Government agencies could
easily generate up to date reports on request without
having to repeat all the manual work, and risk making
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procedural errors doing so. Furthermore, every time a
publication is re-derived or updated, the RAP pipeline
itself is reviewed and improved, so the quality of the
reproduced work improves — unlike in a non-RAP
workflow where new errors are potentially introduced
every time a work is revisited.

RAP not only helps develop reproducible science, and
improve the quality of the science as the authors debug
and refine their methodology, it also provides a precise
audit trail that can be used to protect against fraud,
as discussed in [27]. RAP can perform checks much
faster and more efficiently than conventional post hoc
investigations.

RAP embodies Donald Knuth’s comment, also
quoted after this paper’s abstract,

“Science is what we understand well enough to
explain to a computer.”

from the foreword to A = B [1]

The corollary is that if we are doing arbitrary cut and
paste that has not been programmed into a computer,
then we are not doing good science; we are certainly not
explaining what we are doing to the computer. Science
is in principle an algorithmic process, and therefore, as
Knuth says, if we understand well enough what we are
doing in science, we can explain it as code, specifically in
a RAP, for a computer to automatically run and rerun.

2.c.1. Potential code
Code is usually thought of as text written in a
programming language, such as Python or C, but this
ignores special cases of what can be called potential
code: processes that could be presented in code,
but have not been and therefore are invisible. Such
potential code cannot be reasoned about as rigorously
as they would be had they been expressed explicitly in
code. The loss of scrutiny, loss of the ability to reason
rigorously, the loss of the ability to review potential
code are problems that RAP tries to address. Potential
code includes:

1. Critical algorithmic steps may never be codified.
Writing a paper may involve creating an image
and copying it into a word processed document.
Indeed, every time the image is modified, the
process must be repeated. In an important sense,
the author is executing a computational process,
effectively using code that has never been written
down. There is a process here, but it is informal
and may be run differently each time. However, it
could have been coded and reproduced precisely
every time it was needed. Moreover, if the process

had been coded explicitly, it could be reasoned
about, critiqued and improved.

2. Compiling and running programs (for instance to
generate results) is also a computational process
that may not be recorded in code. The author,
more explicitly than creating and using images,
runs programs to get results — but the process of
running the programs may not be recorded.
Typically, if the author notices that the processes
are repetitious, they may develop a shell script to
codify the repetitive process.

3. Processes in writing a paper, configuring software
and generating data may be codified, but the
author discovers that their codified processes do
not generate quite what they want. Rather than
debugging the code, it is tempting to manually
edit the final results. The author knows they
could have coded things correctly, but this seems
too tedious — especially if the edits required seem
minor.

4. Another case of potential code arises when a
paper has been completed, but referees or the
publishers require some minor fixes. These minor
fixes are easier to implement in the paper as
simple textual corrections, rather than revisiting
and updating the explicit code that informed or
generated the paper (and updating the
repositories and so forth). The RAP approach
would require the entire workflow to be revised,
not just the final presentation in the paper.

In all cases, a computational process is involved
that could have been explicitly coded, but defining the
general case as program code seemed harder than an ad
hoc implicit process. The problem for reproducibility is
that the final science depends on this potential code
as much as on any explicit code, but it is nowhere
recorded, and therefore reconstructing the science will
be unreliable.

2.c.2. RAP as research
RAP itself is an object of research. For example,
in reproducing the results of a paper published over
a decade previously, [43] shows that RAP workflows
— which had not been considered or followed at
the time — can be semi-automatically reconstructed
(along with software dependencies) using suitable tools,
thus making the original paper and the experiment
it depended on fully reproducible. Furthermore,
the newly derived and now explicit pipelines were
specified as pure functions, meaning that the workflow
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was fully-defined using nothing but explicit functions
and explicit parameters, arguably a prerequisite for
rigorous, deterministic reproducibility.

While this reproduction of an old paper obtained
important insights, deriving a RAP workflow after
the fact cannot benefit the original scientific process.
Instead, insights from this post hoc reproduction
methodology [43] can be used as an insightful basis
to help advance approaches to RAP; that is, doing
RAP explicitly (in, for example, the ways that [43]
explores) while the science is being developed would
provide powerful and constructive insights during the
scientific process, rather than later in hindsight.

3. THE STATISTICS/CODE ANALOGY

The central role of computational methods in science
may be fruitfully compared to using statistics, an
established scientific tool.

Poor statistics is much easier to do than good
statistics, and there are many examples of science being
let down by näıvely planned and poorly implemented
statistics. Often scientists do not realize the
limitations of their own statistical skills, particularly
when developing new experiments, so careful scientists
generally work closely with professional statisticians.

In good science, all statistics, methods and results
are reported very carefully and in precise detail [44–
46], generally following strict journal or disciplinary
guidelines. A statistical claim in a paper might be
summarized as follows:

“Random intercept linear mixed model
suggesting significant time by intervention-arm
interaction effect. [. . . ] Bonferroni adjusted
estimated mean difference between
intervention-arms at 8-weeks 2.52 (95% CI
0.78, 4.27, p = 0.000 9). Between group effect
size d = 0.55 (95% CI 0.32, 0.77).” [47]

This standard wording formally summarizes confi-
dence intervals, p levels, and so on, to present various
statistical results so the paper’s claims can be seen to
be complete, easy to interpret, and easy to scrutinize.
It is a lingua franca. It may look technical, but it is
written in the standard, widely accepted form for sum-
marizing statistics — it is a clear, rigorous, and readily
interpreted way to express uncertainty in results. More-
over, behind any such brief paragraph is a substantial,
rigorous, and appropriate statistical analysis.

Scientists write like this and conferences and journals
require it because statistical claims need to be properly
accountable and documented in a clear way. The

journal Science, for example, in its many explicit and
quite technical statistics requirements requires

“Adjustments made to alpha levels (e.g.,
Bonferroni correction) or other procedure used
to account for multiple testing (e.g., false
discovery rate control) should be reported.” [46]

Spiegelhalter [48] says statistical information needs
to be accessible, intelligible, assessable, and usable; he
also suggests probing questions to help assess statistical
quality (see Supplemental Material section 11). Results
should not be uncritically accepted just because they
are claimed. The skill and effort required to do statistics
so it can be communicated clearly and correctly, as
above, is not to be taken for granted; in fact, there is
widespread concern about the poor quality of statistics
in science [49, 50]. While it is assumed that statistics
should be peer-reviewed, and that review will often lead
to improvement, critical papers like [49, 50] show that
reviewers and editors are often failing to pick up on poor
statistics.

Scientists accept that statistics is a distinct,
professional science, itself subject of research and
continual improvement. Among other implications
of the depth and progress of the field of statistics,
undergraduate statistics options for general scientists
are recognized as insufficient training for rigorous work
in science — their main value, arguably, is to help
scientists to understand the value of collaborating with
specialist statisticians. Collaboration with statisticians
is particularly important when new types of work
are undertaken, where the statistical pitfalls have not
already been well-explored.

Except in the most trivial of cases, all numbers and
graphs, along with the statistics underlying them, will
be generated by computer. Indeed, computers are now
very widely used, not just to calculate statistics, but to
run the models, to do the data sampling and processing,
to operate the sensors or surveys that generate the data,
and to process it all. Many papers now explore the
contribution of AI and ML to their fields. The data
— including the databases and bibliographic sources —
and code to analyze it is all stored and manipulated
on computers. Computers even help with the word
processing and typesetting of the research.

In short, computers, data, and computer code
are central to modern science, not just to the
explicitly computational sciences. Some AI work
is uncovering biases and ethical issues that were
previously unrecognized, so computational sciences are
not just routinely contributing to existing science but
extending its reach and improving its quality.
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However, using any code raises many critical
questions: formats, backup, cyber-vulnerability, version
control, integrity checking (e.g., managing human
error), auditing, debugging and testing, and more.
Is the code correct, and is it dependable enough to
justify the claims the scientists would like to make?
Software code, like statistics, is subject to unintentional
bias [51, 52]. All these issues are non-trivial concerns
requiring technical expertise to manage well. As with
statistics, good answers to such “technical” issues makes
the science that relies on them better; conversely, failing
to properly address the questions makes the science
suspect.

For example, a common oversight in scientific papers
is to present a model, such as a set of differential
equations, but omit how that model was reliably
transformed into the code that generates the results
the paper summarizes. The code may have problems
that cannot be identified as there is no specification to
reference it to, and possibly even no link to the code at
all.

Failure to properly document and explain computer
code undermines the scientific value of the models
and the results they generate, in the same way as
failure to properly articulate statistics undermines
the value of any scientific claims. Indeed, as few
papers use code that is as well-understood and as
well-researched as standard statistical procedures (such
as Bonferroni corrections), the scientific problems of
poorly planned and reported code are widespread. The
terms “invariant,” “pre-condition,” “post-condition”
are basic technical terms used in reliable coding, yet
none of these concepts appear in in any of the code
repositories referred to in this paper’s survey. Only one
project uses assertions, and then only for checking user
interface input data rather than the correct operation
of the paper’s model (see Supplemental Material data
summary). These basic coding concepts are simpler
than Bonferroni corrections.

We would not believe a statistical claim that was
obtained from some ad hoc analysis with a new fangled
method devised just for one project — instead, we
demand statistics that is recognizable, even traditional,
so we are assured we understand what has been done
and how reliable results were obtained.

An interesting overlap with statistical and Software
Engineering sloppiness concerns the many papers that
disclose as part of their methodology that they used a
particular software package, for example

“Data analyses were performed using SAS 9.2
(SAS Institute, Cary, North Carolina,

USA).” [53]

but without giving more details. Besides, the authors
have not made their code available so it is moot what
system it runs on. The problem is that the common
practice of declaring using a named system (such as SAS
in this case) does not help scrutiny in the least, as such
systems can do almost anything. How those analyses
might have been performed was not discussed, and one
assumes it follows that the analyses could therefore not
have been properly reviewed for scientific competence
during the publication workflow.

A reviewer, if nobody else, needs to actually examine
the code used and its documentation to assess whether
the analysis presented in the paper is appropriate
and sufficiently reliable. Furthermore, if the analysis
in this case actually depended on using SAS version
9.2, and not any general purpose statistical system,
then it is problematic because it is not reproducible
as it depends on idiosyncrasies in SAS version 9.2.
Of course, an author can disclose the idiosyncratic
dependencies; while this seems to be an onerous
obligation, conversely it is arguable that if an author
is unaware of dependencies, then their science relying
on them is equally unreliable.

It is recognized that to make critical claims, models
must be run under varying assumptions [54], yet
somehow it is overlook edthat the code that implements
those models also needs to be carefully tested under
varying assumptions to uncover and fix bugs and biases,
as well as to uncover unknown dependencies. Indeed,
the code may be poorly written (as this paper shows
it often is), so the results derived from the code simply
may not be reliable.

In normal scientific reporting (outside of teaching and
assessing science) details of methodology are routinely
glossed. A chemist does not say they cleaned their
glassware. One might argue, then, that scientists need
not discuss their code in detail because they know how
to program and their code is correct. This argument is
mistaken. Code is rarely considered a valuable part
of the science to which it contributes (section 4.b),
which creates a vicious cycle of ignoring code, leading to
ignoring the critical — and non-trivial — role of correct
code in science.

3.a. The siren call of over-fitting code

Poor code can generate plausible and possibly
misleading results from any data or theory, including
fraudulent science. A temptation is that developing
code to get “good results” becomes more important
than the code’s overall faithfulness to the real scientific
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phenomena, theoretical or empirical.
In conventional modeling terms, successful computer

programs are often over-fitted to phenomena [55]. That
is, instead of using code to rigorously challenge, test,
and develop our models, we tinker with code adapting
it to generate results closer and closer to our prejudices.
The code then apparently confirms our science, since we
fitted it to our preconceptions but not to the science.

In general, an over-fitted model fits a set of data
closely, but contains more parameters than can be
justified by the science. An over-fitted model fails to
reliably predict results beyond the scope of the data it
has been fitted to. Over-fitting is a well-known problem,
but the point is that when code is used, over-fitting is
done unconsciously by programmers adjusting the code
— its parameters, its structure, its embedded data, the
calculations it performs — that specifies the model.
“A model over-fits if it is more complex than another
model that fits equally well” [55], is a criterion that
describes almost every program! Programmers without
the discipline and experience to manage the unlimited
adaptability of code debug, alter, and extend their code
to make it do what they think it should do. This
becomes a vicious circle as the idea of what the science
is becomes driven by the code. Rather than debugging
code by improving its fit to the actual science, it gets
debugged and extended to fit the expectations.

The problems of over-fitting data may be visualized
using a Real→Real function of one variable (figure 1).
The code that generates an over-fitted curve seems to
work very well: in the example shown, the over-fitted
curve fits the sampled data exactly; indeed, the code
used here will fit any new data exactly as well. But
the code has a negligible ability to predict new data or
to describe theories of the data, which is the point of
modeling. The fact that over-fitted code seems to work
well is deceptive.

Looking specifically at the data plotted in figure
1 if, for the sake of argument, we assume the error
in the data is normally distributed then the values
the over-fitted code generates outside the range of the
sample are improbable. For example, the basic linear
model predicts ŷ(0) = 0.5, versus the extreme value
predicted by the over-fitting code, ŷ(0) = −41.8, even
lies far outside the plot region shown in the figure.4

Similar problems happen with interpolation rather than
extrapolation, for instance around x = 4.

4The bounds of the confidence interval illustrated in figure 1
depend on assumptions about the distribution of the data; in this
example, we are assuming, perhaps because we know something
more about the experiment, or thanks to Occam’s Razor that a
linear function is more likely than a high order polynomial.

While over-fitting data is a well-known problem, the
point for this paper is that code itself can easily be
over-fitted. Code can of course be over-fitted in more
complex ways than can be illustrated with elementary
polynomials, as here. Code over-fitting is much harder
to recognize because there may be no simple graph plot,
like figure 1, to highlight the problems. Furthermore,
almost all code is far more intricate than the two trivial
polynomials used to illustrated figure 1.

Unfortunately, code in published science is often
over-fitted, and over-fitted in a way that is very hard
to scrutinize. For example, in epidemiology (which
is considered in section 5.a) it is routine to use very
complicated, large dynamical models parameterized
with numerous social, cultural, health, demographic
and geographical data. The parameterization is mixed
between data files, data written explicitly into the
code, and with conditionals and other structuring in
the code to cover special cases. Indeed, many of the
programs in the survey used comments to inactivate
code, presumably indicating an unfinished tinkering
approach to code development.5

Furthermore, scientific support code is rarely
documented well enough to know what it should
have been doing, which should be answered by
a specification. With no clear specification and
documentation, the code can be arbitrarily hacked
to get any convenient results, since no particular
specification for it has been defined that it should
adhere to. Thus we risk doing and promoting
substandard science because we — the scientists and the
publication process — are not managing the unlimited
adaptability and complexity of code that science has
come to rely on. This is over-fitting of the worst kind
— in conventional over-fitting one can at least hope to
see that the fitting is over-parameterized for the data,
but in code over-fitting the code and specification are
not visible, therefore not adequately scrutinized, and
— worse — the “data” the code over-fits includes the
entire conceptual contribution of the paper.

Reference [56] shows that even trivial code (in the
case cited, implementing simple difference equations)
with very few parameters can have very complex results,
and reference [57] is a historically significant paper
pointing out how the problems of over-fitting has

5Of the 10 papers in the pilot survey that reported use of code
repositories (covering 182 thousand lines of code — so this is not
a trivial amount of programming effort), one provided an empty
repository with no code at all (effectively commenting out all their
code!), and seven repositories explicitly commented out chunks of
workable code. The two remaining non-trivial repositories with
no commented-out code consisted of straightforward, short code
files with few comments of any sort.
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FIGURE 1. Much computational science is concerned with finding plausible multi-dimensional models that fit models to
data with the aim of extrapolating or predicting new results from them. Shown here is notional sample of experimental 2D
data (the dots), a linear least squares regression, and an exact polynomial model. The over-fitted polynomial model fits the
sample exactly , but since the experimental data is presumably subject to random error (indicated by the confidence interval,
itself estimated) the linear model would generally be considered a better description of the experimental data.

improved science.

4. THE CONVENTIONAL ROLE OF CODE

Models map theory and parameters to describe
phenomena, typically to make predictions, or to test
and refine the theory supporting the models. With the
possible exception of theoretical research, all but the
simplest models require computers to use; indeed even
theoretical mathematics is now routinely performed by
computer.

Whereas the mathematical form of a model may
be concise and readily explained, even a basic
computational representation of a model can easily run
to thousands of lines of code, and its parameters —
its data — may also be extensive. The chance that
a thousand lines of code is error free is negligible,
and therefore good practice demands that checks and
constraints should be applied to improve its reliability.
How to do this is the concern of Software Engineering.

While scientific research may rely on relatively easily-
scrutinized mathematical models, or models that seem
in principle easy to mathematize, the models that

are run on computers to obtain the results published
are sometimes not disclosed, and even when they are
they are long, complex, inscrutable and (as our survey
shows) lack adequate documentation. Therefore the
models are very likely to be unreliable in principle.

If code is not well-documented, this is not only
a problem for reviewers and scientists reading the
research to understand the intention of the code, but
it also causes problems for the original researchers
themselves: how can they understand their historical
thinking well enough (say, just a few weeks or months
later) to maintain it correctly if it has not been clearly
documented? As a scientist pursues a research career
building on their previous work, how can they be
certain their work is reliable, and not merely converging
to their prejudices? Without proper documentation,
including a reasoned case to assure that the approach
taken is appropriate [58], how do researchers, let alone
reviewers, know exactly what they are doing?

Without substantial documentation it is impossible
to scrutinize code properly. Consider just the single
line “y = k*exp(x)” where there can be no concept
of its correctness unless there is also an explicitly
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stated relation between the code and the mathematical
specifications. What does it mean? What does k mean
— is it a basic constant or the result of some previous
complex calculation? Does the code mean what was
intended? What are the assumptions on k, x, and y, and
do they hold invariantly? Moreover, as code generally
consists of thousands of such lines, with numerous inter-
dependencies, plus calling on many complex libraries of
support code, it is inevitable that the collective meaning
will be unknown. A good programer would (in the
example here) at least check that k and x are in range
and that k*exp was behaving as expected (e.g., in case
of under- or overflow).

Without explicit links to the relevant models
(typically mathematics), it is impossible to reason
whether any code is correct, and in turn it is
impossible to scientifically scrutinize results obtained
from using the code. Not providing code and
documentation, providing partial code, or providing
code without the associated reasoning is analogous to
claiming “statistical results are significant” without any
discussion of the relevant methods and statistical details
that justify making such a claim. If such an unjustified
pseudo-statistical claim was made in a scientific paper,
a reviewer would be justified in asking whether a
competent experiment had even been performed. It
would be generous to ask the author to provide the
missing details so the paper could be better reviewed
on resubmission.

Some authors assert that the purpose of code is
to provide insight into models, rather than precise
(generally numerical) analyses summarizing data or
properties of the data [59]. In reality, if code is
inadequate, any so-called “insights” will be potentially
flawed, and flawed in unknown ways. Indeed, none
of the papers sampled (see Supplemental Material
section 12) claimed their papers were using code for
insight; all papers claimed, explicitly or implicitly, that
their code outputs were integral to their peer-reviewed
results.

Clearly, like statistics, coding can be done poorly and
reported poorly, or it can be done well and reported well
— and any mix between the extremes. The question is
whether it matters, when it matters, and, if so, when it
does, what can be done to appropriately help improve
the quality of code (and discussions about the code) in
scientific work?

4.a. The deceptive simplicity of code

It is a misconception that programming is easy and
even children can do it [60]. More correctly, toy

programming is easy, but mature programming is very
difficult.

An analogy helps justify this key point. Building
houses is very easy — indeed, many of us have built toy
Lego houses. Obviously, though, a Lego house is not a
real house. It is not large enough or strong enough for
safe human habitation! This point is obvious because
we can see Lego houses, and everyone is familiar with
the limitations of building-block play. Its real-world
engineering limitations are too obvious to need stating.

In contrast to Lego, computer programs are generally
invisible, and therefore the engineering problems within
them are also made invisible. The “programming is
easy” cliché is deceptive — programming appears easy
because professional standards of building software are
ignored, because people cannot see the reasons why they
are needed, and because — like Lego — toy programs
can look inspiring but be unreliable, difficult to use,
even dangerous.

