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Background: Computer code underpins modern science, and at the present time has a crucial role in leading
our response to the COVID-19 pandemic. While models are routinely criticised for their assumptions, the
algorithms and the quality of code implementing them often avoid scrutiny and, hence, scientific conclusions
cannot be rigorously justified.

Problem: Assumptions in programs are hard to scrutinise as they are rarely explicit in published work. In
addition, both algorithms and code have bugs, effectively unknown assumptions that have unwanted effects,
undermining the rigor of claims. Code is fallible, so any model interpretation that relies on code is therefore
fallible, and if the code is not published with adequate documentation, the code cannot be scrutinised. In turn,
the scientific claims cannot be properly scrutinised.

Solutions: Code can bemademuchmore reliable using software engineering good practice.Three specific
solutions are proposed. First, professional software engineers can help and should be involved in critical
research. Secondly, “Software Engineering Boards” (supplementing and analogous to Ethics or Institutional
Review Boards) must be instigated and used. Thirdly, code, when used, must be considered an intrinsic part
of any publication, and therefore must be formally reviewed by competent software engineers.

This paper’s Supplemental Material includes a summary of professional software engineering best practice,
particularly as applied to scientific research and publication.
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“Criticism is the mother of methodology.”
Robert P Abelson, Statistics as Principled Argument, 1995

1 INTRODUCTION
In good science it is uncontentious to report statistics fully and carefully. For example, a statistical
claim might be written as follows:

“… Bonferroni adjusted estimated mean difference between intervention-arms at
8-weeks 2.52 (95% CI 0.78, 4.27, p = 0.0009). Between group effect size
d = 0.55 (95% CI 0.32, 0.77).” [32]

This is the standard, widely accepted form of writing — confidence intervals, p levels, and so
on — that is used to present statistics so claims can be seen to be complete, easy to interpret
and to scrutinise. Statistical claims need to be properly accountable and documented in a clear
way: Speigelhalter [40] says statistical information needs to be accessible, intelligible, assessable,
and usable; he also suggests probing questions to help assess statistical quality (see Supplemental
Material section 4), as results should not be uncritically accepted just because they are claimed.
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The skill and effort required to do statistics so it can be communicated clearly and correctly,
as above, is not to be taken for granted. Scientists work closely with competent, often special-
ist, statisticians, who engage with the research from experiment design through to analysis and
publication. It is assumed that statistics will be peer reviewed, and that review will often lead to
improvement. Moreover, we accept that statistics is a professional science and is itself a subject of
research and continual improvement. Among other implications of the depth and progress of the
field of statistics, undergraduate statistics options for general scientists are insufficient training
for rigorous work in science — their main value, perhaps, is to help collaborate with specialist
statisticians.

Except in the most trivial of cases, all numbers and graphs, and the statistics themselves in
scientific research, will have been generated by computer. Indeed, computers are now very widely
used, not just to calculate statistics, but to run the models (the term is defined below) and sampling
or sensors that generate the data that is analysed. Furthermore, the data — including the databases
and bibliographic sources — and code to analyse it is stored on computers, raising basic questions
of formats, backup, cyber-vulnerability, version control, integrity checking (e.g., managing human
error) and auditing. All are non-trivial concerns.

Failure to properly document and explain computer code undermines the scientific value of the
models and the results they generate, in the same way as failure to properly articulate statistics
undermines the value of scientific claims. Indeed, as few papers use code that is as well-understood
and as well-researched as standard statistical procedures (such as Bonferroni corrections), the sci-
entific problems of poorly reported code are worse.

Results claimed, however nicely they may be expressed, are no more reliable than the code and
data that was used to generate them. A common oversight is to present amathematical model, such
as a set of differential equations, but omit how that model is transformed into code that generates
reliable results.

Just as in statistics, code and results from code, need to be discussed and presented in a way
that ground belief in claims derived from using them. Specifically, code must be developed in a
sufficiently professional and rigorous way that is able to support clear presentation and scrutiny
(developing justifiably reliable code is the concern of software engineering, which is discussed
further below in this paper and in this paper’s Supplemental Material).