Saying programming is easy is like appreciating a
child’s Lego building because we are not worried about
subsidence, load bearing, electric shock, fire risks,
water ingress, or even planning regulations. These
are professional engineering issues that Lego builders
ignore. Certainly, even real building is much easier and
faster when the technical details are ignored, as anyone
who has experienced a cowboy builder can attest.

Unlike building houses (the Code of Hammurabi
dates from around 1755 bc6), programming is a new
discipline, and the problems of poor programming are
not widely appreciated or embedded in our culture.
Professional standards, even when they exist, are not
enforced.

Problems for the reliability of science arise when
doodling and tweaking software drifts into claiming
scientific results that do not have reliable engineering
processes or structures underpinning them (let alone the
properly developed and documented accessible code) to
justify them.

In many countries, there are laws that require
all but the very simplest building structures to be
formally approved from plans and inspected as they are
built, but who writes plans for software, who inspects
scientific models while they are being coded? Yet
the consequences of building a shoddy garage have
negligible impact compared to the consequences of
writing poor code that informs national public health
policies or climate change interventions.

6The Code of Hammurabi says, “(§233) If a builder constructs
a house [and] does not make it according to specifications, and a
wall then buckles, that builder shall make that wall sound using
his own silver.” [61]
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4.b. The low status of coding

Since programming appears to be so easy, developing
code has a correspondingly low status in scientific
practice (and more widely). Developers of code
are rarely acknowledged in scientific papers. The
implicit reasoning is: if programming is easy, then
its intellectual contribution to science is negligible, so
it is not even worth citing it or acknowledging the
contributors to it. Because it is apparently easy, there
is no need to work hard to make it correct. Because of
the ease of over-fitting (section 3.a), code “works well”
with little skill or effort. While such mistaken views
prevail, the vicious cycle is that the low status means
software development is casualized, which reinforces the
low status.

Almost all scientific papers routinely describe their
experimental method, their data handling, and provide
an overview of their analytic (usually statistical)
methods. If they are theoretical papers, they will
describe their mathematical models and data that is
used to run or test their models. However, outside
of pure computer science, scientific papers are almost
entirely silent on the code they rely on and how it
was developed — in particular, how the code might
have been protected from bugs, analogously to how
appropriate experimental methods were used avoid or
control for experimental error.

Since published papers rarely mention their code, new
papers contributing to the literature do not write about
their code either, so the low status of code persists.

In reaction to this vicious cycle, there is a growing
movement to use and cite code correctly [25,62], because
code is important, particularly for the reproduction,
testing, and extension of any scientific work. (Code
also needs to be correct, not just cited correctly.)

4.c. The critical role of code is often ignored

Because statistics, like code, is so readily susceptible to
uncontrolled bias and error, there are many protocols
and journal policies that enforce best practice, for
example journals often require adherence to PRISMA
(Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) [63] for any paper performing a
systematic review of the literature. PRISMA is a
leading and influential research protocol, and it serves
to make the point that the critical role of code is often
strategically ignored.

PRISMA is not concerned with the reproducibility
of the literature reviewed, nor the reproducibility of
systematic reviews themselves. PRISMA not only
ignores the role of code, it ignores the Software

Engineering principles that assure code that research
relies on is reliable and reliably reported.

PRISMA covers the review workflow. For example, it
states that authors should report the number of papers
they included in their review. Perhaps N = 2 000. This
number will then written be into the review, perhaps in
several places. As the authors read and revise their
paper and respond to peer-reviewers, it is likely that
the number of papers in the survey will change; other
numbers and details will certainly change.

The authors now have a maintenance problem that
PRISMA does not address: where are the numbers that
have changed, and what should they be changed to?
Doing a search-and-replace, whether automated or by
hand, is fraught with difficulties. What happens if 2000
is used for some other purposes as well? What happens
if some of the 2000 values are written as 2, 000 or as
2 000.0, or if a number containing the digits 2000, like
12000, is changed? What happens if some 2000 are year
dates and are changed incorrectly?

Then there are the Human Factors: slips and errors
will happen in this workflow anyway [64]. Typos, slips
during cut-and-paste, and other errors are common.
Similar iterative revision cycles happen with any paper,
not just with systematic reviews.

PRISMA, like many such standards, ignores the
methodological problems of using code such as the
issues raised above.

The irony, then, is that PRISMA says nothing about
how to ensure the results of a survey are correctly and
reliably presented, despite this being one of PRISMA’s
explicit motivations. PRISMA explicitly warns about
methodological issues, but ignores that poorly managed
code raises methodological issues that will undermine
the validity of research it supports. PRISMA reinforces
the culture that code is trivial and incidental to
research.

4.d. Bugs, code and programming

Critiques of data and model assumptions are increas-
ingly common [65, 66] but program code is rarely men-
tioned. Program code has as great an effect on results
as the data; in fact, without code, the data would be
uninterpreted and almost useless. Code, however, is
harder to scrutinize, which means that errors in code
have subtle, often unnoticed effects on results.

Program code contains data. Almost all code con-
tains “magic numbers” — that is, data masquerading
as code (see Supplemental Material, section 10). This
common practice ensures that published data is rarely
all of the relevant data because it omits the magic num-
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bers embedded in the code. Such issues emphasize the
need for repositories to require the inclusion of code so
all data, including that embedded in the code, is actu-
ally available.

Conversely, much data contains code. Excel
spreadsheets are often used to manage code, and almost
all Excel spreadsheets contain macros and formulæ —
code embedded in the data. JSON, the JavaScript
Object Notation, is a structured data language, but as it
is part of the JavaScript programming language there is
no practical code/data distinction. Indeed, the present
paper’s data is in a file data.js that also contains the
JavaScript code to analyze it and generate results (such
as Table 2) for presentation in this paper.

Although convenience and convention treat data and
code differently, ultimately, data and code are formally
equivalent (see Supplemental Material, section 10) in
the important sense that there is no pre-determined
boundary between them or formal criteria to distinguish
them: different scientific projects can draw their
boundaries differently and as they see best fits their
work. Indeed, all of the papers reviewed here where
code was available include critical data in their code.
It therefore makes no sense to have separate rules for
data and code — except in the most trivial cases both
are equally essential for verification, building on, and
reproduction of work.

Bugs can be understood as discrepancies between
what code ought to do and what it actually does. Many
bugs cause erroneous results, but bugs may be “fail
safe” by causing a program to crash so no incorrect
result can be delivered. Contracts and assertions are
essential defensive programming technique that block
compilation or block execution with incorrect results;
they turn bugs into safe termination, or, better, failure
to compile. None of the science surveyed in this paper
includes any such basic techniques.

Random numbers are widely used in computational
science (and in many of the papers surveyed), for
simulation or for randomizing experiments. Misuse of
random numbers (e.g., using standard libraries without
testing them) is a very common cause of naïıve bugs
[67].

If code is not documented it cannot be clear what
it is intended to do, so it is not possible to detect and
eliminate bugs. Indeed, even with good documentation,
intentional bugs will remain, that is, code that correctly
implements the wrong things [60, 68]. Intentional bugs
occur in code that correctly does what was intended,
but what was intended was itself faulty (students and
inexperienced programmers regularly make intentional
bugs). Intentional bugs frequently arise in numerical

modeling, where using an inappropriate method can
introduce errors that are not bugs in the sense of failing
to correctly implement what was wanted, but are bugs
in the sense that the wrong numerical method was
chosen and inaccurate results are obtained; that is,
what was intended was wrong.

4.e. Long-term problems of unreliable code

Scientists explore and extend the boundaries of rigorous
knowledge. Put briefly, the purpose of scientific
experiments is to vary details to either test and
specify the boundaries of theories, or to discover new
phenomena that then lead to theory revision.

If poor code, or poorly documented code, is made
available with scientific papers, the code is a natural
place to start replicating and varying experimental
conditions, including both data or code. However, if the
starting point is not accurately known, whether due to
bugs, obscure code, or because of poor documentation,
then experimental variations will have an unknown
effect. Theory will then be driven by artifacts of the
code, not genuine phenomena.

In section 5.a, below, an example is documented
of a research code development process of at least 15
years’ duration where the code was admitted to be
completely undocumented, leaving details in just one
author’s head. None of the various related papers
describe any controls over the drift of the science, or
how independent researchers building on it might have
been able to build with confidence rather than merely
reproducing the same errors.

Since the code in question was substantial and non-
trivial, it is very unlikely that any constructive repro-
duction occurred outside the original laboratory and
mindset; indeed, section 5.b describes how “reproduc-
tion” became trivialized because of community pressure
to confirm the insights of this particular research.

Trying to constructively refute aspects of this
research in the Popperian sense [69] would have
been impossible. For example, had the relevant
papers published critical code invariants then scientists
building on the research could have explored whether
those invariants remained valid and, if so, under what
assumptions. In fact, invariants are the theories of code,
and deserve as high a prominence in published science
as the domain theories the code itself is supporting
investigating.
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5. STATE OF THE ART

5.a. Case study: Pandemic modeling

For an excellent review of the extreme pressures under
which scientists were working during the COVID-19
pandemic (but nothing about the role of computers!),
see [70] — which, while referring to some failed mRNA
vaccines, makes an important point on recovering from
“failed” science:

“Such is the beauty of science: even failed
attempts are a step towards more information
and progress forward.” [70]

But progress, if any, would be chaotic if it was not
possible to scrutinize exactly what science has failed. It
undermines progress if science and the code it relies on
are not both accessible and adequately defined. It is
as misleading as getting the statistics or mathematics
wrong.

By focusing on influential science and coding
undertaken to inform public health policies during a
pandemic emergency, this section now focuses on an
area where reliable and high quality science using code
open to interdisciplinary scrutiny was very obviously
required. Note that pandemic model correctness is a
secondary concern here; correctness is not addressed as
without informed scrutiny correctness cannot even be
assessed.

A review of epidemic modeling [71] says, “we use
the words ‘computational modeling’ loosely,” and then,
curiously, the review discusses exclusively mathematical
modeling, implying that for the authors, and for the
peer-reviewers, there is no role for code or computation
as such. It appears that the new insights, advances,
rigor, and problems that computers bring to research
were not considered relevant.

A systematic review [66] of published COVID-19
models for individual diagnosis and prognosis in clinical
care, including apps and online tools, noted the common
failure to follow standard TRIPOD guidelines [72]. The
review [66] itself ignored the mapping from models
to their implementation, yet if code is unreliable, the
model cannot be reliably used, and cannot be reliably
interpreted regardless of whether TRIPOD guidelines
are followed. Indeed, TRIPOD guidelines ignore code
completely.

It should be noted that flowcharts, which the review
[66] did consider, are graphical programs intended for
human use. Flowcharts, too, should be designed as
carefully as code, for exactly the same reasons.

A high-profile 2020 COVID-19 model [9, 73], which
influenced UK COVID-19 public health strategies, uses

a modified 2005 computer program [10, 11] originally
developed for modeling H5N1 in Thailand, when it did
not model air travel or other factors required for later
western COVID-19 modeling. The 2020 model forms
part of a series of papers [9–11] none of which provide
details of their code.

A co-author disclosed [74] that the code was
thousands of lines long and was undocumented code.
As Ferguson, the original code author, noted in an
interview,

“For me the code is not a mess, but it’s all in
my head, completely undocumented. Nobody
would be able to use it . . . ” [75]

The admission above is tantamount to saying that
the published scientific findings are and need not be
reproducible.7

The comment was made by a respected, influential
world-leading scientist, with many peer-reviewed
publications involving computational modeling, with a
respectable h-index8 of 93, and at the time “one of the
top scientists advising the government on its response
to the coronavirus crisis” working in the UK’s Scientific
Advisory Group for Emergencies (SAGE) group [77].

Ferguson’s code must be representative of best
practice when the stakes were high and reliability was
known to be essential; and if not representative of best
practice, at least representative of accepted practice
both in Ferguson’s team, the field of epidemiology
more widely, as well as with members of the high-
powered interdisciplinary SAGE group. It is therefore
instructive to explore the larger story around this
science that uses code.

Lack of reproducibility is problematic, especially as
the model code would have required many non-trivial
modifications to update it for COVID-19 with its
different assumptions; moreover, the code would have
had to have been updated very rapidly in response to
the urgent COVID-19 crisis.

If Ferguson’s C code had been made available for
review, the reviewers would not have known how
to evaluate it without the relevant documentation.
It is, in fact, hard to imagine how a large
undocumented program could have been repeatedly
modified and repurposed over fifteen years without
becoming incoherent.

7A constructive discussion of Software Engineering approaches
to reproducibility can be found in [76].

8h-index: the largest value of h such that at least h papers by
the author have each been cited at least h times. The figure cited
for Ferguson was obtained from Google Scholar on 20 January
2022. (Typical h values vary by discipline.)
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If code is undocumented, there would be an
understandable temptation to modify it arbitrarily
to get desired results (i.e., over-fitting, see section
3.a); worse, without documentation and proper
commenting, it is methodologically impossible to
distinguish legitimate attempts at debugging from
merely fudging the results. In contrast, if code
is properly documented, the documentation defines
the original intentions (including, where appropriate,
formally using mathematics to do so), and therefore any
modifications will need to be justified and explained —
or the theory revised.

The programming language C which was used [74]
is, like many popular programming languages, not a
dependable language; to develop reliable code in C
requires professional tools and skills. Some of the
code was written in a näıve style (e.g., writing *(a +

i) instead of a[i], and with obscure numerical goto
statements like if(l == 0) goto S150), and with C
code that was translated simplistically from FORTRAN
and Pascal code, from references dating back to the
1970s and 1980s [e.g., 78, 79].

Moreover, C code is not portable, which limits
making it available for other scientists to use reliably:
C notoriously gets different results with different
compilers, libraries, or hardware. In fact, in any
area where reliable programming is required in a C-
like language, a special dialect such as MISRA C
is preferred: MISRA C manages the serious design
flaws of C that otherwise make it too unreliable [80].
Alternatively, a high integrity programming language,
unrelated to C, such as SPARK Ada [81], or modern
languages (many related to the “ML family”) like
OCaml, F*, Haskell [82] could be used. These languages
have steeper learning curves; however their key benefit
is that correct programs are far more likely and are
much faster to write. (The Supplemental Material
discusses these issues further.)

Ferguson, author of the code, says of the criticisms of
his code,

“However, none of the criticisms of the code
affects the mathematics or science of the
simulation.” [83]

This claim is implausible.
The original work on theoretical epidemiology may be

fine if it does not use any of his code, but if the science
is not supported by code that correctly implements the
models, then the program’s output cannot be relied on
without independent evidence. Over the fifteen plus
years the code was in development the science it informs
will have developed too, as will the relevant data; it is

not clear how they will have remained in alignment.
Typically, models will be developed iteratively as

their results are improved to better fit a scientist’s goals
— but this, especially when it is done by tinkering, as
here — risks making the code arbitrarily fit the goals
(that is, over-fitting; see section 3.a), rather than to
objectively elucidate the science.

In fact, the Ferguson code, covid-sim, is a very
large program at 25 kLOC (thousands of lines of
code),9 so it is implausible that the “mathematics
or science” has been correctly implemented in it
without error, particularly as there is no discussion
of methodologies to code reliably. Ferguson’s reported
science is consequently unlikely to be reliable.

5.b. Concerns with reproducibility

Getting science right, which now, in turn, depends on
correct code, is a normal requirement of reproducibility.
The code in [9,73] has been “reproduced,” as reported

in Nature [83,84], but this so-called reproduction merely
confirms that the code can be run again and produce
comparable results. As Eglen says,

“Each run generated a tab-delimited file in the
output folder. Two R scripts provided by Prof
Ferguson were used to summarise these runs
into two summary files [. . . ] These files were
compared against the values generated by Prof
Ferguson [. . . ] The results were found to be
identical. Inserting my results into his Excel
spreadsheet generated the same pivot tables.
The codecheck found that: ‘Small variations
(mostly under 5%) in the numbers were
observed [. . . ]’ ” [84]

This test would pass provided the runs gave the same
answers regardless of whether the answers are correct —
it is not a usefully stronger test than just checking that
the code compiles. The comparison relied on running
(apparently) unchecked R code to summarize the data,
which is potentially misleading unless the published
results [9] exclusively relied on the same summary
code. In general, reproducing code results, even done
formally, does not scrutinize the science, as [85] makes
clear.

Running code just to obtain results claimed in a
paper is a weak test, and anyway one that should
be checked routinely during paper preparation and

9Ferguson’s covid-sim system is composed of 229 files, and
uses 734 Mb of data. It is now rewritten from C into C++
with Python, R, sh, YAML/JSON, etc. For more details, see
Supplemental Material.
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submission. However, in this case the reproduction
involved a community effort that also refactored and
improved the code, which added value to the code and
usefully improved its generality [84]. The reproduction
effort was also certified [85], which is the sort of evidence
of quality assurance processes that arguably should
be required before publication, particularly for critical
code such as public health modeling. The publicity
of this story and the certificate will certainly raise the
profile of the scientific value of independent review of
code.

Unfortunately, the terms reproducibility, replicabil-
ity, and repeatability, have similar meanings in En-
glish but have been used in different specific technical
ways by different authors. In [83, 84] the reproduction
amounted to just re-running the original code. It is cer-
tainly essential to establish that a paper’s code can be
run, as non-working code cannot support any claims in
a paper; if the original code runs this confirms a basic
level of access for the wider scientific community, and
this can be formally certified [85] so it is appreciated
by the community. But a more realistic criterion than
basic reproduction in this sense is whether an indepen-
dently developed model developed from the same pa-
per(s) specifications produces equivalent results (called
N -version programming, a standard Software Engineer-
ing practice [86]) like public health surely requires as,
indeed, Ferguson’s own influenza paper [87] argues.

In general, much stronger scrutiny of code than
“reproduction” is required to answer essential questions
(numbered below for reference) including:

1. Is the code valid: does it do what the paper
claims?10

2. Do other scientists, including reviewers and the
authors, understand the code?

3. Does the code implement the methods described
in the paper?

4. Has the code been over-fitted or tweaked to
support specific claims in the paper?

5. Is there a definitive version of code?
6. Is the code controlled and signed?
7. What limitations does the code have?
8. Was the code developed to any standard, and

does it comply to that standard?
9. How does the code protect against data, coding,

and human error?
10. Was the code tested adequately?

10Of course, the underlying science may be wrong to, so it
is useful to distinguish internal validity and external validity.
Internal validity occurs if the code does what the paper claims;
external validity occurs if the code represents correct science
which the paper may have interpreted incorrectly.

11. Does the code depend on arbitrary parameters,
data, or code to over-fit to obtain the published
results?

12. Is the code documented adequately, so we know
what it is trying to do, and how?

13. . . . and so forth.

All such questions also apply to specifications,
documentation, assurance cases, test procedures, and
other essential documents, not just to code. In turn,
the levels of scrutiny demanded should be guided by
explicit claims in the paper [68] — for example, a
pilot study requires weaker assurance than code that is
developed concerning nuclear power, driverless vehicles,
public health, etc.

The questions in the list above are certainly
hard to answer for all but the briefest code, but
corresponding levels of quality assurance are demanded
for other methodologies [63, 69,72,88–90], such as data
preparation and statistics to support claims in peer-
reviewed science.

Because of the recognized importance of the Ferguson
paper, a project started to document its code [91].11

Documenting code in hindsight, even if done rigorously,
may describe what it does, including its bugs, but it
is unlikely to explain what it was originally intended
to have done. As the code is documented, bugs will
be found, which will then be fixed (refactoring), and so
the belatedly-documented code will not be the code that
was used in the published models; it will be different.

It is well-known that documenting code helps improve
it, so it is surprising to find an undocumented model
being used in the first place, since so many years’
opportunity to improve the code have been lost. The
revised code has now been published, and it too
has been heavily criticized [e.g., 92], supporting the
concerns expressed in the present paper.

Some papers [e.g., 93] publish models in pseudo-code,
a simplified form of programming. Pseudo-code looks
deceptively like real code that might be copied to try to
reproduce it, but pseudo-code introduces invisible and
unknown simplifications. Pseudo-code, properly used,
can give a helpful impression of the overall approach of
an algorithm, certainly, but pseudo-code alone is not a
surrogate for code: using it instead of making actual
code available is worse than not publishing code at all
(see [94]). Pseudo-code is too vague to help anyone

11It is surprising to find an undocumented model being used in
the first place, since so many years’ opportunity to improve the
code have been lost. The revised code has now been published,
and it too has been heavily criticized [e.g., 92], supporting the
concerns expressed in the present paper. n-source, available at
URL github.com/mrc-ide/covid-sim version (19 July 2021).
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scrutinize a model; moreover, pseudo-code may mask
over-fitting in code used that is not explicit in the
pseudo-code.