To make critical claims, to inform public policy or to support further research, models need to
be run under varying assumptions [52]. Being able to understand (at least in principle) the exact
code used in implementing a model is critical to having confidence in the results that rely on it.
Unfortunately code is rarely considered a substantial part of the science to which it contributes.

In contrast, we would not believe a statistical result that was obtained from some ad hoc analysis
with a new fangled method devised just for one project — instead, we demand statistics that is
recognisable, even traditional, so we are assured we understand what has been done and how
reliable results were obtained. Importantly, with statistics we understand, at least in principle,
how it works — or, more precisely, how results should have been obtained and why or to what
extent we can depend on them.

This paper will show that the concerns raised above are serious. The quality of much science
is undermined because the code it relies on is rarely of adequate quality for the uses to which it
is put, particularly when it influences health or public health policies. Furthermore, code is rarely
published in any useful form or professionally scrutinised, and therefore does not contribute to
furthering science, for instance through reproduction. This paper will explore the extent of these
problems and reasons why they persist. The paper then suggests some ways forward. The Sup-
plemental Material is an integral part of the suggested solutions. In particular, the Supplemental
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Material section 4 summarises Speigelhater’s statistics probes and draws explicit analogies for
critical assessment of code.

2 THE ROLE OF CODE IN SCIENCE AND SCIENTIFIC PUBLICATION
For the purposes of this paper, models map theory and parameters to describe phenomena, typi-
cally to make predictions or to test and refine the models. With the possible exception of theoret-
ical research, all but the simplest models require computers to evaluate; indeed even theoretical
mathematics is now routinely performed by computer.

Whereas the mathematical form of a model may be concise and readily explained, even a basic
computational representation of a model can easily run to thousands of lines of code (and its
parameters — its data — may also be extensive). The chance that a thousand lines of hand-written
code is error free is negligible, and therefore good practice demands that checks and constraints
must be applied to improve its reliability. This issue is the concern of software engineering, which
is discussed throughout this paper.

While scientific research may rely on relatively easily scrutinised mathematical models, or mod-
els that seem in principle easy to mathematise, the models that are run on computers to obtain
the results published are sometimes not disclosed, and even when they are (at least in all cases
reviewed here) they are inscrutable — and therefore the models are very likely to be unreliable in
principle. If code is not well documented, this is not only a problem for reviewers and scientists
reading the research to understand the intention of the code, but it also causes problems for the
original researchers themselves: how can they understand its thinking well enough (e.g., a few
weeks or months later) to maintain it correctly if has not been clearly documented? Without doc-
umentation, including a reasoned case to assure that the approach taken is sound [12], how do
researchers, let alone reviewers, know exactly what they are doing?

The problemmight be expressed like this. Even if a scientist provides access to some code, say “x
= k*exp(x)” let alone access to many more lines — and programs are typically tens of thousands
of lines long, and include many libraries of support code — there can be no concept of the code
correctness unless there is also an explicitly stated relation between the code and the mathematical
details of the intention.

Without an explicit link to the relevant mathematics (depending on the claims), it is impossible
to reason whether the code is correct, and in turn it is impossible to scientifically scrutinise re-
sults obtained from using the code. Not providing code, providing partial code, or providing code
without the associated reasoning is analogous to claiming “the results are significant” without
any discussion of the relevant statistical methods and details that justify making such a claim. If
such an unjustified pseudo-statistical claim was made in a scientific paper, a reviewer would be
justified in wondering whether a competent experiment had even been performed — it would be
generous to ask the author to provide the missing details so the paper could be better reviewed on
resubmission. The same applies to code and its methods and reasoning.

Clearly, like statistics, programming (coding) can be done poorly and reported poorly, or it can
be done well and reported well — and any mix between these extremes. The question is whether
it matters, and if so, when it matters and, when it does, what can be done to appropriately help
improve the quality of code (and discussions about the code) in scientific work.

This paper explores the role of code in scientific research. Initially focusing on examples from
pandemic modelling (because of its relevance to serious matters of public health) this paper shows
that scientific culture, including editorial processes, have not adapted to the increasingly dominant
role of code and managing the risks of its fallibility. The paper then suggests how to improve,
including building mutual engagement across the science and software engineering communities.
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3 BUGS, CODE AND PROGRAMMING
Critiques of data and model assumptions are very common [34, 54] but program code is rarely
mentioned. Yet data and program are formally equivalent (see further discussion in Supplemental
Material, section 3). Program code has as great an affect on results as the data. Code is harder to
scrutinise, which means errors in code can have more subtle effects on results.

It should be noted that almost all code contains “magic numbers” — that is, data masquerading
as code. This common practice ensures that published data is very rarely all of the data because it
omits magic numbers. This emphasises the need for repositories to require the inclusion of code
so all data is actually available. This is another reason why journal data policies should be applied
to code too, so all data embedded in code is covered by the policies (see the longer discussion in
the Supplemental Material, section 3).

Bugs can be understood as discrepancies between what code is intended to do and what it ac-
tually does. Many bugs cause erroneous results, but bugs may be “fail safe” by causing a program
to crash so no incorrect result can be delivered. Better, contracts and assertions are essential de-
fensive programming technique that block compilation or block execution with incorrect results;
they turn bugs into safe termination. None of the code examined for this paper includes either.

If code is not documented it cannot be clear what it is intended to do, so it is not even possible
to detect and eliminate bugs. Indeed, even with good documentation, intentional bugs will remain,
that is, code that correctly implements the wrong things. For instance, in numerical modelling,
using an inappropriate method can introduce errors that are not “bugs” in the sense of incorrectly
implementing what was wanted (e.g., ill-conditioning), but are bugs in the sense of producing
incorrect results — that is, what was wanted was naïve. Similarly, misuse of random numbers (e.g.,
using standard libraries without testing them) is a common cause of bugs [22].

Following the Dunning-Kruger Effect [23, 28], unqualified programmers over-estimate their pro-
gramming skills because they do not have the skills to recognise their lack of knowledge. Dunning
and Kruger say,

“People usually choose what they think is the most reasonable and optimal option
[ …] The failure to recognise that one has performed poorly will instead leave one to
assume that one has performed well; as a result, the incompetent will tend to
grossly overestimate their skills and abilities. [ …] Not only do these people reach
erroneous conclusions and make unfortunate choices, but their incompetence robs
them of the metacognitive ability to realise it.”

Unlike many skills (skating, brain surgery, …) programming, typical of much engineering, is one
where errors can go unnoticed for long periods of time — things seem to work nicely right up to
the moment they fail. The worse programmers are, the more trivial bugs they tend to make, but
trivial bugs are easy to find so, ironically, being a poor programmer increases one’s self-assessment
because debugging seems very productive. It is easy for poor programmers and their associates to
believe they are better than they actually are.

It sounds harsh to call programmers incompetent, but challenged with the complexity of pro-
grams and the complexity of the domains programs are applied in, we are all incompetent and
succumb to the limitations of our cognitive resources, creating blindspots in our thinking [44]. We
all make mistakes we are unaware of. If we do not have the benefit of professional qualifications
that have assessed us objectively, programmers therefore generally have a higher opinion of our
own competence than is justified.

Everyone (including the author of the present paper) is subject to Human Factors: for instance,
the standard cognitive bias of confirmation bias encourages us to look for bugs when code fails
to do what is expected and then debug it to produce better results, but if code generates expected
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results not to bother to debug it further. This of course tends to make code increasingly conform to
prior expectations, whether or not those expectations are scientifically justified. Typically, there
was no prior specification of the code, so the code must be right, especially after all the debugging
to make it “correct”! Thus coding routinely suffers from HARKing, a methodological trap widely
recognised in statistics — hypothesising after the results are known [20].