An extensive criticism of pseudo-code, and discussion
of tools for reliable publication of code can be found
elsewhere [34].

The Supplemental Material provides further discus-
sion of reproducibility.

5.c. Beyond pandemic modeling

Epidemiology has a high profile because of the COVID-
19 pandemic, but the problems of unreliable code
are not limited to COVID-19 modeling papers, which,
understandably, were perhaps rushed into publication.
But other examples that were not rushed include a 2009
paper reporting a model of H5N1 pandemic mitigation
strategies [95], which provides no details of its code.
Its supplementary material, which might have provided
code, no longer exists.

There are many other areas of computational science
that are equally if not more critical, and many will have
longer-lasting impact. Climate change modeling is one
such example that will have an impact long beyond the
COVID-19 pandemic.

A short 2022 summary of typical problems of
Software Engineering impacting science appears in
Nature [96], describing diverse and sometimes persistent
problems encountered during research in cognitive
neuroscience, psychology, chemistry, nuclear magnetic
resonance, mechanical and aerospace engineering,
genomics, oceanography, and in migration. The
paper [96] makes some misleading comments about the
simplicity of Software Engineering, e.g., “If code cannot
be bug-free, it can at least be developed so that any bugs
are relatively easy to find.”

Guest and Martin promote the use of computational
modeling [97], arguing that through writing code,
one debugs scientific thinking. Psychology, their
focus, has an interesting relationship with software,
as computational models are often used to model
cognition and to compare results with human (or
animal) experiments [97]. In this field, the computation
does not just generate results, but is used to
explicitly explore the assumptions and structures of
the scientific frameworks from which the models
are derived. Computational models can be used
to perform experiments that would be unethical
on live participants, for instance involving lesioning
(damaging) artificial neural networks. It should be
noted that such use of cognitive models is controversial
— on the one hand, the software allows experiments

to be (apparently) precisely specified and reproduced,
but on the other hand in their quest for psychological
realism the models themselves have become very
complex and it is no longer clear what the science is
precisely!

For instance, ACT-R, one widely-used theory for
simulating and understanding human cognition, has
been under development since 1973, and is now a
120 kLOC Common LISP and Python system [98].
Furthermore, any paper using ACT-R would require
additional code on top of the basic ACT-R framework.

The psychology paper [97] presents an example
computational model from scratch to illustrate a
framework of computational science. In fact their
example model has no psychological content: a simple
numerical test is performed, but the psychology of
why the result is counterintuitive — the psychological
content — is not modeled. Be that as it may, they
develop a mathematical specification and discuss a
short Python program they claim implements it.

The Python code is presented without derivation;
Software Engineering is ignored. The program
listed in the paper certainly runs without obvious
problems (ignoring some typographical errors due to
the journal’s publishers), but ironically the Python does
not implement the mathematical specification explicitly
provided for it, thus undermining the argument of
the paper.

One might argue the bug is trivial (the program prints
False when it should print b), but to dismiss such a
bug would be comparable to dismissing a statistical
error that says p = False which would be nonsense
— if a program printed that, one would be justified
in suspecting the quality of the entire program and its
analyses. Inadvertently, it would seem, then, that the
paper shows that just writing code does not help debug
scientific thinking: instead, code must first be derived
in a rigorous way and actually be correct. Otherwise,
code based on inadequate Software Engineering will
introduce errors into scientific thinking.

Code generally for any field of scientific modeling
needs to be carefully documented and explained because
all code has tacit assumptions, bugs and cybersecurity
vulnerabilities [51, 52, 96] that, if not articulated and
properly managed, can affect results in unknown ways
that may undermine any claims. People reading the
code will not know how to obtain results because they
do not know exactly what was intended in the first
place. The problem is analogous to the problem of
failing to elaborate statistical claims properly: failure
to do so suggests that the claims may have unknown
limitations or flaws.
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Even good quality code has, on average, a defect
every 100 lines — and such a low rate is only achieved by
experienced industrial software developers [99]. World-
class software can attain maybe 1 bug per 1,000 lines
of code. Code developed for experimental research
purposes will have higher rates of bugs than professional
industrial software, because the code is less well-defined
and evolves as the researchers gain new “insights”
into their ideas, unable to distinguish genuine insights
from artifacts of bugs. In addition, and perhaps more
widely recognized, code — especially but not exclusively
mathematical code — is subject to numerical errors
[100]. It is therefore inevitable that typical modeling
code has many bugs (reference [86] is a slightly-dated
but very insightful discussion). Such bugs undermine
confidence in model results.

Only if there is access to the actual code and data
(in the specific version that was used for preparing the
paper) does anyone know what the researchers have
done and whether that corresponds closely to what they
are reporting.

Some COVID-19 papers [e.g., 101] make unfinished,
incomplete code available. While some [e.g., 101, 102]
make what they call “documented” code available, they
provide no more than superficial comments. This is not
documentation as properly understood. Such comments
do not explain code, explain contracts, nor explain
algorithms. Contracts, for instance, originated in work
in the 1960s [103], and are now well-established practice
in reliable programming.

Even if a computer can run it, badly-written code
(as found in all the research reviewed in the present
paper, and indeed in computer science research, e.g.,
[20]) is inscrutable. Only if there is access to adequate
documentation can anyone know what the researchers
intended to do. Without all three (code, data,
adequate documentation), there are dangers that a
paper simplifies or exaggerates the results reported,
and that omissions, bugs and errors in the code or
data, generally unnoticed by the paper’s authors and
reviewers, will have affected the results they report [34].

5.d. The lop-sided emphasis on data

Data has been at the center of science, certainly since
the earliest days of astronomy collecting planetary and
other information. Today it is widely recognized that
lack of accessible and usable data that has already been
collected limits the progress of science. Low quality
data and poor access to data causes reproducibility
problems, an increasingly recognized problem— in 2015
it was estimated that $28 billion a year is spent on

preclinical research that is not reproducible [104].
Curating data is taken seriously as a part of normal

science and peer-reviewed publication. Journal policies
widely require appropriate discussion of data, much
as they require appropriate discussion of statistics.
Journals often require archiving data in standard
formats so it can be accessed for reproduction in further
scientific work.

There are many current activities to proceduralize
and standardize the more effective curation and use
of data, such as the FAIR principles (Findable,
Accessible, Interoperable and Reusable) for scientific
data management and stewardship [105, 106], and in
the development of journal and national funder policies.
For example, the 2022 update to the US National
Institutes of Health data policies [89] is described as
a “seismic mandate” by Nature [90] in its attempt
to improve reproducibility and open science yet they
ignored code.

These cost estimates and initiatives under-play the
role of code as a critical component despite its
becoming the new laboratory for almost all science.
The role of code specifically in modeling is discussed
throughout this paper; without bespoke code, proposed
models (unless intended to be abstract) cannot make
a quantifiable contribution to the literature. Code
has additional problems of versions and compatibility
beyond those of data, for example suitable compilers
to run old code may no longer be available, and
programming systems may produce different results
when used on different computers.

In general, without proper management of code
— for example to record, detect and report version
control differences — sharing code may even be counter-
productive.12

Using structured repositories that provide sugges-
tions for and which encourage good practice (such as
Dryad13 and GitHub), and requiring their use, would
be a lever to improve the quality and value of code and
documentation in published papers. The evidence (see
Supplemental Material) suggests that, generally, some

12The data and code shared with the present paper includes
cryptographic checksums; if somebody reproducing the work
described here does not obtain the same checksums at least
when they start their work, then there are problems that need
investigation before relying on the reproducibility of the data.

13Dryad URL datadryad.org curates raw, unprocessed data.
At the time of writing, Dryad excludes code; however, it uses
a separate organization, Zenodo URL zenodo.org, to host code
and other relevant information. This arbitrary separation is
unfortunate as it increases management problems, increases
reproducibility problems, limits using RAP, and most seriously
limits how scientists can structure their data and code to best
suit their research (see section 4.d).
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but rarely all develop code that is uploaded to a repos-
itory just before submitting the paper in order to “go
through the motions.” In the surveyed papers there is
no evidence (before, during, or after the date of the sur-
vey sample) that any published code was prepared or
maintained using repositories. This is consistent with
the finished code being uploaded to a repository just
for the purposes of satisfying publishing requirements,
but not using one earlier probably because they did
not understand the benefits of doing so — not using
a repository during the research process means the au-
thor of the paper misses out on the many helpful fea-
tures of repositories, such as version control, review,
actions, and other approaches for automating develop-
ment, sharing workload, and so on. Using repositories
during research means that other people can more easily
help review the approach, in much the same way that
papers are routinely circulated for peer review before
submitting to a formal journal.

There is a lop-sided emphasis on data in science.
In fact, data is useless without code, and code must
be used to manipulate and analyze it. Often code is
used to extrapolate data, so the code itself effectively
generates more data, or the code eliminates outliers so
it effectively deletes data. Data is routinely formatted
in simple or standard ways, but code, in contrast, is
architecture- and version-specific, so — unless properly
managed — code goes obsolete faster than data. In
short: the integrity of code and its availability to
scrutiny is in fact both harder and more important than
the usual requirements put on data.

6. RETHINKING SCIENCE THAT USES
CODE

Computer programs are the laboratories of modern
scientists, and should be used with a comparable level
of care that virologists use in their laboratories —
lab books and all [88] — and for exactly the same
reasons: bugs, whether computer bugs or biological
bugs, accidentally cultured in one laboratory can infect
research, ideas, and policy worldwide.

Inadequate scientific code can be problematic.
Incorrect results might be used for supporting science,
modeling pandemics or informing public health policy,
informing medical research, or adopted for use in other
critical software, such as medical diagnostics, credit
checking, or any other impactful use. Professional
critical software development, as used in critical
industries such as aviation and the nuclear power, is
(put briefly) based on correct by construction [107],
effectively: design it right first time, supported by

numerous rigorous techniques, such as Formal Methods,
to manage error. Not coincidentally, these are
exactly the right methods to ensure code is both
dependable and scrutable, as is required for supporting
reproducibility and quality science more generally.
Conversely, not following these practices undermines
the rigor of science.

6.a. Software Engineering Boards

Misuse of data, exploiting vulnerable people, and not
obtaining informed consent are typical ethical problems.
Planned research may be ethically unacceptable in ways
the investigators do not anticipate: few people have the
objectivity and ethical expertise to make sound ethical
judgements, particularly when it comes to assessing
their own work. National funders, and others, therefore
require Ethics Boards to formally review ethical quality.
Medical journals will not publish research that has not
undergone independent formal ethical review.

Analogously, and supplementing Ethics Boards, it is
argued here that Software Engineering Boards (SEBs)
would authorize as well as provide advice to guide
the implementation of quality Software Engineering to
support research and publication processes. Just as
journals require conflicts of interest statements, data
availability statements, and ethics board clearance, we
should move to scientific papers and funded research
being required to include formal Software Engineering
Board statements. Note that Software Engineers
themselves have a code of ethics that applies to their
own work [108].

Some journals have policies that code is to be made
available (see Supplemental Material), but they should
require that code is not just available in principle but
actually works on the relevant data. The authors
should test a clean deployed build of their code and
save the results. Presumably a paper’s authors must
have run their code successfully on some data at
least once, so preparing the code and data in a
way that is reproducible should be a routine and
uncontentious part of the rigorous development of code
underpinning any scientific claims. This requirement is
no more unreasonable than requesting good statistics,
as discussed earlier. And the solution is the same: that
relevant experts — statisticians or Software Engineers
— need to be available and engaged with the science.
Software Engineering Board statements would be a
straight forward way of helping achieve this and showing
that it has been done adequately.

There need to be many SEBs to ensure convenient
access, potentially at least one per university. Active,
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professional Software Engineers should be on these
SEBs; this is not a job for people who are not qualified
and experienced in the area or who are not actively
connected with the state of the art. There are many
high-quality university computer science departments
and software companies (especially those in safety-
critical areas like aviation and nuclear power) who
would be willing and competent to help.

As appropriate, SEBs might require version control,
unit testing, static analysis, and other quality control
methods. Within the field of Software Engineering
itself, publishers are already developing rigorous
badging initiatives to indicate the level of formal review
of the quality of software [109].

A potential argument against SEBs is that they
may become onerous, onerous to run, and onerous to
comply with their requirements. A more balanced
view is that SEBs need their processes to be adaptable
and proportionate; indeed, few people consider Ethics
Boards to be disproportionately onerous. If software
being developed is of low risk, then less stringent
engineering is required than if the software could cause
frequent and critical outcomes, say in their impact on
public health policy for a nation. Hence SEBs processes
are likely to follow a risk analysis, perhaps starting with
a simple checklist. There are standard ways to do this,
such as following IEC 61508:2010 [110, 111] or similar.
Following a risk analysis (based on safety assurance
cases, controlled documents and so on as appropriate
to the domain), the Board would focus scrutiny where
it is beneficial without obstructing routine science.

A professional organization, such as the UK
Royal Academy of Engineering ideally working in
collaboration with other national international bodies
such as IFIP, should be asked to develop and support a
framework for SEBs. SEBs could be quickly established
to provide direct access to mature Software Engineering
expertise for both researchers and for journals seeking
competent peer-reviewers. In addition, particularly
during a pandemic or other disasters, SEBs would
provide direct access to their expertise for Governments
and public policy organizations. Given the urgency,
this paper recommends that ad hoc SEBs should be
established for this purpose.

SEBs are a new suggestion, providing a supportive,
collaborative process. They meet Tony Hoare’s
comments about the value of rigorous management of
procedures [112], and widen them to non-programmer
scientists. Methodological suggestions already made in
the literature include open-source and specific Software
Engineering methodologies to improve reproducibility
[76, 113]. Reference [114] provides an conceptual

framework. However, there is scope for further research
to provide an evidence base to motivate and assess
appropriate interventions (such as those proposed in
this paper) to help scientists do more rigorous and
effective Software Engineering to support their research
and publishing.

An analogous proposal to SEBs has been made for
Methods Review Boards [115], to help scientists ensure
the methods they use are appropriate for addressing
their research questions. Methods Review Boards
were motivated by an Ethics Board member noticing
that often experimental methodologies are inadequate,
which will waste time that will not be corrected until
the flaws are raised, usually too late, typically during
peer-review — creating technical debt (discussed below,
in section 6.f). As with SEBs, the goal of Methods
Review Boards is not to gatekeep, but to improve. The
paper [115] raises many of the same trade-offs that SEBs
also face; indeed one would hope that Methods Review
Boards would include Software Engineers or have SEBs
as sub-boards or vice versa: Software Engineering is
now a key methodology of science.

6.b. Extending RAP to RAP+

Code is usually seen as an independent set of files that
are used to generate results, typically to be copied
into a paper; code is usually seen as a passive part
of science. In reality, code is very creative. A
paper can itself embed code or become code [e.g.,
34,116], as discussed in section 2.b: code then becomes
a driver for the research. This view supports the
generalization of RAP to form RAP+. Essentially,
RAP+ is the recognition that coding is not just about
programming computers (which results in RAP) but
is about applying computational thinking [7, 8] that
supports and constructively analyzes any process, in
particular the creative scientific processes of doing
science and creating archival publications.

Once workflow steps in the pipeline are automated,
then there is code to run the steps again. Once there
is code, it can be managed in a version control system.
A version control system then provides an audit trail
for free, as well as many advantages such as being
able to backtrack to an earlier version, for instance
to review earlier edits. Importantly, code can also
perform sanity checks on the process. A very simple
example is automatic bibliography systems that check
that journal names and DOIs are correct, and so forth.
(Bibliographic systems also allow the bibliographic data
to be pooled and curated with other scientists, which
improves its scope and quality.) But RAP+ goes far
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beyond bibliographies; there is far more of the scientific
workflow that can be partly or fully automated — and
with corresponding benefits.

GitHub is a tool that provides actions that are named
specifications to run analytic pipelines, workflows in
GitHub’s terminology. GitHub happens to specify
actions in the language YAML, which, being a textual
notation, in turn means that the features of GitHub
— open-source, version control, and so on — can be
applied to the research workflow as well. Research
pipelines can thus be made explicit, documented,
shared and, most importantly, critiqued and improved.

The entire scientific process can be supported by
automation (especially with its interaction with the
world automated by sensors, AI, and robots). There
are many ways to do this; for example, Mathematica
makes the analysis of the data and the calculations and
the paper “the same thing” in its integrated notebooks.
The many alternatives include R Markdown, an
approach based in the open mathematical system R
[117]; a system, Lepton [118], which allows a LATEX
document to execute and include arbitrary code, and
language-independent notebook systems like Jupyter;
and so on (section 2.b).

In all such systems, running the computational paper
creates the publication. Indeed, every time the paper
is run, the authors are likely to check the results and
fix any problems, so an explicit RAP workflow actively
helps reduce errors.

Here is the insight: the paper’s code, just like the
paper itself is text, so the code itself can fully form part
of the pipeline, made reproducible, and benefit from all
the usual RAP benefits. To date, this critical point
has been overlooked. Since using RAP to integrate
code, rather than just the conventional “pure” scientific
workflow, has not been mentioned previously, we call it
RAP+ to make it clear this is a new and important
generalization of RAP. RAP+ helps improve code
quality, for the same reasons RAP improves the quality
of the science. Improving code quality improves the
science and its reproducibility.

Software engineers have many tools for automatic
code development (such as Unix’s make) but the idea
that these tools can be used to integrate and help
automate code authoring as well as its documentation
and paper authoring is radical. It means that the entire
research and development process of the paper including
all its underlying code can be reproduced, reused, and
developed by others. The present paper is an example
of RAP+; more details are given in the Supplemental
Material.

By definition, RAP+ objectifies how science is done

to a standard sufficient to enable a computer to run
it. RAP+ therefore enables all of the methodologies
of Software Engineering to be brought to bear on the
science itself. RAP+ means the normally tacit, manual,
and undocumented processes of science (especially the
coding) become explicit. Code can then be scrutinized,
optimized, and ensured correct by standard Software
Engineering practice; thus RAP+ does not automate
science just for easier reproduction, it makes the
automation explicit so the doing of science itself can be
reasoned about — not just by scientists but supported
by sophisticated tools, such as theorem proving and AI.
Science will be improved by RAP+.

6.c. The paper as a scientific laboratory

The conventional view of science is that experiments are
done then written up. However, it is more productive
to think of the paper itself as an active laboratory, not
just as a record of finished work. The view of the paper
as a scientific laboratory is explicit in computational
papers (section 2.b): ideas are written down, and their
validity is tested by the sense they make or fail to
make; the ideas are then revised — writing is an active
experiment to find and develop ideas that are worth
saying. Viewing the paper as a laboratory encourages
authors to copy and adopt laboratory best practice
(such as keeping records, as RAP and RAP+ suggest)
into the processes of writing the paper itself; viewing
the paper as a laboratory also encourages authors to
see writing as a scientifically — not just expressive —
act, and not just as the final summary of a period of
scientific creativity. In short, seen as a laboratory, the
paper is no longer a reactive write-up of finished work,
but it is an active part of doing good science. Writing
a paper explores the space of scientific possibility as
constructively as working in the field or on a lab bench.
The computable paper is now the scientific laboratory.

With a computational paper, authors can literally
experiment in the paper, exploring the effectiveness
of ideas and explanations. Furthermore, they can
experiment with hypotheses: for example, authors can
make a clear claim that at that point in the lifecycle
of the paper is but a wish rather than an established
theory or fact — the wish enables them to sketch a
direction they plan to go in and to explore possible
supporting arguments and evidence for it. So they then
do the experiments or calculations, including consulting
the literature and other scientists, to establish a
justification and other details. The evidence they
generate or the criticism they receive may not be quite
what they expected, so they then revise the claim to be
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correct, or change it to be a more realistic claim, or they
could delete it if it just turns out to be a mess, or they
could develop some altogether much better approach to
the work as a result of the exploration.

Typically, many ideas in a paper will be linked to con-
ventional experiments. For example a computational
paper might calculate the statistical power of an ex-
periment is too low (there is an unacceptable risk of
committing Type II errors), so the authors will decide
to improve the experiments. The computational paper
approach allows such calculations to be made before,
during, or after the experiments.

If there is code in the paper, every time it is typeset,
the code will be run. Therefore the authors of the
paper proof-reading the paper and the results of the
code will have opportunities to debug and improve the
code. Again, the paper itself is acts like a laboratory,
helping the authors refine the science.