Computers themselves are also a part of the problem. Naïvely modifying a program (as may oc-
cur during debugging) canmake it more complex, and hence less scrutable. In theory programs can
be written so that it is not possible to determine what they do or how they do it (whether deliberate
obfuscation or accidentally), except by running them, if indeed it is possible to exactly reproduce
the necessary context to do so [47]. The point is, introducing bugs should be avoided so far as
possible in the first place, and programs should routinely have assertions and other methods to
detect those bugs that are introduced (see this paper’s Supplemental Material for more discussion
of standard programming methodologies).

4 STATE OF THE ART IN PANDEMIC MODELLING
A review of epidemic modelling [16] says, “we use the words ‘computational modelling’ loosely,”
and then, curiously, the review discusses exclusively mathematical modelling, implying that for
the authors, and for the peer reviewers, there is no conscious role for code or computation as such.
It appears that the new insights, advances, rigour, and problems that computers bring to research
are not considered relevant.

A systematic review [54] of published COVID models for individual diagnosis and prognosis in
clinical care, including apps and online tools, noted the common failure to follow standard TRIPOD
guidelines [27]. (TRIPOD guidelines ignore code completely, let alone its quality.) The review [54]
ignored the mapping from models to their implementation, yet if code is unreliable, the model
cannot be reliably used, and cannot be reliably interpreted. It should be noted that flowcharts,
which the review did consider, are programs intended for direct human use. Flowcharts, too, must
be designed as carefully as code, for exactly the same reason: it is hard to program reliably.

A high-profile 2020 COVID-19 model [3, 11] uses a modified 2005 computer program [9, 10]
for H5N1 in Thailand, which did not model air travel or other factors required for later western
COVID-19modelling.The 2020model forms part of a series of papers [9–11] none of which provide
details of their code. A co-author disclosed [7] that the code is thousands of lines long and is
undocumented C code. As Ferguson, the code author, noted in an interview,

“For me the code is not a mess, but it’s all in my head, completely undocumented.
Nobody would be able to use it …” [25]

This admission is tantamount to saying that the published scientific findings are not repro-
ducible.

This is problematic, especially as the code would have required many non-trivial modifications
to update it for COVID-19 with different assumptions; moreover, the code would have had to
have been updated very rapidly in response to the urgent COVID-19 crisis. If this C code had
been made available for review, the reviewers would not have known how to evaluate it without
the relevant documentation. It is, in fact, hard to imagine how a large undocumented program
could have been repeatedly modified over fifteen years without becoming incoherent. If code is
undocumented, there would be an understandable temptation tomodify it arbitrarily to get desired
results; worse, without documentation and proper commenting, it is methodologically impossible
to distinguish legitimate attempts at debugging frommerely fudging the results. In contrast, if code
is properly documented, the documentation defines the original intentions (including formally
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usingmathematics to do so), and therefore anymodificationswill need to be justified and explained
— or the theory revised.

The programming language C which was used is not a dependable language; to develop reliable
code in C requires professional tools and skills. Moreover, C code is not portable, which limits
making it available for other scientists to use safely (C notoriously gets different results on different
compliers, libraries, and hardware). The Supplemental Material discusses these issues further.

Ferguson, author of the code, says of the criticisms of his code, “However, none of the criticisms
of the code affects the mathematics or science of the simulation” [6]. Indeed. The problem the
current paper is raising is that the epidemiology may be fine, but if it is not mapped into code
that correctly implements the models, then the program’s output should not be relied on without
independent evidence. In science, this is the normal requirement of reproducibility.

The code in [3, 11] has been reproduced [6, 35], but this “reproduction” has merely confirmed the
code can be run again and produce comparable results (compared, apparently in an Excel spread-
sheet!). That is hardly surprising, regardless of the quality of the code. Instead, if reproducibility
is to be a useful scientific criterion, an independently developed model needs to produce the same
results — this is called N version programming, which is a standard software engineering practice
in critical areas [15], like public health ought to be.