Note that systems capable of handling computational
papers (including LATEX) can create conditional
documents: for example, there could be a flag publish.
If publish is false, the author can see all their private
work and thinking, including all their experimental
thinking and workings; but when the author sets the
flag publish to true, the paper would be typeset for a
submitted paper with the detailed workings concealed
to ensure a clean and concise presentation. In principle,
also submitting to the journal a separate version of the
paper with publish set to false would make the data
and workings visible and thus could satisfy journal code
and data requirements. Of course, when there is a large
body of data or code, they need not all be an explicit in
the computational paper: they would be made available
separately in the usual way — the flag publish rather
than being true/false might instead be a number setting
the degree of disclosure.

The more we view the paper as a proactive
scientific laboratory environment, the more we gain
from the RAP+ perspective, and the more science
gains from improved, conceptually broadened, reliable,
and reproducible science. The more we will also
want to engage mature Software Engineering (and
computational thinking) ideas too, because the quality
and creativity of future science relies on them, after all,
Software Engineering is about how to tell a computer
how to do something reliably, and, as Knuth said,
science is what we understand well enough to explain
to a computer, and so Software Engineering can now
directly help ensure we are not fooling ourselves about
what we understand.

6.d. Action must be interdisciplinary

Code is more than a scientific instrument, more than a
thermometer or test tube, as code makes, informs and
changes decisions; indeed, code can actually do science.
Still, code is only a part of science, so relying on SEBs
alone would continue one of the besetting problems
about the role of code in science.

The conventional view is that scientists do the hard
work compared to the “easy” coding work (sections 4.a
& 4.c) so they just need to tell coders what to do. This
is the view expressed by Landauer in his classic book
The Trouble with Computers [119,120], where he argues
that the trouble with computers, an idea he explores at
some length, is that we need to spend more effort in
working out what computers should do (here, do the
science better) and then just tell programmers to do
that.

On the contrary, competent Software Engineers have
insights into the logic, coherence, complexity, and
computability of what they are asked to do, and how
it needs refining or optimizing — or the question
changing. In other words, Software Engineers can bring
important insights into the science, hence improving
or changing the questions and assumptions the science
relies on. This insight was widely recognized in the
specialist area of numerical computation: “here is a
formula I want you to just code up” . . . “but it’s ill-
conditioned, there is no good answer to that question.”
It is not a simple sequential workflow with the expert
initiative all on the left:

science specifies → code up → get results

but an iterative cycle of mutual collaboration and grow-
ing understanding, informed by Software Engineering
best practice (via SEBs) and science, and implemented
and tested-out using papers as laboratories.

In short, the way SEBs work and are used will
be crucial to the success of the science they support.
Software engineers can help improve the science, so it
is not just a matter of asking a SEB whether some
coding practices (like documentation) are satisfactory,
but whether the SEB has insights into the science
itself too. The SEB idea requires interdisciplinary
working practices (science plus Software Engineering)
with mutual respect for their contributing expertise.

6.e. Methodological statements

Scientific publishers (journals, conferences, workshops,
videos, books, etc, and funders) often require an explicit
methodology discussion, yet they rarely require the
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methodology to discuss the computational methodology
— which, to the extent that anything relies on
code, impacts all the other methodology and results
discussions.

Many science publishers require explicit statements
how the authors have conformed to appropriate
methodological standards covering issues such as
conflicts of interest, ethics, data access, consent,
authoring, funders and other acknowledgements of
support, and so forth. Conformance to PRISMA (see
section 4.c) is one such methodological standard. It
would be easy for journals and funders to require
equivalent types of statements on the quality of code,
that is on the quality of its Software Engineering.

Studies of data access statements show that they
are unreliable: some authors withdraw papers when
journals request access statements [21] (indicating that
journals that do not make an explicit request are likely
publishing papers that will not provide access), and
some authors do not respond to access requests [22].
How we help scientists who do not want to provide data
or code access is one problem, but the serious issue
for science is how to ensure any statements made are
accurate, and any access provided is actually helpful
(e.g., well-defined, versioned, etc) to support useful
reproduction.

Journals and funders should provide support for
hosting data and code (and any other relevant data,
such as qualitative data, video, etc), and the review
process must check that authors actually provide the
material as they claim in the methodological and access
statements. Conversely, scientists should be able to
access funding to ensure data and code access, as well
as funding for on-going maintenance of the databases,
which will typically require funding beyond the end of
the normal funding period.

Intellectual Property (IP) is an increasing concern,
both for author scientists and their sponsors who want
royalties, and for other scientists wishing to freely build
on the published science. Particularly concerning access
to code, IP is potentially and often is in conflict with
scientific openness. Methodological statements should
be made concerning any IP associated with code, and
to what extent this interferes with open access to
code. More routine discussion should include raising
known system dependencies, such as operating system,
compiler, or special hardware dependencies; it is also
appropriate to mention standards conformance, such as
to IEEE Floating-Point Arithmetic (IEEE 754).

Journal policies could start to explicitly encourage
computationally reproducible science using RAP and
RAP+ techniques. That is, the research’s methodology

itself may be a mixture of data and code. As this
paper’s Supplemental Material shows in section 12.d.3,
many journals (e.g., PLOS ONE and, ironically, IEEE
Transactions on Software Engineering) and repositories
have policies that make RAP much harder or just
counter-productive at the last step.

Methodological statements should be required that
make clear what access rights are available for RAP
or RAP+ material, as it is much more likely to raise
IP issues that normal disclosures. In particular, if the
authors plan on publishing a series of papers based on
the same methodologies, the RAP/RAP+ access might
be provided in a later paper or held under escrow by
the journal or funding body.

Journals and funders often require data and
code access statements, but as this paper has
made clear, code is complex and it is rarely easy
to understand and scrutinize even with access to
substantial documentation (which is unusual). It
is therefore recommended that journals and funders
require assurance arguments [58], a familiar technique
from the safety assurance domain. Assurance
arguments provide a concise, high-level argument that
the system does what is claimed. Assurance arguments
can be more or less detailed, and more or less formal in
their approach; editors and referees would have views on
the level of detail and formality required for any specific
contribution.

Finally, as there is no practical distinction between
data and code (see Supplemental Material) and
methodology (thanks to RAP), and certainly no
distinctions that cannot be circumvented, journal
and funder policies of code and data access should
be reviewed and unified so that the access and
methodology statements apply to all information,
regardless of arbitrary classification of it as code or data
(or documentation, assurance case, etc).

6.f. Training to reduce technical debt

Science has to work for other people in other places
at other times, otherwise they cannot be sure they
are studying, developing, or correcting the intended
ideas reliably, but while working on a research project,
the requirements of reproducibility are tempting to
postpone or ignore altogether. It seems more expedient
to “just” get on and do the science without regard for
the extra effort of ensuring reproducibility. This creates
the problem known as technical debt [121]: the savings
in effort now increase the future cost of reproduction.
That is, a debt arises as the authors’ savings now
create higher costs for scientists later. The authors of a
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paper may create debt for themselves as shortcuts now
increase the effort of retro-fitting reproducibility later.
Indeed, what if the post hoc rigors of reproducibility
expose previously unknown problems where the earlier
shortcuts have created a now too-late-to-avoid cost
authors with integrity will be obliged to pay?

There is a trade-off to balance when and how
much effort to put into reproducibility. The trade-
off is comparable to trade-offs in using statistics
— the author may realize at a later stage that
a “significant” result depends on designing the
experiment appropriately for the intended statistical
claims, but now making the claim rigorously requires
revising the methodology and probably improving
the type of analysis too. What was an easier
route to take earlier now causes a challenging and
costly revision. However, since mature scientists
recognize the importance of correct statistics, statistics
is positioned at the forefront of their work rather
than delayed and sorted out at greater cost later.
Because of its recognized role, statistics is routinely
in the undergraduate syllabus, so most scientists
consciously make appropriate trade-offs minimizing
statistical technical debt.

In contrast to statistics, reproducibility has only
recently become an explicit issue, and computational
tools to support it are developing rapidly; unlike
statistics, very little of best reproducibility practice
will be in scientists’ background training. While
systems like Jupyter facilitate reproducible science,
realizing this may only come after much work has been
done. Unfortunately, retro-fitting the science into a
reproducibility tool is a steep learning curve — no less
than learning statistics from scratch. As with rigorous
statistics, if the benefits of reproducibility processes
were not realized at the start of a project and they
have to be retrofitted, then the reworking of the science
will be costly. Worse, Jupyter and similar tools are
not “just” computational notebook systems that are
easy to use: they work with a raft of inter-related
technologies, such as Binder, Docker, Python, MyST,
Sphinx . . . as well as field-specific environments like
Neurolibre, as well as with (or despite) costly tools
the scientists may be relying on, including proprietary
systems, high performance computing resources, and
subscription services.

Jupyter, and its many alternatives, are effectively
lifestyle choices with dauntingly steep learning curves
when they are learned on the job during research.
The solution, as with statistics, is to push back
learning about reproducibility and the benefits of tools
to earlier in the scientific career, at the latest to

the undergraduate curriculum before reproducibility-
related technical debt can arise.

6.g. Benefits beyond science

Science increasingly recognizes the key supporting roles
of code and computation, but many fields do not
recognize computation as such as a skilled discipline,
and therefore they are missing out on the leverage that
comes with recognizing computation as a first class
player in their activities.

For example, healthcare research is supported by
computers and code, yet medical research papers
remain in a traditional pre-digital culture and do not
refer to code, as if code has no influence in the
methodology of the science. Yet clinical practice relies
on computer code (e.g., for diagnostics), so inevitably
practice must use code unrelated to the code developed
in research. In other words, the culture of not discussing
and sharing code in research reduces its impact: putting
research into practice is a reproducibility question, and
if code has been down-played in the research it will be
reproduced unreliably. Conversely, the critical issues
(including patient safety) that tacitly assume code is
more reliable than required for scientific research code
do not get evaluated by researchers. The gap is wide.
The problems and missed opportunities of under-valued
and poorly-managed code are ubiquitous in healthcare
[60]. Solutions might well be initiated through SEBs.

Another example is that numerous problems in
finance have been precipitated by similar computational
cultural näıvety. JP Morgan Chase (JPM) lost over $6
billion in a credit derivatives trade [122], in a costly
parody of bad science. As reported in [122], traders
did not understand the trades, did not monitor them,
doubled down when results were poor, and did not
communicate the extent of their losses. They were using
manual coding methods; as the report says:

“[. . . ] the model operated through a series of
Excel spreadsheets, which had to be completed
manually, by a process of copying and
pasting data from one spreadsheet to
another. [Our emphasis.]

[. . . ] this individual immediately made certain
adjustments to formulas in the spreadsheets he
used. These changes, which were not subject to
an appropriate vetting process, inadvertently
introduced two calculation errors

[. . . ] after subtracting the old rate from the
new rate, the spreadsheet divided by their sum

The Computer Journal, Vol. 00, No. 0, 2023



28 Harold Thimbleby

instead of their average, as the modeler had
intended.”

etc [123]

Compare the discussion here with figure 3, in a
series of figures in the Supplemental Material, which
illustrates the problem as it presents in many scientific
papers.

The report [122] does not detail how the Excel
spreadsheets were specified or coded, seemingly as
unaware of Software Engineering as the traders. It was
an unconsciously incompetent process.

Reviewers in JPM failed to scrutinize not just the
coding, but the trades informed by the code. They
passed on optimistic reports. Then there was a merry-
go-round of blame: “the information communicated to
the Risk Policy Committee . . . did not suggest any
significant problems . . . there was no robust debate
with the right facts at the right level about the portfolio
risk.” UK and US governments are now investigating
fraud. Again, lasting solutions might well have been
initiated through SEBs or equivalent; involving SEBs
might well avoid future financial fiascos.

Without taking the lessons of improving Software
Engineering to other fields, including improving and
broadening the recognition and career paths for
developers, there will continue to be unfortunate and
unnecessary disconnects between competent software
engineering and actual scientific (or medical or financial,
etc) practice. Everything, from healthcare to finance
— not just science — will continue to suffer because
the critical contributions of dependable code, quality
Software Engineering, and competent Computational
Thinking are not yet recognized, understood, valued,
or required.

6.h. Approaches to further work

Encouraging and informing the improvement of science
and, specifically the reproducibility of science that relies
on code, were the main aims of this paper. This paper
raised problems and suggested some possible solutions:
there are solutions, and better ones may yet be found.
Although further work is desirable, any contributions
can help improve science; not everything needs doing
before we start.

Further work should research the efficiency, effective-
ness, and quality of the various ideas proposed, such as
RAP+ and Software Engineering Boards, and propose
and evaluate more ideas.

Further work to extend the reach and scope of
the survey with increasing scale, subject coverage,

and rigor beyond the exploratory requirements of the
present paper might seem worthwhile. If people feel
our analysis of the problem is inadequate, better
surveys may be appropriate, but recognizing that there
is a problem (regardless of arguing over its scale)
in practice it is more important to explore what
direction to travel in. We should be focusing effort
on acknowledging, understanding, assessing, managing
and avoiding scientific problems — including poor
reproducibility. This requires practical solutions that
scientists can adopt, which itself relies on further
work to examine rigorously what effective “practical
solutions” might entail.

Being primarily concerned with reproducibility, this
paper avoided assessing the correctness of code used in
science, not least because that without reproducibility
correctness is moot — how code is managed and made
available is more relevant than exactly what it does.
Indeed, since none of the papers reviewed provided
code specifications, it is not obvious what correctness
means to practicing scientists. The balance, then,
between practical correctness and formal correctness is
an important research topic to pursue [112].

The present paper did not assess the correctness
of code used in papers (explicitly so in section 5.a)
for several reasons. Code was not documented well-
enough (even with high-level discussion in the papers)
to know what “correct” would mean, and no papers
performed adequate tests, let alone provided adequate
test material for independent verification (see Table
2); moreover, installing the software environments to
build and test the systems — different environments
for each paper — was too onerous, even when those
environments were specified. The implication is that
people within the relevant fields, especially referees,
should promote standardized software environments to
help increase the rate of reproduction and verification
of results. As a matter for further research, then, it
is important to develop, assess, and promote effective
shared online (e.g., cloud) environments, perhaps with
discipline-specific solutions, so that development and
test environments are standardized, powerful enough,
and sufficiently accessible.

7. CONCLUSIONS

A pandemic creates unprecedented pressure and
exposes problems in scientific methodology. During the
COVID-19 crisis, code led epidemiological modeling,
implemented track and trace and caused problems [124],
modeled mutation pressures against vaccine shortages
[125], and more. Code drove public policy. Code had a
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direct impact on the quality of life.
While this paper was originally motivated by

Ferguson’s public statements [e.g., 74, 75] about
his high-profile COVID-19 pandemic modeling, the
evidence reviewed here suggests that scientific coding
practice is inadequate in every field, but particularly
worrying in the context of the extreme pressures
of managing a pandemic in real time. As science
becomes more and more reliant on computers, we
need to correspondingly improve the quality of
code, the quality of code policies, the quality of
Software Engineering, and the quality of all scientists’
understanding of computation and how to manage its
unlimited complexity.

The main challenges to mature computationally-
realistic science are:

1. To manage software development to reduce the
unnoticed and unknown impacts of bugs and poor
programming practices that research and
publications rely on. Computer code should be
explicit, accessible (well-structured, etc), and
adequately documented. Papers should be explicit
on their software methodologies, limitations and
weaknesses, just as Whitty expressed about the
standards of science generally [54]. Professional
software methodologies should not be ignored.

2. To use computation to help make scientific
workflows and processes explicit, so that they can
be reproduced, scrutinized, and improved. RAP is
an increasingly popular way to help do this, but
as this paper points out, RAP can be generalized
to RAP+ to help the computational parts of
science as well, leading to a virtuous circle.

3. To support and develop the scientific community
in the professional use of computation.

4. To find effective ways to promote professional
software engineers being recognized and
participating fully in scientific research, just as
professional statisticians routinely support quality
research (see section 3).

While programming seems easy and is often taken for
granted and done casually, programming well is very
difficult [60]. Science needs coding to be done well.

We know from software research that ordinary
programming is very buggy and unreliable. Without
adequately specified and documented code and data,
research is not open to scrutiny, let alone proper
review, and its quality is suspect. Some have argued
that availability of code and data ensure research is

reproducible, but that is näıve criterion: computer
programs are easy to run and reproduce results, but
being able to reproduce something of low quality does
not magically make it more reliable [34, 69, 126] (see
section 5.b).

Software Engineering Boards (SEBs), as proposed in
this paper, are an initial, straightforward, constructive,
and practical way to support and improve code- and
computer-based science. If nothing else, the idea of
SEBs is something to criticize and improve.

This paper’s Supplemental Material summarizes
relevant Software Engineering good practice that
Software Engineering Boards would draw on, including
discussing how and why Software Engineering helps
improve code reliability, dependability, and quality.
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8 Further issues for Software Engineering Boards (SEBs)

Software Engineering Boards, henceforth SEBs, will be used to help and assure that critical code, including
epidemic modeling, is of high standard, to provide assurance for scientific papers, Government public health
and other policies, etc, that the code used is of appropriate quality for its intended uses.

Further details of the SEB proposal is in the main paper. Here we raise further issues for SEBs (additional
to those covered in the main paper’s introduction to SEBs), potential limitations and possible responses that
can be addressed over time:

1. Until there are national qualifications, nobody — certainly nobody without professional training in
software — really knows just how bad (or good) they are at Software Engineering.

2. When code is taken seriously, concerns may be raised on programmers’ contributions to research,
intellectual property rights, and co-authoring [130]. Software engineering is a hard, creative
discipline, and getting epidemiological (and other scientific) models to work is generally a significant
challenge, on a par with the setting up and exploring the mathematical models themselves. Often
Software Engineers will need to explore boundary cases of models, and this typically involves hard
technical mathematics [100]. Often the Software Engineers will be solving entirely new problems and
contributing to the research. How this is handled needs exploring. How Software Engineers are
appropriately credited and cited for their contributions also needs exploring.

3. SEBs require policies on professional issues such as membership, transparency, and accountability.

4. There should be a clear separation between the SEB members’ activities as part of the Board, and
their other activities, including professional advice, code development, or training (which is likely to
be in demand from the same people who require formal approvals from the SEBs).

5. Professional Engineering Bodies have a central role to play in professionalism, ranging from education
and accreditation to providing professional structures and policies for SEBs. For example, should and
if so how should the programming skills taught to computational scientists (epidemiologists,
computational biologists, economists, computational chemists, . . . ) be accredited?

6. In the main paper, SEBs are viewed as a constructive contribution to good science, specifically
helping improve the quality of epidemiological modeling. More generally, SEBs will have wider roles,
for instance in overseeing software subject to medical device regulation [60].

7. SEBs may fruitfully collaborate with other engineering disciplines to share and develop best practice.
For example, engineers in other domains (e.g., civil engineers) routinely sign off projects, yet, on the
other hand, they often overlook the quality of Software Engineering their projects implicitly rely on
— for the same reasons as the scientific work discussed in this paper overlooks the dependence on
quality software.

8. Clearly, at least while this paper’s concepts are tested and mature, SEBs will need to collaborate
closely with research organizations, journals, and funding agencies in order to develop incremental
developments to policies and processes that will be most effective, and which can be introduced most
productively over time to the scientific community at large. Funding agencies may wish to support
such strategic work, as they have previously funded one-off projects such as [131].

There are other ideas to help make SEBs work, but it is clear they are part of the solution. We must not
let perfection be the enemy of the good. SEBs don’t need to be perfect on day one, but they do need to get
going in some shape or form to start making their vital contribution.

8.a Relationships of SEBs to Ethics Boards

1. Although SEBs may start with a checklist approach, like Ethics Boards generally do, it cannot be
assumed that people approaching SEBs know enough about Software Engineering to perform
adequate software assessments when there is any risk (as there is in public policy, medical apps, and
so on). SEBs may also provide mentoring and training.

2. Unlike Ethics Boards, which provide hands-off oversight, SEBs should provide professional advice,
perhaps providing training or actually helping hands-on develop appropriately reliable software.
During a pandemic SEBs would be very willing to do this, but in the long run it is not sustainable as
voluntary labour, so all research, particularly medical research, should include support for
professional Software Engineering.
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3. Ethics Boards typically require researchers to fill in forms and provide details, which is a feasible
approach as researchers know if they are doing experiments on children, for instance, so the forms are
relatively easy to fill in (if often quite tedious). On the other hand, few healthcare and medical
researchers understand software and programming, so they are not able to fill in useful software
forms on their own. SEBs need to know how well engineered the software really is, not how good its
developers think it is. As typical programs are enormous, SEBs are either going to need resources to
evaluate programs, or they will need to supervise independent bodies that can do it for them.

4. SEBs should have a two-way collaboration with Ethics Boards.

• SEBs have to deal with ethical concerns, and how they may be implemented in code. One of the
papers [192] in the survey (discussed later in this Supplemental Material) is a case in point, as is
the growing cross-fertilization between AI and ethics [e.g., 132].

• Ethics Boards also have to deal with software, and it is clear that they often fail to do this
effectively. The case of the retraction of a peer reviewed articles for The Lancet [133,134,135]
and the Journal of Vascular Surgery [136,137,138], discussed in section 12.a.2, are cases in point.

5. Like some Ethics Boards, SEBs might become, or be perceived as becoming, onerous and heavy
handed — as if the Board is not interested in ethics but only in following a bureaucratic pathway. It
seems essential, then, that SEBs have (and perhaps are chaired by) experienced, practicing,
professional Software Engineers to avoid this problem.

8.b SEBs are necessary but not sufficient

The main paper provides evidence and argues that SEBs (or equivalent) are necessary to help improve the
quality of science, specifically science relying, explicitly or implicitly, on tools or methods based in software.

SEBs address the problems identified at the laboratory end of doing science; they do not address the
processes of review, editorial control, and action based on claimed results. As shown in the review of 32
papers, only some journals have code policies, and the policies are not enforced. In other words, improving
the professionalization of Software Engineering has to proceed from doing science, which the paper covers,
to the downstream issues of review and publication. SEBs may work with journals, funding agencies and
even international standards agencies to improve broader awareness of professional Software Engineering,
but this is a topic the present paper has not addressed. It needs doing.

9 Software engineering best practice

This Supplemental Material provides more explanations and justification for following standard Software
Engineering practices that support reliable modeling, reliable research, and, most generally, reliable science.

The reader is referred to standard textbooks for more information [e.g., 5,6], as well as to specialized texts
that are more specifically addressed to Software Engineering in science [e.g., 131]. Written and maintained by
a team of experts, a substantial and wide-ranging reference is the Software Engineering Body of Knowledge
(SWEBOK) [139], recognized as International Standards Organization Technical Report 19759.

The Turing Institute has an excellent open resource [42], though it emphasizes RAP for handling data
and authoring papers rather than for programming reliably.

The book Why Programs Fail [140] is a very good practical guide to developing better code, and will be
found very accessible. Humphrey [141] outlines a thorough discipline for anyone wanting to become a good
programmer. Improvement is such an important activity, Humphrey has also published a book to persuade
managers of the benefits [142]. Further suggestions for background reading can be found throughout this
section.

Software Engineering includes the following topics:

9.a Requirements

It is not always necessary to program well if the code to be produced is for fun, experimenting, or for
demonstrations. On the other hand, if code is intended for life-critical applications, then it is worth putting
more engineering effort into it. The first step of Software Engineering, then, is to assess the requirements,
specifically the reliability requirements of the code that is going to be produced.

In practice, requirements and expectations change. Early experimental code, developed informally, may
well be built on later to support models intended to inform public policy, for instance. Unfortunately,
prototypes may impress project leaders who then want to rush into production software because, it seems, “it
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obviously works.” Fortunately, best practice Software Engineering can be adopted at any stage, particularly
by using reverse engineering. In reverse engineering, one carefully works out (generally partly automatically)
what has already been implemented. This specification, carefully reviewed, is then used as the basis for a
more rigorous Software Engineering process that implements a more reliable version of the system.

9.b Formal methods

In the physical world, to do something as simple as design and build a barbecue, you would need to use
elementary mathematics to calculate how many bricks to buy. To build something more substantial, such
as block of flats, you would need to use structural engineering (with certified structural engineers) to ensure
the building was safe. Although programming lends itself to mathematical analysis, it is surprising that few
programmers use explicit mathematics at all in the design and implementation of software.

The type and use of mathematics used in Software Engineering is called formal methods. Not using
formal methods ensures the resulting code is unsafe and unreliable. Of particular relevance to scientific
modeling: there must be an explicit use of formal methods to ensure mathematical models (such as differential
equations) are correctly implemented in code (and to understand the any limitations of doing so).

It is important to be clear that formal methods is a spectrum, from doing it as rigorously and compre-
hensively as possible using state of the art methods, to applying a basic “formal methods mindset” that any
competent programmer could do.

• An interesting paper explores a formal approach to coding differential equations [143], but it makes it
clear that their approach is beyond most programmers. Such formal methods require sophisticated
knowledge of logic [107], as well as practical knowledge of using appropriate formal methods tools
(Alloy, HOL, PVS, SPARK [81], and many others). Using the right tools is essential for reliable
programming, because the tools do quickly and reliably what, done by hand, would be slow and
error-prone. Standard tools cover verification, static analysis of code, version control, documentation,
and so on — this paper explains why some of these activities are essential for reliable programming
below.

• At the other end of the spectrum, a formal methods mindset means being clear about basic
mathematical properties of code, such as by using assertions, proving invariants in loops, and so on.
This approach should be feasible — and perhaps required — for all scientific programmers.

Crucially, computer tools are available to catch common human errors that we are all prone to. Many
tools are designed to avoid common human errors arising in the first place; notably, the MISRA C toolset
simply stops the developer using the most error-prone features of normal C, and hence improves the quality
of programming with little effort [80].

Many programming languages and programming environments have integrated features that support
formal methods. For example, Hoare’s triples [103] (and formal thinking based on similar ideas) are readily
supported by assertions, as either provided explicitly in a programming language or through a simple API.
In particular, assertions readily support contracts, an important rigorous way of programming: assertions
allow the program, the programming language, or tools (as the case may be) to automatically (and hence
rigorously) check essential details of the program.

Hoare’s original 1969 paper [103] is very strongly recommended because it is a classic paper that has stood
the test of time; in the 1960s it was leading research, but now it can be read as an excellent introduction,
given how the field of Software Engineering has advanced and become more specialized and sophisticated
over the decades since. Hoare is also a very good writer.

Formal methods have the huge advantage that they “think differently” and therefore help uncover design
problems and bugs that can be found in no other way. Because formal methods are logical, mathematical
theories (safety properties, and so forth) can be expressed and checked (often automatically); this provides
a very high degree of insight into a program’s details, and hence supports fault tolerance (e.g., redundancy).
Ultimately, formal methods provides good reasons to believe the quality of the final code — that it does
what it is supposed to do. Unfortunately, because formal methods are mathematical, few programmers have
experience of using them. Fortunately tools are widely available to help use formal methods very effectively.

9.c Defensive programming

Defensive programming is based on a range of methods, including error checking, independent calculation
(using multiple implementations written by independent programmers), assertions, regression testing, etc.
Notoriously, what are often unconsciously dismissed as trivial concerns frequently lead to the hardest to diag-
nose errors, such as buggy handling of “well-known, trivial” things like numbers [144]. The great advantage
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of defensive programming is that it detects, and may be able to recover from, bugs that have been missed
earlier in the development process (such as typos in the code). Defensive programming requires professional
training to be used effectively, for example it is not widely known that some choices of programming language
make defensive programming unnecessarily hard [145].

A special case of defensive programming appropriate for pandemic modeling is mixing methods. Do not
rely on one programming method, but mix methods (e.g., different numerical methods) to use and compare
multiple approaches to the modeling.

Interestingly, the only paper reviewed that claimed to do any independent testing [189] failed to include
any testing in its data or code repository, so the testing itself — the essential quality assurance of the code
— is not open to scrutiny (e.g., the code and the “independent” code are likely to contain common code,
data, and common bugs).

9.d Using inappropriate programming languages undermines reliability

Many popular languages are popular because they are easy to use, which is not the same as being reliable
to use. The fewer constraints a language imposes, the easier it seems to be to program in, but the lack
of constraints means the language cannot provide the checks stricter languages do. C, for instance, which
is one of the languages widely used for modeling [146, 74], is not a good choice for a reliable programming
language — it has many intrinsic weaknesses that are well-known to professionals, but which frequently trap
inexperienced programmers. (This is not the place for a review of bad programming languages, for which
see [145], but Excel is even worse than C.)

In particular, C is not a portable language, which means C code will work differently on different types
of computer and operating system.

SPARK Ada is a popular example of a much more appropriate high integrity programming language to
use [81]. SPARK Ada also has the advantage that most Ada programmers are better qualified than most C
programmers.

Other high integrity languages include OCaml, F*, and Haskell; reference [82] is an excellent introduction
to Haskell, and introduces the wider issues of reliable programming in such languages.

9.e Open source and version control

It is appreciated that the models may change and be adapted as new data and insights become available.
Changing models makes it even harder to ensure that they are correct, and thus emphasizes the relevance of
the core message this paper: we have to find ways to make computer models more reliable, inspectable, and
verifiable. Version control keeps a record of what code was used when, and enables reconstruction of earlier
versions of code that has been used. Version control is supported by many tools (such as Git, Subversion,
etc).

If version control is not used, one has no idea what the current program actually is. Version control is
essential for reproducibility [76, 126] (see also section 5.b): it enables efforts to duplicate work to start with
the exact version that was used in any published paper, provided that the published paper discloses the
version and a URL for the relevant repository. Note that version control should also be used for data and
web site data used by code, otherwise the results reported are not replicable.

If results cannot be reproduced, has anything reliable been contributed? When a modeling paper presents
results from a model, it is important to reproduce those results without using the same code. Better still,
research should be reproduced without sharing libraries or APIs (for example, results from a model using
R might be reproduced using Mathematica — this is a case of N (where, in this case, N = 2) version
Programming [86]). Reproducing the same results relying on the same codebase tells you little. The more
independent reproductions of results the greater the evidence for belief in the implications.

Clearly, with the transformations a program from avian flu in Thailand [10] to COVID-19 in the United
States and in Great Britain [9] taking place over many years, version control would have been very helpful
to keep proper track of the changes. Note that professional version control repositories also provide secure
off-site back up, ensuring the long-term access to the code and documentation — this would avoid loss of
Supplemental Material problems, as occurred in [95].

Most version control systems would, in addition, enable open source methods so the code could be shared
— and reviewed — by a wider community. Open source is not a panacea, however; it raises many trade-offs.
Particularly for world-wide concerns like pandemic modeling, it increases diversity in the software developers,
and fosters a diverse scientific collaboration. Open source can raise people’s standards — some countries
[147,148] are using Excel models to manage COVID-19, and as there are.are serious dependability problems
with Excel (illustrated particularly in section 6.g of the main paper), open source projects competently
implemented (e.g., avoiding or carefully managing the use of Excel) would help these people enormously.

41



Improving science that uses code: Supplemental Material Harold Thimbleby

Open source raises important licensing and management questions to ensure the quality of contributions.
A salutary open source case is NPM, where lawyers from a company called Kik triggered Azer Koçulu, that
is, a single programmer, to remove all his code from a repository. This caused problems to many thousands
of JavaScript programmers worldwide who could no longer compile anything — ironically, including Kik
itself [149].

Critically in the case of epidemic modeling, open source democratizes the model development and in-
terpretation, and enables properly-informed public debate. Note that many (if not most) successful open
source projects have had a closed team of highly dedicated and directly employed developers [113].

9.f Rigorous testing

In poorly-run software development it is very easy to miss bugs, because the flawed thinking that inserted
bugs in the code is going to be the same flawed thinking with the same misconceptions that tries to detect
them. Rigorous testing includes methods like fault injection. Here, the idea is that if testing finds no bugs,
that may be because the testing is not rigorous enough rather than that the program actually has no bugs.
Fault injection inserts random bugs, and then testing gives statistical insights into the number of bugs in a
program (depending on how many deliberate bugs it successfully finds).

It is very tempting to test code while it is being built, save some or all of the code on a repository, but
forget to check that the code has not changed out of recognition of the earlier tests — tests should be saved
so that modified code can easily be tested again. For example, if a test reveals a bug, the bug should be
fixed and the test needs to be re-run to check the fix worked (and did not introduce other bugs previously
eliminated).

It is important that code is saved and then downloaded to a clean site, confirmed it is consistent, and
a new build made (preferably by an independent tester), which is then re-tested. If this procedure (or
equivalent) is not followed, there is no assurance that the code made available with the paper is complete
and works reliably.

There are many other important testing methods [5, 6, 86].

9.g Good documentation and record keeping

Documentation covers internal documentation (how code works), developer (how to include it in other
programs), configuration (how to configure and compile the code in different environments), external docu-
mentation (how the code is used), and help (documentation available while using the program).

For critical projects, such as for pandemic modeling, all documentation (including software) should be
formally controlled, typically digitally signed and backed up in secure repositories. One would also expect a
structured assurance case to be made, both to help the authors understand and complete their own reasoning
and to help reviewers scrutinize it [58].

For purely scientific purposes, perhaps the most important form of documentation is internal documen-
tation: how to understand how and why the code works. This is different from developer documentation,
which is how to use the code in other programs. For example, code for solving a differential equation needs
explaining — what method does it use, what assumptions does it have? In contrast, the developer documen-
tation for differentiation would say things like it solves ordinary differential equations with parameters e for
the function f with the independent variable x in the interval [u, v], or whatever, but how it solves equations
is of little interest to the developer who just needs to use it. How code works — internal documentation — is
essential for the epidemiologist, or more generally any scientist. An example of a simple SIR epidemiological
model’s internal documentation can be found at URL http://www.harold.thimbleby.net/sir

There are many tools to help manage documentation (Javadoc, Doxygen, . . . ). Literate programming is
one very effective way of documenting code, and has been used for very large programming projects [32].
Literate programming has also been used directly to help publish clearer and more rigorous papers based on
code [34] — a paper that also includes a wider review of the issues.

Documentation should be supplemented by details of algorithms and proofs of correctness (or references to
appropriate literature). All the documentation needs to be available to enable others to correctly download,
install and correctly use a program — and to enable them, should they wish, to repurpose it reliably for
their own work. In addition, documentation requires specifications and, in turn, their documentation.

A important role of documentation is to cover configuration: how to get code to work — without
configuration, code is generally useless. The most basic is a README file, which explains how to get going;
more useful approaches to configuration include make files, which are programs that do the configuration
automatically.

Without proper record keeping, code becomes almost impossible to maintain if programmers leave the
project. Note that computer tools can make record keeping, laboratory books etc, trivial — if they are used.
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9.h Usability

Usability is an important consideration: [150, 151] is the program usable by its intended users so they can
obtain correct results? Often the programmers developing code know it so well they misjudge how easy it
will be for anyone else to use it — this is a very serious problem for the lone programmer (possibly working
in another country) supporting a research team. Usability is especially important when programs are to be
used by other researchers and by non-programmers, including epidemiologists.

In publishing science, an important class of user includes the scientists and others who will use or replicate
the work described. When code used in research is non-trivial, it is essential that the process of successfully
downloading code and configuring it to run is made as usable as possible. Typically so-called makefiles are
provided, which are shell scripts or apps that run on the target machine, establish its hardware and other
features, then automatically configure and compile the code to work on that machine. Makefiles typically
also provide demo and test runs and other helpful features. Other approaches to improve usability are zip
files, so every relevant file can be conveniently downloaded in one step, and using standard repositories, such
as GitHub which allow new forks to be made, and so on.

9.i Reusing quality solutions

Reusing quality code (mathematical functions, database operations, user interface features, connectivity, etc)
avoids having to develop it oneself, saves time and avoids the risks of introducing new bugs. The more code
that is reused, the more likely many people will have contributed to improving it — for example, reusing
a standard database package will provide Atomicity, Consistency, Isolation, and Durability (so-called ACID
properties) without any further work (nor even needing to understand what useful guarantees these basic
properties ensure).

Note that reusing code assumes the originators of the code followed good Software Engineering practice
— particularly including good documentation; equally, if the code being developed building on it follows
good Software Engineering practice, it too can be shared and further improved as it gets more exposure.
Its quality improves through having scrutiny by the wider community, and in successful cases, leading to
consensus on the best methods. Indeed, reuse, scrutiny, and consensus are the foundations of good science.

Anticipating reuse during program development is called flexibility, where various programming tech-
niques can greatly enhance the ease and reliability of reuse [152].

A special case of reuse is to use software tools to help with software development. The tools (if appro-
priately chosen) have been carefully developed and widely tested. Tools enable software developers to avoid
or solve complex programming problems (including maintenance) repeatedly and with ease.

9.j Simplicity

When a program doesn’t quite do what is wanted, it is tempting to add more features or variables, or to
treat the problem as an “exception” and program around it — which inserts more code and, almost certainly,
more bugs. This way lies over-fitting, a problem familiar from statistics (and machine learning). Programs
can be made over-complex and they can then do anything; an over-complex program may seem correct by
accident. Instead, the hallmarks of good science are that of parsimony and simplicity; if a simple program
can do what is needed it is more likely to be correct. A simpler program is easier to prove correct, easier to
program, and easier to debug. A special case of needing simplicity is when fixing bugs: instead of fixing bugs
one at a time, one should be fixing the reasons why the bugs have happened. Generally, when bugs are fixed,
programmers should determine why the bugs occurred, and thence repair the program more strategically.

9.k Compliance with standards

To ensure adherence to best practice and, importantly, to avoid being unaware of relevant methodologies,
professional software development projects adopt and adhere to relevant standards, such as ISO/IEC/IEEE
90003:2018 [153]. However, for safety-critical models or models of national policy significance, much stronger
standards such as aviation software standards, such as RTCA DO-178C/EUROCAE ED-12C [154], com-
monly called DO-178C, will be more appropriate. Publications should then cite the standards to which their
computer models comply.

Note that medical device regulation, which has its own standards, is lagging behind professional Software
Engineering practice, and currently provides no useful guidance for critical software development [60].
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9.l Effective multidisciplinary teamwork

As this long list illustrates, Software Engineering is a complex and wide-ranging subject. Software engi-
neering cannot be done effectively by individuals working alone (for instance, code review is impossible for
individuals to perform effectively), even without considering the complexities of the domain the code is in-
tended for (in the present case, including pandemic modeling, mathematical modeling, public health policy,
etc). Multidisciplinary teamwork is essential.

Modern software is complex, and no one person can have the skills to understand all relevant aspects of
all but the most trivial of programs. Furthermore, programming is a cognitively demanding task, and causes
loss of situational awareness (that is, cognitive “overload” making one unable to track requirements beyond
those thought to be directly related to the specific task in hand). The main solution to both problems is
teamwork, to bring fresh insights, different mindsets and skills to the task.

Peer review of code is an essential teamwork practice in reliable program development: [155,6] it is easy
to make programming mistakes that one is unaware of, and an independent peer review process is required
to help identify such unnoticed errors.

Almost all software will be used by other people, and user interface design is the field concerned with
developing usable and effective software. A fundamental component of user interface design is working with
users and user testing: without engaging users, developers are very likely to introduce quirks that make
systems less usable (often less safe) than they should be. In short, users have to be brought into the software
team too.

9.m Continuous Professional Development (CPD)

As computing technology continues to develop rapidly — especially as new programming tools and systems
are introduced — best practice in Software Engineering is also rapidly evolving. Continuous Professional
Development (CPD) is essential.

Ironically, the more organized CPD the more likely the content itself will lag behind. There is an argu-
ment for two-way links between universities (and other research organizations), research science developers,
including enabling developers to undertake part-time research degrees. Research degrees teach not just
current best-practice but also how to stay abreast of the relevant technologies and literature as it develops.

The UK’s Software Sustainability Institute is one initiative that is making important contributions [156,
157], and its web site will no doubt remain timely and up to date in a way that this paper cannot.

Note that CPD is not just a matter of learning current best practice, but a continual process as best
practice itself continually evolves. In Software Engineering, a current (as of 2021) initiative concerns repro-
ducible code artifacts and badging papers to clearly show the approaches they take [109], and this will in
due course have a direct impact on Software Engineering standards in other fields.

9.n Security and other factors

Of course, there are many other factors to be considered for the professional development of critical code,
such as using appropriate methods to ensure cybersecurity [158, 159], particularly while also being able to
up- and download secure updates.

For pandemic modeling specifically, understanding the limitations of numerical methods (in particular,
how numerical methods are affected by the choice of programming language and style of programming) is
critical.14 Hamming [100] is considered a classic, but there is a huge choice available.

For reasons of space, the present paper does not discuss the issues raised by AI, nor the many very impor-
tant, non-trivial social and professional concerns, which have complex implications for Software Engineering
practice, such as managing programming teams, data ethics, privacy, legal liability [160], or software as a
matter in law, as in disputes over model results or disputes over ownership of code [161].

9.o Software is a human activity

Software is a human activity, and humans are fallible. Even the Software Engineering methodologies to
developer better software are themselves human constructs, and are therefore subject to the same fallibilities.

People would generally not make software errors if there were aware they were making errors. Un-
fortunately programming is a very demanding activity, which causes tunnel vision (also known as loss of

14For example, code from one of the surveyed paper [198] uses literal numbers at far too high a precision for the chosen
language to be able to represent correctly (conformant implementations use IEEE 754 double precision 64-bit floating point).
Such an error typically has an undefined impact on results, and unfortunately is easy to overlook as the program almost certainly
ignores the error when running. The error belies misunderstandings in programming which may have wider effects, such as
consequences of relying on the precision being higher than it is.

44



Improving science that uses code: Supplemental Material Harold Thimbleby

situational awareness). Humans have limited cognitive capacity, and programming (especially programming
in a competitive environment, like science) drives programmers to use as much of their cognitive skills for
the task in hand. The consequence is programmers focus on “the” problem as it appears in the code, and
inevitably become unaware they are not considering wider issues. The correctness, generality, ethics, and
usability of a program are therefore often unintentionally sacrificed to making code work at all.

Confirmation bias is a standard Human Factors problem [60], which encourages us to perform tests that
show our programs work. Instead, we should be rigorously testing ways in which programs can fail as well.
This is exactly the same issue pointed out by Popper [69]: scientists should experiment to find reasons why
hypotheses are false, and indeed use simple hypotheses that are testable. Software is really no more than a
collection of sophisticated hypotheses, and Computer Science is a science of the artificial [162].

Standard Human Factors mitigations for such problems include team working, with appropriate precau-
tions to manage authority gradients (where the Human Factors oversights of the leader influence the team).
Many computerized mitigations are also available — strong typing, code analyzers, formal methods, and so
on, as described in this section of the Supplemental Material.

Following the Dunning-Kruger Effect [163, 164], programmers over-estimate their programming skills
because they do not have the skills to recognize their lack of knowledge — in the present case, knowledge of
basic Software Engineering.

Dunning and Kruger go on to say,

“People usually choose what they think is the most reasonable and optimal option [ . . . ] The failure
to recognize that one has performed poorly will instead leave one to assume that one has performed
well; as a result, the incompetent will tend to grossly overestimate their skills and abilities. [ . . . ]
Not only do these people reach erroneous conclusions and make unfortunate choices, but their
incompetence robs them of the metacognitive ability to realize it.”

Unlike many skills (skating, brain surgery, . . . ) programming, typical of much engineering, is one where
errors can go unnoticed for long periods of time — things seem to work nicely right up to the moment they
fail. The worse programmers are, the more trivial bugs they tend to make, but trivial bugs are easy to
find so, ironically, being a poor programmer increases one’s self-assessment because debugging seems very
productive. It is easy for poor programmers and their associates to believe they are better than they actually
are, fertile ground for the better-than-average bias [163].

It sounds harsh to call programmers incompetent, but challenged with the complexity of programs and
the complexity of the domains programs are applied in, we are all incompetent and succumb to the limitations
of our cognitive resources, suffering blindspots in our thinking [60]. We all make mistakes we are unaware
of. If we do not have the benefit of professional qualifications that have assessed us objectively, we generally
have a higher opinion of our own competence than is justified. Moreover, if we do not work in a diverse
team, nobody will ever point this out, so the potential problems it causes will never be addressed.

Everyone is subject to Human Factors (including the author of the present paper, e.g., as discussed
in [165]): for instance, the standard cognitive bias of confirmation bias encourages us to look for bugs
when code fails to do what is expected and then debug it to produce better results, but if code generates
expected results not to bother to debug it further. This of course tends to make code increasingly conform
to prior expectations, whether or not those expectations are scientifically justified. Typically, there was no
prior specification of the code, so the code should be right, especially after all the debugging to make it
“correct”! Thus coding routinely suffers from HARKing (Hypothesizing After the Results are Known [166]),
a methodological trap widely recognized in statistics.

Computers themselves are also a part of the problem. Näıvely modifying a program (as may occur during
debugging) typically makes it more complex, more ad hoc, and less scrutable. Programs can be written so
that it is not possible to determine what they do or how they do it (whether by deliberate obfuscation, as in
malware, or accidentally), except by running them, if indeed it is possible to exactly reproduce the necessary
context to do so [167]. The point is, introducing bugs should be avoided so far as possible in the first place,
and programs should routinely have assertions and other methods to detect those bugs that are introduced
(see this paper’s Supplemental Material for more discussion of standard programming methodologies).

10 Code, data, and publication

All computer systems are in principle equivalent to Turing Machines, and Turing Machines make no dis-
tinction between program and data. It is possible to define Turing Machines that do separate program code
and data, but as soon as a Universal Turing Machine is constructed, its data is code. Indeed, Universal
Turing Machines are a theoretical abstraction of virtual machines, which are used widely in practical com-
puting. Java, for instance, runs in a virtual machine, so any Java program code (and any data it uses) is in
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fact merely all data to the Java virtual machine. At another extreme, λ-calculus is purely program source
code, yet λ-calculus is equivalent to Turing Machine computation. Therefore, even the “pure” programs of
λ-calculus also represent data.

These elementary theoretical considerations underly an important practical fact: there is no fundamental
difference between code and data, and no distinction that is relevant for scientific publication purposes.

There is no code/data distinction one can imagine that cannot easily, even accidentally, be circumvented.
In other words, a journal’s data policies and code policies should be the identical — and the conventionally
stricter data policies should also apply to code. It is baffling that some journals have code policies that are
weaker than their data policies; it is certainly indefensible to have no code policies at all.

Significant cyber-vulnerabilities result from there being no difference between code and data. For example:
an email arrives, which brings a paper to work on or other data to a user. The user opens the attachment,
perhaps a word processor text document, which is more data. The word processor runs macros in the text
document — but now it is code. The macros move data onto the user’s disk. The data there then runs as
code, and corrupts the user’s data across the disk — which includes both data and code stored in files. And
so on, spreading around the world when this user emails their work to a colleague. Each step of a computer
virus infection crosses over non-existent “boundaries” between data and code [167].

This section’s discussion may sound like arcane and irrelevant pedantry, but these issues are at the very
foundations of Computer Science.15 If we ignore or misunderstand these basic things — or overlook them
in policies and procedures — bugs and irreproducibility are the inevitable (and confusing) consequence.

The main paper points out that data is often embedded in code using “magic numbers.” Let’s now
explain how.

A simple fragment of program code might say

x = 324+sin(theta*pi/180);

This is clearly all source code, but the number 324 above is likely to be some sort of relevant data, though
it might be a physical constant whose value does not depend at all on this experiment. The next hard-coded
value mentioned in the calculation is difficult to categorize: is the value of π empirical data or is it part
of a standard formula? Some programming languages like Mathematica treat π as an exact mathematical
constant (e.g., Mathematica calculates tanπ/4 = 1 exactly), but π is also definitely an inexact empirical
value.16

The point is, the distinctions between data, program and even mathematical constants are purely a
matter of perspective.

Unfortunately, there is data that is extremely easy to overlook (and therefore very hard to manage)
because it is embedded in arbitrary ways in code. You may assume that the function sin, as used in the
calculation example above, is the standard trigonometric function for calculating sines (and because of the π
in the expression, you assume theta is degrees and sin is taking radians as its parameter type) but almost
all programming languages allow sin to be any function whatsoever. Confusingly, even if it calculates sines,
it is generally a different function when the code is run on a different computer producing numbers that are
not exactly the same.

It is impossible to tell.

10.a When magic numbers become magic code

Data often controls the flow of code. For example, data summarizing patients may include their gender, but
the program processes males and females differently. Then data becomes code.

Arbitrary numbers appearing in code are obviously magic numbers, but code often conceals the magic
numbers of data by “programming them away” during the coding process.

For example, the magic number 324 was explicit in the line of code shown above, but if somewhere else
the program says

if evenQ(324) then A; else B;

many programmers would optimize this to A, because they know the condition is true because of their
assumptions. This now seems to be a more efficient program because it has avoided a test (which a modern
complier would have optimized away anyway). Unfortunately, the previously explicit dependency of the code
on the magic number 324 has completely disappeared.

15Many of the foundational issues were explored thoroughly by Christopher Strachey and others in the 1960s; Strachey’s
classic lectures are reprinted in an accessible 2000 publication [168]. Being originally a very old paper this classic introduction
is much easier to read than many more recent discussions of the foundations of Computer Science.

16A record set on 19 August 2021, the most accurate value of π then known was 62,831,853,071,796 digits URL www.fhgr.ch/

en/specialist-areas/applied-future-technologies/davis-centre/pi-challenge
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Obviously this example seems trivial, but it illustrates that programmers do some of their programming
while writing code, and many assumptions disappear completely and have no representation in the final
code. More complex code will have many facts hard wired into the code — so in fact the code contains data.
Code can even read in formulas from data and compile them to perform further calculations, and so on.

This is one reason bugs — effectively incorrect assumptions — are so hard to find, because they have no
concrete form in the final program.

10.b When data is code

Many computer programs blur the simplistic code/data distinctions deliberately, to create virtual machines.
Data is then run on the virtual machine as program. Many programs provide standard features to do this,
such as LISP’s and JavaScript’s eval functions. Henderson’s book [169] builds an elegant Pascal program
to run any LISP program as data, and then shows that the LISP program can run itself running other
programs, so it is now its own code and its data — despite being purely data to the Pascal program. There
are numerous advantages to doing this, including: the Pascal program is not just reading data, but structured
data that must conform to the rules of LISP; the LISP running itself runs faster than the original Pascal
running LISP, even though the Pascal virtual machine is still doing it in the recursive case; LISP is a much
more powerful language than Pascal, so a virtual machine can be used to escape the barriers of a limited
implementation such as Pascal. In short, any distinctions between code and data are impossible to maintain.

AI and Machine Learning are further examples of exploiting data as code. Typically a program learns
from a training set of data, and then processes future data differently depending on what it has learned. In
other words, the original data becomes a model which is now code.

10.c Exploiting code as data for more reliable science

In the present paper, we knowingly built on this blur between data and code, a special case of RAP+.
However, what we did was not unusual except in our explicit and rigorous approach to managing and
summarizing data reliably in the paper.

The paper and its Supplemental Material are typeset in LATEX, a popular typesetting language. LATEX
not only has text (as you are reading right now) but it also has code. For example, “LATEX” was typeset by
running the code for a macro called \LaTeX, which then calculated how to position the letters as they are
wanted. When π was written above, the code that generated what you read actually said $\pi$ — so is this
data that just says π or is it code that tells the computer to change character sets from Latin to Greek, and
then uses \pi as a program variable name to select a particular glyph from the data about typesetting Greek
characters? The distinctions are all a bit moot. In other words, the publication itself is data to a LATEX
program, and within that data it includes further programs. Indeed, LATEX is run on a virtual machine, in
exactly the same way that Henderson’s LISP is, and doing so provides the same advantages.

The data for this paper’s survey was itself originally written as literal text in LATEX: it meant that LATEX
could process it to produce a typeset table (as in the Supplemental Material above). As the extent of the
data grew, it rapidly became apparent that LATEX is a poor choice to manage structured data. A simple
JavaScript program was written to convert the LATEX data into JSON (which is much more readable than
LATEX) and also generate CSV files that can be processed in standard office software such as Excel, which
some readers may prefer. In fact, examining and comparing the same data in the contrasting formats, this
typeset file, in JSON, and in Excel (reading the generated CSV) provided multiple different perspectives of
the data that increased redundancy and confidence that the data was correct and correctly handled.

It is important to note that using such techniques is quite routine in science publication, though often
pre-existing tools are used to streamline the process (and to ensure that it is more widely understood). The
paper [187], for example, in addition to using a typesetting system for publication, also placed its code in
a repository using R Markdown [117], a programming environment based on R designed for generating and
documenting lab books — almost the polar opposite of LATEX, which is designed for publication but can be
used for programming.

Finally note that what may look like magic numbers used throughout the present paper (such as the
32, as in “32 papers were evaluated”) are all in fact named, calculated and placed in situ directly from
computations performed on the JSON paper’s data.

10.d When data is text: Exploiting code for reliable publication

Section 3.a of the main paper looks like part of an ordinary paper, but it (including the figure and calculations)
was data generated by a Mathematica program.
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Most programs are code plus comment, and their data comes from some external source or sources. In
Mathematica, programs are represented as “notebooks,” which can be structured like reports or papers.
They have sections, which allow program code, data and program output to be arbitrarily mixed in a single
file.

For the purposes of the present paper, a notebook was created with a new type of data, LATEX text. The
LATEX text can be any mix of text written by the author or material generated by running Mathematica. A
final step of running the Mathematica notebook is to collect all of the LATEX material, whether written by
hand or generated, and save it to a normal text file for LATEX to typeset.

The idea is very simple, but very effective. The “code” for the paper includes the Mathematica notebook
that generated section 3.a. In fact, the notebook is written as a self-contained report or paper, asMathematica
notebooks generally are, and it thoroughly documents how it works.

For readers of this paper who do not have access to Mathematica to run the notebook, a PDF of the
notebook is included to show how it works. Note that the method can be applied in any programming
language, but Mathematica makes the interleaving of paper text and calculations (of arbitrary complexity)
very easy — in conventional programming environments the paper text would be separate (e.g., as data)
and it would be much harder to keep the text and code in synchronization.

More of such techniques for improving reliability are discussed in section 12.d, where they are applied to
accurately and reliably reporting the survey reported in the main paper.

10.e Data and polynomials used in the paper

The data and polynomials used in the main paper’s section 3.a, and illustrated in the paper’s figure 1, is
presented below, as generated in LATEX by the same Mathematica notebook that generated section 3.a. Of
course, in the paper itself, the specific data was not necessary to make the point, but if there is any need
to replicate it or otherwise scrutinize the arguments in the paper — as there would be for more complex
arguments in typical papers — the data used and results are shown below.

The table below is a LATEX table generated by Mathematica, and is exactly the data used in the paper.17

In a similar way, data and computed results could be presented and made available in other scientific papers.

x = 1.00 1.10 2.20 2.60 4.50
y = 1.50 2.70 4.90 5.70 8.20

Showing both polynomials with coefficients to 2 decimal places, the linear least squares model to fit this
data is:

ŷ = 0.49 + 1.80x

and the Lagrange polynomial model (an exact fit to the 5 data points) is

ŷ = −41.79 + 85.46x− 56.30x2 + 15.65x3 − 1.51x4

These polynomials are the ones shown in the main paper’s figure 1.
The name of the relevant Mathematica notebook file where all data and code for this section (and for

generating the paper’s section 3.a and its figure 1) can be found in programs/over-fitting-section.nb,
which is included in the Git repository for the paper.

10.f Comparing conventional and RAP approaches

The similarities and differences between the conventional copy-and-paste approach to filling in data and
diagrams in publications, the improved systematic RAP process, and using notebooks (such as Mathematica
or Jupyter), are illustrated in the sequence of schematics of figures 2, 3, 4, and 5.

11 The Spiegelhalter trustworthiness questions

David Spiegelhalter is concerned how statistics is often misused and misunderstood. In his The Art of
Statistics [48] Spiegelhalter brings together his advice for making reliable statistical claims: they need to be
accessible, intelligible, assessable, and usable — and the claims need to be properly accountable.

17Barring coding or other errors of course, which here we checked against manually by comparing this table typeset in LATEX
against the raw data in the original Mathematica data table, but in general might better be done by an automatic round trip
— though that would not easily spot LATEX errors.
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Figure 2: The common basic — error-prone and obsolete — approach to scientific authoring is to use code to
help generate analyses and diagrams, then manually copy and paste the selected results into the publication.
Note that the publication, including the results, can be edited arbitrarily, and typically the results published
will have been edited and modified (if only for typographical purposes) from those actually generated by the
code.

Figure 3: When the code is in a spreadsheet, such as Microsoft Excel, the code is generally hidden from
sight. The data copied & pasted into a publication may or may not be calculated from data in other cells
(such as column totals). Records are rarely taken of these manual processes, and, anyway, typically it is
impossible to be certain exactly what has been copied unless very great care is taken. In consequence, if a
spreadsheet is modified, it is haphazard what results are updated and corrected in the publication.
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Figure 4: Improving over the normal approach (figure 2), data and diagrams are placed in the publication
using a programmed, systematic approach. In the present paper, this was done by generating text files
of LATEX definitions (represented by boxes in the central column of the schematic), hence providing LATEX
names for all of the code-generated values. Since the copying of results into a publication is automated and
easy, any improvements to the results (such as correcting errors) are made by improving the code — which
therefore contributes to improving all future-generated results too. Not shown, but in well-engineered code,
documentation will also be generated, such as by using tools such as JavaDoc or Doxygen.

Spiegelhalter proposes ten questions to ask when confronted with any claim based on statistical evidence.
Some of his questions are quite general, and might be applied to any sort of scientific claims, but all have
analogous questions that could be addressed to software code or publications relying on code — analogues
are suggested in bold below.

What might seem like dauntingly technical software issues are no more demanding than the basic statis-
tical issues that are regularly acceded to; failing to ask these questions is as risky as dismissing statistical
scrutiny.

11.a How trustworthy are the numbers?

1. How rigorously has the study been done? For example, check for ‘internal validity,’ appropriate de-
sign and wording of questions, pre-registration of the protocol, take a representative sample, using
randomization, and making a fair comparison with a control group.

▶ How rigorously has the Software Engineering been done? Section 9 in the
Supplemental Material provides a list of important issues that must be addressed
for any reliable software.

▶ “Internal validity” assumes that there is evidence the programmers had uncertainty
in the code’s reliability and checked it. Were different methods used and compared,
or was all confidence put into a single implementation? What internal consistency
checks does the implementation have? Were invariants and assertions defined and
checked?

2. What is the statistical uncertainty/confidence in the findings? Check margins of error, confidence
intervals, statistical significance, multiple comparisons, systemic bias.

▶ How are the claims presented that give us confidence in the code that they are
based on? Are there discussions of invariants, independent checks for errors, and so
on? Again, Supplemental Material section 9 provides further discussion of such
issues.

3. Is the summary appropriate? Check appropriate use of averages, variability, relative and absolute risks.

▶ If the claims are exploratory, weaker standards of coding can be used; if the claims
are a basis for critical decisions, then there should be evidence of using appropriate
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Figure 5: In a notebook system, such as Mathematica or Jupyter, a single document — the notebook —
integrates the publication, the code, any notes, as well as all the results. The code generates results and
images that are automatically (and reliably) inserted in place into the notebook, usually right after the code
that generates them. Some parts of the notebook are marked or selected to be printed as the publication,
thus allowing most if not all code to be hidden from the final publication. In well-engineered code, the
notebook will directly contain full documentation. Note that in most systems, notebooks can import and
generate arbitrary data (images, sounds, sensor data, etc).

Software Engineering (such as defensive programming) to provide appropriate
confidence in the results claimed.

11.b How trustworthy is the source?

4. How reliable is the source of the story? Consider the possibility of a biased source with conflicts of
interest, and check publication is independently peer-reviewed. Ask yourself, ‘Why does this source
want me to hear this story?’

▶ The source of many science stories is the output of running some code. How
reliable is this code? What evidence is there that the code was well-engineered so
its reliability can be trusted?

▶ What evidence is there of rigorous (e.g., code review and tool-based) independent
methods being used to manage coding bias?

5. Is the story being spun? Be aware of the use of framing, emotional appeal through quoting anecdotes
about extreme cases, misleading graphs, exaggerated headlines, big-sounding numbers.

▶ Be wary of AI and ML which may have been trained by chance or specifically (if
not deliberately) to get the results described.

6. What am I not being told? This is perhaps the most important question of all. Think about cherry-
picked results, missing information that would conflict with the story, and lack of independent comment.

▶ Cherry picking with code is often unconscious and is very common: when running
code produces the “cherries” for a paper it is tempting to stop testing the code,
and just assume it is running correctly. So, what evidence is there that the code
was rigorously developed and cherry picking avoided?
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11.c How trustworthy is the interpretation?

7. How does the claim fit with what else is known? Consider the context, appropriate comparators,
including historical data, and what other studies have shown, ideally in a meta-analysis.

▶ Is there any discussion of the code and how does it compare with other
peer-reviewed publications using code used for similar purposes?

8. What’s the claimed explanation for what has been seen? Vital issues are correlation v. causation,
regression to the mean, inappropriate claim that a non-significant result means ‘no effect,’ confounding
attribution, prosecutor’s fallacy.

▶ These are all good statistical questions. The Software Engineering analogy is: are
the claims backed up by a sufficiently detailed discussion of the algorithms and
Software Engineering that justify the appropriateness of the chosen software
implementation? The Supplemental Material list in section 9 provides examples of
expected explanations for the trustworthiness of running some code.

9. How relevant to the story is the audience? Think about generalizability, whether the people being
studied are special case, has there been an extrapolation from mice to people.

▶ Generalizability is equivalent to is the code available, easy to understand and use
for more general purposes — including further work and checking the
reproducibility of the claims being made?

10. Is the claimed effect important? Check whether the magnitude of the effect is practically significant,
and be especially wary of claims of ‘increased risk.’

12 A pilot survey of computational science

The main paper was motivated by selected epidemiological papers and their problematic computational
models (which are discussed in the paper). Although concerning in their own right, especially for informing
national public health policies during a pandemic, the wider question is: are the problems illustrated by
these case studies typical of science more broadly? We undertook, then, some selected studies of papers
in a variety of fields, then undertook a randomized, stratified pilot survey covering several leading peer
reviewed journals. The point was not to establish the frequency of problems, so much as to sign whether the
problematic case study was exceptional or typical. It is typical.

The pilot study itself follows the RAP methodology. The data and code for this paper’s pilot survey
(and all other analysis used in the paper and in this Supplemental Material) are available on GitHub. All
raw data is converted into LATEX so that the analysis can be typeset directly in the paper; this Supplemental
Material also contains a complete tabular presentation of the data.

Moreover, this paper itself follows the more general RAP+ methodology. For example, as standard
practice, a Unix makefile is used to make it easy to analyze and generate all data, typeset the paper, and
more. Table 6 shows the options provided.

The RAP+ approach cannot enforce the truth of such as summary, but it (and the opportunity to read
and review it easily) very significantly increases the chances that the summary is correct and up to date.
For example, if refactoring leads to an option being deleted, then it will also disappear with no further
work from the table above. Also, since the summary was proof-read at the same time as proof-reading this
Supplemental Material, following RAP+ also increases the chances that any errors or functionality omissions
or issues in the makefile have been detected and corrected.

12.a Selected journal case studies

There are numerous case studies to be made from journals and their relation to code and data. Here, we
select just two.

12.a.1 The Lancet

The journal The Lancet published and then subsequently retracted a paper on using hydroxychloroquine
as a treatment for COVID [170]. The paper was found to rely on fraudulent data [133, 134]. The Lancet
subsequently tightened its data policies [135], for instance to require that more than one author must have
directly accessed and verified the data reported in the manuscript. Curiously, the original (now retracted)
paper declares
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make all Download and analyze the data, then typeset the main files (paper.pdf,
appendix.pdf and all.pdf) that import all the data, as well as make the
self-contained expanded .tex (and .PDF) files that do not depend on the sep-
arate data files in data/*.

...
make data Analyze the data, and generate all the data files, the Unix scripts, the CSV,

and LATEX files (including the LATEX summary of this makefile), etc. This make
option runs node programs/data.js, downloads the Git repositories used
in the pilot survey, and then analyzes them. Note that downloading all the
repositories in a reasonable time needs decent internet bandwidth.

...
make help Explain how to use make, and list all available options for using it.

Table 6: Conforming to the RAP+ methodology, the abbreviated summary above was generated automati-
cally, by using make data. A full list of make options is generated by make or make help when run on the
Unix command line.

“. . . all authors participated in critical revision of the manuscript for important intellectual content.
MRM and ANP supervised the study. All authors approved the final manuscript and were responsible
for the decision to submit for publication.”

which seems to suggest that several original authors of the paper would have been happy to make the new
declarations — and, of course, if there is fraud (as was established in this case) it seems likely that authors
who make the new declarations of accessing and verifying data are unlikely to make reliable declarations.

The Lancet still has no code publication policy, and for more than one author to have “direct access” to
the data they are very likely to access the data through the same code. If the code is faulty or fraudulent,
an additional author’s confirmation of the data is insufficient, and there is at least as much reason for code
to be fraudulent (not least because code is much harder to scrutinize than data). Code needs more than
one author to check it, and ideally reviewers independent of the authors so they do not share the same
assumptions and systems (for instance shared libraries, let alone potential collusion in fraud).

12.a.2 Journal of Vascular Surgery

In 2020 the Journal of Vascular Surgery published a research paper [136], which had to be retracted on
ethical grounds [137, 138]: it was a näıve study and the editorial process was unaware of digital norms.
Notably, the paper fails to provide access to its anonymized data (with or without qualification), and fails to
define the data anonymization algorithm, and also fails to even mention the code that it developed and used
to perform its study. The journal’s data policy is itself very weak (the authors “should consider” including
a footnote to offer limited access to the data) and, despite basic statistics policies, it has no policy at all
for code (see section 12.c.1). Ironically, the retracted article [136] is still online (as of August 2020) with no
reference to any editorial statement to the effect that it has been retracted, despite this being trivial — and
necessary — to achieve in the widely-accessed online medium.

Medical research often aims to establish a formula to define a clinical parameter (such as body mass
index, BMI) or to specify an optimal drug dose or other intervention for treatment. These formulas, for
which there is conventional clinical evidence, are often used as the basis for computer code that provides
advice or even directly controls interventions. Unfortunately a simple formula as may be published in a
medical paper is never sufficient to specify code to implement it safely. For example, clinical papers do
not need to evaluate or manage user error when operating apps, and therefore the statistical results of the
research will be idealistic compared to the outcomes using an app under real conditions — which is what
the clinical research is supposedly for. A widespread bug (and its fix) that is often overlooked is discussed
in [144]; the paper includes an example of a popular clinical calculator (based on published clinical research)
that calculated nonsense, and potentially dangerous, results. The paper [171] summarizes evidence that such
bugs, ignored by the clinical research literature, are commonplace in medical systems and devices.

12.b Pilot paper sample

A sample of 32 recent papers covering a broad range of science were sampled from the leading journals Lancet
Digital Health (N = 6), Nature Digital Medicine (N = 12) and Royal Society Open Science (N = 14).
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3 Journals
32 Papers:

6 Lancet Digital Health
12 Nature Digital Medicine
14 Royal Society Open Science

264 Published authors
341 Published journal pages

July 2020 Sample month

Table 7: Overview of the peer-reviewed paper sample. (Convenient copy of main paper’s table 1.)

Number of papers sampled relying on code 32 100%

Access to code
Some or all code available 12 38%

Some or all code in principle available on request 8 25%
Requested code actually made available (within 2 years 11 months⋆) 0 0%

Evidence of any software engineering practice
Evidence program designed rigorously 0 0%
Evidence source code properly tested 0 0%

Evidence of any tool-based development 0 0%
Team or open source based development 0 0%

Other methods, e.g., independent coding methods 1 3%
Documentation and comments

Substantial code documentation and comments 2 6%
Comments explain some code intent 3 9%

Procedural comments (e.g., author, date, copyright) 10 31%
No usable comments 17 53%

Repository use
Used code repository (e.g., GitHub) 9 28%

Used data repository (e.g., Dryad or GitHub) 9 28%
Empty repository 1 3%

Evidence of documented processes
Evidence of RAP/RAP+ or any other principles in use to support scrutiny 0 0%
Adherence to journal code policy (if any)

Papers published in journals with code policies 26 81%
Clear breaches of journal code policy (if any) 11 42% (N = 26)

⋆Time of 2 years 11 months is wait between code request and date of generating this table.

Table 8: Summary of survey results. (Convenient copy of main paper’s table 2.)

The two journals Nature Digital Medicine and Lancet Digital Health were selected as leading specialist
science journals in an area where correctness of scientific modeling has safety-critical implications, and Royal
Society Open Science was selected as a leading general science journal. All papers sampled are Open Access,
although for some papers some or all of the associated data has no or restricted access, in some cases despite
the relevant journal policies on code. Table 7 is an overview of the sample.

Papers were selected from the journals’ July 2020 then new online listings where the paper’s title implied
that code had been used in the research. Commentary, correspondence, and editorials were excluded. The
sample is intended to be large enough and objective enough to avoid the selection bias in the papers that
motivated the current paper (the sample excludes the motivating papers discussed above as they were
not published in the sampled journals), so that the sample may be considered to fairly represent what
the editorial and the broader peer review community in leading journals considers to be good practice for
computationally-based science. The selection criterion selected papers where the title implies the authors
themselves considered code to be a significant component of the scientific contribution, and, indeed, all
sampled papers relied on and assumed the quality of code used in their research.

This convenience sample may be considered to be small given the importance of the research questions
and relative to the diversity and huge number of scientific papers,18 but . . .

18Using Google Scholar it is estimated that over 40,000 papers meeting the title criteria were published in the month of July
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PDF paper Repository code & data
Github repository Number Number Code Data
and paper citation of pages of files kLOC bytes

AI-CDSS-Cardiovascular-Silo [184] 6 206 143 64 Mb
blast-ct [205] 8 54 3 238 Mb
covid-sim [9] 20 229 25 734 Mb
lactModel [195] 13 20 2 165 kb
LRM [197] 22 125 8 2 Mb
manifold-ga [203] 7 11 1 —
MetricSelectionFramework [176] 17 44 4 236 kb
PENet [180] 9 117 8 4 Mb
philter-ucsf [183] 8 1 : 987 13 32 Mb
PostoperativeOutcomes RiskNet [182] 10 1 — —
SiameseChange [186] 9 5 1 1 kb

Average (N = 11) 12 254 19 98 Mb

Citation numbers > 129 can be found in the Supplemental Material
Repository clones downloaded and automatically summarized 7 June 2023

Table 9: Sizes of repositories, with approximate sizes of code (in kLOC) and data for all available GitHub
repositories reviewed in the survey, plus covid-sim [9] for comparison. Sizes are approximate because in all
repositories code and data are conceptually interchangeable (an issue explained in the Supplemental Mate-
rial), so choices were made in the survey to avoid double-counting. Many repositories rely on downloading
additional code and data, which is not counted in the table as the additional required material is not in
the repository cited in the paper. At the time of cloning and checking all repositories in June 2023, paper
[182] still had nothing in its repository except a single file still saying “. . . code coming soon . . . ,” despite
48 months having already elapsed since the paper had claimed the code could be accessed in its repository.

1. the selected journals are leading peer-reviewed scientific journals that set the standards for scientific
publishing practice generally (although the sample shows that code policies are not always enforced);

2. as will be clear from the following discussion, there is little variation across the sample, which implies
that a larger sample would not have been productively more insightful (this view is consistent with the
multi-disciplinary reports in [96], mentioned in section 5.c);

3. the survey is not intended to be a formal, systematic sample of scientific research in general, but is
intended to be sufficient to dispel the possibility that the issues described above earlier in this paper
are isolated practice unique to a few papers in epidemiology, perhaps an idiosyncrasy of a few authors
in a particular field, or perhaps due to an initial chance selection bias (e.g., the Ferguson papers
were reviewed above because of Ferguson’s public profile and the importance of dependable pandemic
research, but they might have just happened to be Software Engineering outliers);

4. the code/data policies of the 3 journals condoned at the time of the sample and continue to condone
poor practice at the time of writing the present paper (June 2023) — for specific details and further
explanation of the problems, see Supplemental Material section 12.c.1;

5. the fact that the specifically identified problems are elementary errors in Software Engineering (see the
discussion in section 5.c) suggests more sophisticated analysis is not required;

6. finally, the present paper’s LATEX source, as well as all documented code and data, are available from
a repository, which provides a convenient framework for easily refining or developing the research as
may be desired (see details at the end of this paper).

The 32 papers surveyed cover a range of specialities, and it is unlikely that non-specialists can properly
assess the code from the point of view of the specialism, not least because many of the papers sampled
require specialist code libraries (and in the right combinations of versions) to be run that not everyone will
have or be able to install. Code quality was therefore assessed by reading it — due to the paper authors’
complex and/or narrative interpretation of data, code, data and hardware/operating system dependencies,
no assessment could realistically be made whether the code provided actually reproduced a paper’s specific
claims. Indeed, if we trust the papers that their code was actually run and provides the results as reported,

2020.
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then running their code (when provided in full) would merely check the paper/code consistency but will
not assess the quality or reliability of the code. Indeed, in most scientific papers there are layers of expert
scientific work, interpretation and abstraction, lying between the computational models and the report in
the paper.

12.c Summary of results

The sample selection criteria necessarily identified scientific research with Software Engineering contributions.
No evidence of verification and validation was seen. There was only one example of very basic Software

Engineering methods, namely independent coding, and even then the independent code used for testing was
not uploaded to the paper’s code repository, so the independent testing is not available for reviewers or
readers of the paper.

There was no evidence of any critical assessment of code, suggesting that scientists writing papers take
it for granted that their code works as they intend. No competent programmer would take it for granted
that their code was correct without following rigorous methods, such as formal methods, regression testing,
test driven design, etc (see section 9 in this Supplemental Material).

Much code depended on specific software versions, specific libraries, and substantial manual intervention
to compile it. All code (where actually provided) was sufficiently complex that, if it was to be used or
scrutinized, required more substantial documentation than was provided.

On the whole, on the basis of the sample evidence, scientists do not make their code usably available,
and rarely provide adequate documentation (see table 8).

With the one minor exception, no papers reported anything on any Software Engineering methodologies,
which is astonishing given the scale of some of the software effort supporting the papers (table 9). The
papers themselves, typically only a few published pages, are very brief compared to the substantial code
they rely on (see table 9).

With the one exception, none of the papers used any specific Software Engineering methods, such as open
source [113] or other standard methodologies provided in this Supplemental Material, to help manage their
processes and help improve quality. Although software stability [172] is a relatively new concept, understood
as methodologies, such as portability, to provide long-term value of software, it is curious that none of
the papers made any attempt at stability (however understood) despite the irony that all the papers were
published in archival journals.19

Nature Digital Medicine and Royal Society Open Science have clear data and code policies (see Supple-
mental Material section 12.c.1), but actual publishing practice falls short: 11 out of the 26 papers (42%)
published in them and sampled in the survey manifestly breach their code policies. In contrast, Lancet
Digital Health, despite substantial data policies, has no code policy at all to breach. The implication is that
the fields, and the editorial expertise of leading journals, misunderstand and dismiss code policies — they
(or their editors and reviewers) are technically unable to assess them. This lack of expertise is consistent
with the limited awareness of Software Engineering best practice that is manifest in the published papers
(and resources) themselves.

Code repositories were used by 10 papers (31%), though one paper in the survey claimed to have code on
GitHub but there was no code in the repository, only the comment “Code coming soon. . . ” (checked at the
time of doing the review, then double-checked as detailed in the references in the Supplemental Material, as
well as most recently on 7 June 2023 while checking table 9): in other words, the repository had never been
used and the code could never have been looked at, let alone reviewed.20 This is a pity because GitHub
provides help and targeted warnings and hints like “No description, website, or topics provided [. . . ] no
releases published.” The lack of code is ironic: the paper concerned [182] has as its title “Development and
validation of a deep neural network model [. . . ]” (our emphasis), yet it provides no code or development
processes for the runnable model it claims to validate, so nobody else (including referees) can check any of
the paper’s specific claims.

The sizes of all GitHub repositories are summarized in table 9 (since many papers not using GitHub do
not have all code available, non-GitHub code sizes are not easily compared and are not listed).

Overall, there was no evidence that any code had been developed carefully, let alone by using recognized
professional Software Engineering methods. In particular, no papers in the survey provide any claims or
evidence of effective testing, for instance with evidence that tests were run on clean builds. While it may
sound unrealistic to ask for evidence on software quality in a paper written for another field of science, the

19Reasons the present paper does not directly assess the quality of software in the surveyed papers include: many papers did
not provide complete software; it was not possible to find correct versions of all software systems to run the models; also, no
papers provided adequate test suites so that correct operation of software could be confirmed objectively.

20GitHub records show that it had not been deleted after paper submission.
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need is no less than the need for standard levels of rigor in statistics reporting, as discussed in the opening
of this paper.

Data repositories (the Dryad Digital Repository, Figshare or similar) were used by 9 papers to provide
structured access to their data. Unlike GitHub, which is a general purpose repository, Dryad has scientifically-
informed guidelines on handling data, and all papers that used Dryad provided more than just their raw
data — they provided a little, sometimes substantial, documentation for their data. At the time of writing,
Dryad is not helpful for managing code — its model appears to be founded on the requirement that once
published papers must refer to exactly the data they used, so further refinements on the data (or code) are
taboo, even with version control.

12.c.1 Current code policies of sampled journals

It is noteworthy that none of the journals sampled permit any reliable style of managing data in published
papers, such as described above in sections 12.d.1 and 12.d.3. The main paper, section 6.e, additionally
mentions PLOS ONE and IEEE Transactions on Software Engineering.

For all the surveyed papers that had accessible code, the code included explicit (and relevant) data that
was not archived as data in the journal repositories.

Note that journal policies relevant to the survey were first accessed on 29 July 2020, close after the period
covered by the pilot survey, thus presumably fairly closely reflecting the policies in use for the papers in the
survey on the dates when they were each submitted. Unfortunately for the survey, the journals do not make
clear what exact policies were applied to each paper when the papers were submitted (on the other hand,
the survey shows that policies are not rigorously enforced).

Extract from Royal Society Open Science author guidelines
“It is a condition of publication that authors make the primary data, materials (such as statistical tools, protocols,
software) and code publicly available. These must be provided at the point of submission for our Editors and
reviewers for peer-review, and then made publicly available at acceptance. [. . . ] As a minimum, sufficient
information and data are required to allow others to replicate all study findings reported in the article. Data and
code should be deposited in a form that will allow maximum reuse. As part of our open data policy, we ask that
data and code are hosted in a public, recognized repository, with an open licence (CC0 or CC-BY) clearly visible
on the landing page of your dataset.”
URL royalsociety.org/journals/authors/author-guidelines/#data

Since first accessed 29 July 2020, the policy has been revised (undated, accessed 2 February 2022) but
retains the same principles; full policy now available via a DOI [173]. The policy still retains an emphasis
on data accessibility, and continues a lack of awareness that code and data are equivalent and often mixed
(see section 10).

Extract from Nature Digital Medicine author guidelines
“A condition of publication in a Nature Research journal is that authors are required to make materials, data,
code, and associated protocols promptly available to readers without undue qualifications. [. . . ] A condition of
publication in a Nature Research journal is that authors are required to make unique materials promptly available
to others without undue qualifications.”
URL www.nature.com/nature-research/editorial-policies/reporting-standards#availability-of-data

Accessed 29 July 2020; since updated (accessed 2 February 2022) to require [in part] “Upon publication,
Nature Portfolio journals consider it best practice to release custom computer code in a way that allows
readers to repeat the published results. Code should be deposited in a DOI-minting repository such as
Zenodo, Gigantum or Code Ocean and cited in the reference list following the guidelines described here.”

Lancet Digital Health author guidelines
Journal has detailed data policies, but no code policy.
URL marlin-prod.literatumonline.com/pb-assets/Lancet/authors/tldh-info-for-authors.pdf

Accessed 29 July 2020. Still no code policy when accessed 2 February 2022.

Extract from Journal of Vascular Surgery author guidelines
The Journal of Vascular Surgery has detailed data policies, but no code policy. While no Journal of Vascular
Surgery papers were surveyed (but see section 12.a.2), the following statement on data policies is relevant:

“The authors are required to produce the data on which the manuscript is based for examination by the
Editors or their assignees, should they request it. [. . . ] The authors should consider including a footnote in
the manuscript indicating their willingness to make the original data available to other investigators through
electronic media to permit alternative analysis and/or inclusion in a meta-analysis.”
URL www.editorialmanager.com/jvs/account/JVS_Instructions%20for%20Authors2020.pdf
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Accessed 29 July 2020. Policy unchanged when accessed 2 February 2022.

12.c.2 Sample assessment and scoring

Assessment flags are highlighted in color to be clearer in the following tables.

Paper
Flag count Meaning
Pc 26 Journal has a code policy (see section ??)
Pc-breach 11 Paper breaches journal code policy (see section ??)
Rc 10 Paper uses a code repository (e.g., GitHub)
Rc-empty 1 Code repository contains no code
Rd 9 Paper uses a data repository (e.g., Dryad, Figshare, GitHub)
SNONE 12 No code available at all (note: code is not expected for standard models,

systems or statistical methods)
Sp 8 Paper says source code is available in principle
S+ 12 Paper or URL provides source code
Srigorous 0 Evidence that source code was developed rigorously
Stested 0 Evidence that source code has been run with a clean build and tested
Stools 0 Evidence of any tool-based development
Sopen source 0 Team or open source development
SotherSE 1 Other evidence of good practice; see details in summary table
C0 10 Code only has comments unrelated to code intent (e.g., copyright)
C1 1 Code only has trivial or obvious comments
C2 3 Helpful comments explaining code intent, rather than rephrasing the code
C3 2 Code has substantial, useful comments, and documentation
Ca 1 Code in repository uses assertions
Cc 0 Code in repository uses pre- or post-conditions or similar

Ref Data Code
[175] On request. “Code is available upon request from the cor-

responding author” (requested) Pc Sp
[176] “The datasets used in the current study are

available from the corresponding author upon
reasonable request and under consideration of
the ethical regulations.” Rd

Matlab. Documented overview, but only triv-
ial comments. Assertions in code only relate to
UI. Pc Rc S+ C0 Ca

[177] “In accordance with Twitter policies of data
sharing, data used in the generation of the al-
gorithm for this study will not be made pub-
licly available.”

“Due to the sensitive and potentially stigma-
tizing nature of this tool, code used for algo-
rithm generation or implementation on individ-
ual Twitter profiles will not be made publicly
available.” Pc Pc-breach SNONE

[178] “The datasets generated during and/or ana-
lyzed during the current study are available
from the corresponding author on reasonable
request.”

“This code would be made available upon rea-
sonable request.” (requested) Pc Sp

[179] Nothing available Nothing available (despite building two voice-
based virtual counselors). Pc Pc-breach SNONE

[180] “The datasets generated and analyzed dur-
ing the study are not currently publicly avail-
able due to HIPAA compliance agreement but
are available from the corresponding author on
reasonable request.”

Poor commenting, no documentation. Pc Rc

S+ C0

[181] “The dataset generated and analyzed for this
study will not be made publicly available due
to patient privacy and lack of informed consent
to allow sharing of patient data outside of the
research team.”

No code available. Pc Pc-breach SNONE
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Ref Data Code
[182] “The datasets generated during and/or ana-

lyzed during the current study are not pub-
licly available due to institutional restrictions
on data sharing and privacy concerns. How-
ever, the data are available from the corre-
sponding author on reasonable request.”

Empty GitHub repository: “Code coming soon
. . . ” paper says. Pc Pc-breach Rc Rc-empty SNONE

[183] “The i2b2 data that support the findings of
this study are available from i2b2 but restric-
tions apply to the availability of these data,
which require signed safe usage and research-
only. Data from UCSF are not available at
this time as they have not been legally certified
as being De-Identified, however, this process is
underway and the data may be available by the
time of publication by contacting the authors.
Requesters identity as researchers will need to
be confirmed, safe usage guarantees will need
to be signed, and other restrictions may apply.”

Basic documentation, very little comment. Pc

Rc S+ C0

[184] “Not available due to restrictions in the ethical
permit, but may be available on request.”

Trivial comments, no documentation. Pc Rc

S+ C0

[185] “The data that support the findings of this
study are available in a deidentified form from
Cleveland Clinic, but restrictions apply to the
availability of these data, which were used un-
der Cleveland Clinic data policies for the cur-
rent study, and so are not publicly available.”

“We used only free and open-source software”
— some of which is unspecified. Pc Pc-breach

SNONE

[186] “The i-ROP cohort study data for ROP is not
publicly available due to patient privacy re-
strictions, though potential collaborators are
directed to contact the study investigators . . . ”

Not all code on GitHub, minor comments only.
Pc Rc S+ C0

[187] Data available on Dryad. Rd Code and example runs available in R Mark-
down. Pc S+ C3

[188] Data directly written into program code. Basic Matlab with routine comments. Sup-
plemental files Rsos192210supp1.docx and
Rsos192210supp2.docx have links but were not
accessible at time of double checking. Pc

Pc-breach S+ C0

[189] Data available on Dryad plus publicly available
data from the 1000 genomes project. Currently
(apparently) for private view. Rd

Code available for private view, though some
code available with minor comments. Paper
describes using two contrasting methods to
help confirm correctness, “As an additional
check, I also coded the calculation of D based
on a probabilistic approach, using genotype
frequencies in each population to calculate
the expected frequencies of each possible two-
genotype combination (electronic supplemen-
tary material, table S1). Essentially identical
results were obtained.” — but the contrasting
method is not available. Pc Sp SotherSE C2

[190] Data available on Dryad. Rd Reasonaby commented code on Dryad, but
code is not complete and presumably never
checked. Pc Sp C2

[191] On request. R, lightly commented. Pc Sp C0

[192] No data required. Unrunnable incomplete code fragment. Pc

Pc-breach Sp
[193] Data embedded in PDF. No code available. Pc Pc-breach SNONE
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Ref Data Code
[194] Data available on Dryad. Rd Some comments, some code in Matlab. Pc Sp

C2

[195] Partial data on Dryad. Rd Documented R, including model’s manual. Pc

Rc S+ C3

[196] No data required. “We constructed a bioeconomic model for an
RSSF [restricted fishing effort small-scale fish-
ery] using game theory” for which results are
discussed, yet no code is available. Pc Pc-breach

SNONE

[197] Data cited, not all available. Trivial documentation. Pc Rc S+ C0

[198] On Figshare. Rd On Figshare, large amount of disorganised and
undocumented code. Helpful features to make
usable for third parties. Pc S+ C0

[199] Data on Dryad. Rd No code available. Pc Pc-breach SNONE

[200] Data on various web sites. No code available. Pc Pc-breach SNONE

[201] Data on request. “The coding used to train the artificial intelli-
gence model are dependent on annotation, in-
frastructure, and hardware, so cannot be re-
leased.” (!) Algorithm (not source code) avail-
able on request. SNONE

[202] Data on request. Python scripts can be requested. Sp
[203] Unspecified location on large website requiring

registration. Rd

Has overall documentation but poorly com-
mented Matlab code on GitHub. Rc S+ C0

[204] Available to researchers who meet criteria for
access to confidential data.

Despite the paper being a “deep learning algo-
rithm” the code is not available. SNONE

[205] Data access conditional on approved study pro-
posal.

Almost completely uncommented Python, but
does have a basic setup script. Rc S+ C1

[206] Unspecified locations on several large websites. Python used and apparently on GitHub, but —
an oversight? — no code is available. SNONE

12.d Assessment criteria and methods

A survey sampled of recent papers that were published online in July 2020, accepted for publication after
peer review in 3 high-profile, highly competitive leading peer-reviewed journals, namely Lancet Digital Health
(N = 6), Nature Digital Medicine (N = 12) and Royal Society Open Science (N = 14). Papers were selected
from the journals’ July 2020 new online listings where the paper’s title implied that code had been used in
the research. Commentary, correspondence and editorials were excluded. The sample represents what the
editorial and the broader peer review community considers to be good practice.

The selection process will have certainly missed some papers that use code, but the criterion selects
papers where the wording of the title indicates that the authors consider code to be a component of the
scientific contribution. Indeed, all sampled papers used code in their research. Although there is unavoidable
subjectivity in the paper evaluations and uncontrolled bias from using a single evaluator (the author of this
paper), it is hoped that using a sample of 32 papers from 3 diverse journals is sufficient to randomize errors
so that they largely cancel out, and the overall trends as discussed in this paper are reliable. It should
be noted that, except where a paper provides a URL to a code repository, much code was disorganized so
possibly not all code was reviewed because it was too hard to find (some emails to authors have not been
responded to).

Since almost every scientific paper relies on generic computer code (calculating statistics, plotting graphs,
storing and manipulating data, accessing internet resources, etc), the baseline of papers using code was not
assessed. Papers whose title indicated their contribution included or relied on bespoke code were selected,
and all those clearly relied heavily on their own specifically developed code. Papers that may have relied on
bespoke code but whose titles made no such implication were not assessed.

Although the pilot survey is not a systematic review, following Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) [63] it is good practice to disclose details of the reviewers. In the
present case, the selected papers were assessed by the author of the present paper. The study was not
blinded. This is, of course, a limitation of the study. However, the reviewer is a full professor of computer
science, who has taught and assessed computer software since the 1970s, using moderated and peer-reviewed
processes for undergraduate and postgraduate computing degrees, and is well aware assessing code quality
has been a lively topic in Software Engineering for decades (there is now international standard ISO/IEC
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9126, updated to ISO 25000). The author has written legal documents analyzing software for criminal cases
involving faulty software. The author has approximately 528 published papers in computer science.

The evaluations performed for the present paper are at a trivial level where sources of bias should have
a negligible effect, particularly given that the overall conclusion is consistent across both the diverse sample
and the computational science-based papers cited in the paper that did not form part of the selected sample.
As said in the body the paper: the fact that the specifically identified problems are elementary errors in
Software Engineering (see the discussion in [main paper] section 5.c) suggests more sophisticated analysis is
not required.

In any case, as stated in the main paper, the full dataset and analysis code is available at

URL github.com/haroldthimbleby/Software-Enginering-Boards

and the reviewed papers are (unless retracted) still available online for independent assessment.
There is considerable debate over what good commenting practice is, but this is because comments have

many roles — from helping students to get marks in assessments, asserting intellectual rights, reminding
the developer of things to do, managing version control, to explaining the code to third parties. Different
programming languages also develop “cultures” and tool-based systems that encourage different approaches
for comments (examples include R Markdown, Mathematica Notebooks, JavaDoc, Haskell’s Haddock, and
so on). For scientific code, however, the explanatory role is critical, and this is what was assessed in the
present survey. It is notable that no such tool-based approach to code or documentation was used in any
code reviewed.

The completeness or executability of code was not assessed, although if code was obviously incomplete
this was noted. Whether code runs as claimed is a matter of research integrity, which is beyond the scope
of this survey. What is relevant to the study is whether the code is described in sufficient detail that the
methods used can be scrutinized. Obviously being able to run the code will help, but clarity in documentation
and comments is critical. It is more like “can we see the critical pages from your lab book so we understand
what you did?” rather than “can we have a free run of your laboratory, even though we don’t understand
the details of the science?”

As an informal survey, intended to establish whether the issues in epidemic modeling were more widespread,
and given the very poor level of documentation found in scientific code, it was not felt necessary to have
independent or blind assessment.

The data was recorded in JSON (JavaScript Object Notation), which is a simple standard data format.
A typical entry in the data file looks like this (with long field values truncated for clarity):

{
accessed: "14 July 2020",

doubleChecked: "17 January 2021",

authors: "Callahan A, Steinberg E, Fries JA, Gomba ...,

year: 2020,

title: "Estimating the efficacy of symptom-based ...,

volume: 3,

number: 95,

journal: "Nature Digital Medicine",

doi: "10.1038/s41746-020-0300-0",

dataComment: "On request.",

hasCodeInPrinciple: 1,

codeComment: "‘‘Code is available upon request from th ...,

pages: 3

}
The data was entered by hand (as JSON terms), after reading and reviewing each paper in the survey.

In total there are 36 data fields available for documenting papers, but not all need be used for each paper;
for example, the field hasCodeTested defaults to false, so it need not be set — it is also an error to set it
if another field asserts there is no code to evaluate! (A separate JSON data structure maps the data fields
to English descriptions, along with default values if they are optional descriptors.)

A JavaScript program sanity checks the JSON data. The sanity checks found a few errors (e.g., it
checks that if there are comments of any sort then there must be some accessible code in order to have any
comments; it checks the DOI is accessible, etc), which led to a productive double-checking of all the facts of
the original papers — and correcting all the errors. Some papers that had had no code available during the
first assessment subsequently uploaded code by the time of the double-checking.21 A field doubleChecked

21Note that double-checking was performed by the same person as the first assessment, though with the benefit of a long gap
to bring a degree of independence.
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was added to supplement the original data field accessed to track the process of double-checking the data.
Further sanity checks then of course checked all doubleChecked fields were completed. And so on. Note
that since the checking was done automatically in code, whenever any data was modified and whenever the
paper was typeset, the entire body of checks were easily rerun.

Since JSON data is effectively JavaScript code, it was convenient to combine the data, the data sanity
checking, and the analysis all in a single JavaScript file for more convenient maintenance. Hence, running
the data generates the core human-readable information used in this paper.

The JavaScript data+program generates files from the JSON; these files were then included in both the
main paper and in this Supplemental Material, so when the paper or Supplemental Material is typeset all
tables and specific data items are typeset automatically, consistently and reliably by LATEX.

For example, the register \dataN is set to the value 32, which is the total number of papers assessed in
the JSON data, and the macro \journalBreakdown is defined directly from the data to be the following
text (when typeset in LATEX):

Lancet Digital Health (N = 6), Nature Digital Medicine (N = 12) and Royal Society Open
Science (N = 14)

— which is the breakdown of the total N = 32 by journal name. The exact same text was also used in
the main paper.

An interesting consequence of this automatic approach is that as the author found themselves starting
to write text such as:

Code repositories were used by 10 papers ...

it motivated extending the JavaScript data processing so that all specific quantities mentioned in the
paper are traceable directly back to the JSON data. The phrase above is now in fact written in LATEX in
the paper as follows:

Code repositories were used by

\plural{\countUsesVersionControlRepository}{paper} ...

where \plural automatically writes a word (“paper” in this case) in singular or plural form as required.
Each of the 62 variables used in the paper were defined in automatically-written LATEX header files

that declare them and assigns appropriate values. The header files are included in the paper using LATEX’s
standard \input command. Here is an example of one such automatic definition:

\newcount \dataVariableCount
\dataVariableCount = 62

so the named value (here, dataVariableCount) is then available for the author to use any way they wish
when the paper is typeset.

Some of the files generated from the JSON data are Unix shell scripts. For example, details of all
the papers with GitHub repositories are automatically collected into a shell script so the repositories can
be cloned locally and then measured (as it happens, using awk scripts), e.g., to generate table 9 for this
Supplemental Material.

The full JavaScript JSON data and processing code (including the makefile) is provided in this paper’s
repository, as described in the main paper.

12.d.1 Detecting and defending against error

Normally, when we write a number like 10 in a paper, especially longer or more complex numbers, we will
later proof read them as “the numbers we intended to write” — as remembering what we meant is easier
than reading the details. Unfortunately, a sentence would likely seem to make as much sense when a number
has been erroneously typed as, say, 1.0, 9, 11, or 100 — we hardly bother to pay attention because we think
we know what we are reading; at least we know what we meant to write. Worse, the more often we proof
read a document, the more we remember, so the better we know what we think we said, and the more casual
our proof reading becomes. It is very hard to spot all of our own typos.

• The first and last errors above are examples of the very common error of “out by ten” (common partly
because the correct number, 10 looks very similar to 1.0, and 10.0 also looks very similar to 100) [60].

• The middle two errors above are examples of the common error of “out by one,” or “fence post
errors” frequently made by mixing up counting fences or the posts (there is usually one more post
than fence panel) [60].
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All the discussion and examples above were generated automatically, and have been checked correct for
other correct values than 10. This approach, too, considerably helps defend against common Human Factors
errors. For example, if we set \countUsesVersionControlRepository=10 to be 2 348, say, then all of the
subsequent sentences that mention it will say something unexpected and so have to be more carefully proof-
read, significantly reducing confirmation bias. The approach turns a possibly-hard-to-spot single error into
multiple errors spread throughout the paper into different contexts, thus increasing the chances of noticing
the error.

It must be emphasized that an automatically-guaranteed number that is supposed to be the same ap-
pearing in multiple different contexts is an extremely effective way of defending against common Human
Factors errors. As the number is proof read, the different contexts encourage it to be read more carefully,
and in different ways.

If any of the numbers used in a paper were safety critical (e.g., lives directly depend on their values)
then further checks would have been made to help detect and avoid errors. LATEX itself makes it very easy
to check that numbers fall within reasonable ranges, or to have any other required safety properties. For
the present paper, a potential problem is if the paper is mistakenly typeset before the latest JSON data has
been analyzed; in which case, none of the variables, like \countUsesVersionControlRepository, will have
been correctly set and their values could be undefined or nonsense (e.g., from a debugging run of data.js).

Although the following text only shows the automatic result of checking final values (and not the calcu-
lations that led to them), in general all generated variables can easily be sanity checked in LATEX or in the
generating programs like the present paper’s data.js code:

This is automatic confirmation that countUsesVersionControlRepository = 10 so

5 ≤ countUsesVersionControlRepository ≤ 20

and therefore countUsesVersionControlRepository falls within the pre-defined sanity limits set
for this paper.

The corresponding error (or success) messages would not normally be printed in a paper like this — they
would normally be reported before a LATEX run, that is before the paper can be distributed and potentially
cause confusion. Note that failing a sanity check indicates a problem that needs to be fixed, but passing a
sanity check does not prove a paper correct, but the more sanity checks that are passed (and the harsher
those checks) the more confidence we can have that the data has been processed correctly. Of course, when
formal methods are employed in the software development process, the confidence in correctness can be very
high.

12.d.2 Defending against system problems

Code can become obsolete as programming languages develop and compilers are improved. Typically, com-
pilers first warn that code is “deprecated” and then later versions reject the old code. Furthermore, when
code is run on different computers, different operating systems, and with different compilers, it is common
to obtain different results. Data, too, is subject to the same problems, but data standards and formats are
far more stable than code standards, so “data rot” is less of a risk (but no less a problem when it occurs)
than “software rot.”

Additionally, errors can be the result of human slips, such as accidentally deleting a line of code or a line
of data in a spreadsheet. Such corruption errors are hard to detect unless specific steps are taken to ensure
the integrity of code and data [124]. Checksums are the simplest way to detect such errors, but during active
research more refined techniques might be used in addition, for example checking that the number of rows
of data in a spreadsheet monotonically increases. In the present paper, the JSON data is more structured
than a spreadsheet matrix, and a number (as it happens, 30) of other consistency checks are imposed on the
data.

To protect against version, portability and other problems, the GitHub repository for the present paper
includes a check on software versions and a checksum check for all possibly affected files, including the data
file. This does not solve the problem, but it ensures anyone developing or reproducing the paper’s work will
at least be forewarned of potential version or portability problems. The GitHub repository itself can be used
to restore files that have been corrupted.

12.d.3 Problems of restrictive journal policies

Automatically generated variables are used throughout the paper and this Supplemental Material. As usual,
LATEX detects any spelling errors in the use of variables, thus helping protect the paper against typos that
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could otherwise mislead the paper’s readers. Conveniently, LATEX also supports sophisticated calculations
itself [174], so the typeset paper can use any variable values in further calculations without going back to
modify the data source file (in the present case, data.js). In practice this enables the author to avoid
copying-and-pasting values from a data source or calculator, and then overlooking keeping them up to date
with changes to the data or formula required.

For example, the caption of table 9 in the main paper calculates its “48 months” figure from the generated
variables recording the repository date of cloning used to provide the data to construct the table. The number
of months will of course be correctly updated if the paper’s repository [182] is subsequently checked again:

At the time of cloning and checking all repositories in June 2023, paper [182] still had nothing in
its repository except a single file still saying “...code coming soon...,” despite 48 months having
already elapsed since the submitted paper had claimed the code could be accessed in its repository.

Of course, the data generation process itself checks that this surprising statement remains valid, and
provides a warning if the wording may need revising.

Unfortunately, although using generated variables and analyses from a paper’s data is a very simple
technique to help make published papers more reliable, some journals and preprint servers (such as IEEE
Transactions on Software Engineering, PLOS ONE, and arXiv) do not permit papers to be submitted using
LATEX source code that uses the standard \input, \bibliography, and other related commands. Typically
they also do not support running any data collection or analysis either (which the present paper does when
it clones repositories). These policies undermine the drive towards RAP and RAP+.

Another program (programs/expand.js) was therefore written to recursively expand included files so
the expanded version can be submitted adhering to any such restrictive policy. Of course, the expanded
version now contains all variables as fixed constants, so the submitted paper is misleading and useless to
other researchers if the data is modified — the effort to ensure all published numbers are automatically
correct is defeated. Such restrictive publishing policies undermine reproducibility.
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