Because of the recognised importance of the paper, a project has been started to document its
code [8]. Documenting the code nowmay describe what it does, including its bugs, but it is unlikely
to explain what it was intended to have done. If nothing else, as the code is documented, bugs will
be found, which will then be fixed (refactoring), and so the belatedly-documented code will not
be the code that was used in the published models. It is well-known that documenting code helps
improve it, so it is surprising to find an undocumented model being used in the first place. The
revised code has now been published, and it has been heavily criticised (e.g., [31]), supporting the
concerns expressed in the present paper.

Some epidemiology papers (e.g., [57]) publish models in pseudo-code, a simplified form of pro-
gramming. Pseudo-code looks deceptively like real code that might be copied to try to reproduce
it, but as pseudo-code introduces invisible simplifications. Pseudo-code, properly used, can give a
helpful impression of the overall approach of an algorithm, certainly, but pseudo-code alone is not
a surrogate for code: using it is arguably even worse than not publishing code at all. Pseudo-code
is not precise enough to help anyone scrutinise a model; copying pseudo-code introduces avoid-
able bugs. An extensive criticism of pseudo-code, and discussion of tools for reliable publication
of code can be found elsewhere [49]. The Supplemental Material provides further discussion of
reproducibility.

5 BEYOND EPIDEMIOLOGY
Code needs to be carefully documented and explained because all code has tacit assumptions, bugs
and cybersecurity vulnerabilities [39] that, if not articulated, can affect results in unknown ways
that may undermine any claims. People reading the code will not know how to obtain good, let
alone better results, because they do not know exactly what was intended in the first place. The
problem is analogous to the problem of failing to elaborate statistical claims properly: failure to
do so suggests that the claims may have unknown limitations or even downright flaws.

Even good quality code has, on average, a defect every 100 lines — and such a low rate is
only achieved by experienced industrial software developers [24]. World-class software can attain
maybe 1 bug per 1,000 lines of code. Code developed for experimental research purposes will have
higher rates of bugs than professional industrial software, because the code is less well-defined
and evolves as the researchers gain new insights into their models. In addition, and perhaps more
widely recognised, code — especially but not exclusively mathematical code — can be subject to
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numerical errors [13]. It is therefore inevitable that typical modelling code has many bugs (refer-
ence [15] is a slightly-dated but very insightful discussion). Such bugs undermine confidence in
model results.

Only if there is access to the actual code and data (in the specific version that was used for
preparing the paper) does anyone know what researchers have done, but merely making code
available (for instance, providing it in their Supplemental Material with papers, putting it in repos-
itories, or using open source) is not sufficient. It is noteworthy that some papers disclosed that
they had access to special hardware.

Some COVID-19 papers (e.g., [21]) make unfinished, incomplete code available. While some
(e.g., [21, 50]) do make what they call “documented” code available, they provide no more than
superficial comments: this is not documentation as properly understood. Such comments do not
explain code, explain contracts, nor explain algorithms. Some readers of the present paper may not
recognise these technical software terms; contracts, for instance, originated in work in the 1960s
[17], and are nowwell-established practice in reliable programming (see the SupplementalMaterial
for a checklist of many relevant, professional software engineering concepts and resources).

If full code is made available, it may be technically “reproducible,” but the scientific point is
to be able to understand and challenge, potentially refute, the findings; to do that, much more is
required than merely being able to run the code [29, 36].

Even if a computer can run it, badly-written code (as found in all the research reviewed in the
present paper, and indeed in computer science research itself [46]) is inscrutable, even if its original
programmers think otherwise. Only if there is access to adequate documentation can anyone know
what the researchers intended to do. Without all three (code, data, adequate documentation), there
are dangers that a paper simplifies or exaggerates the results reported, and that omissions, bugs
and errors in the code or data, generally unnoticed by the paper’s authors and reviewers, will have
affected the results they report [49].

Making outline code (including pseudo-code) available without proper documentation andwith-
out discussing its limitations is unethical: it encourages others to reproduce and build on poor
work.

5.1 A pilot survey of the wider peer-reviewed research relying on code
The problems of unreliable code are not limited to COVID-19 modelling papers, which, under-
standably, were perhaps rushed into publication. For instance, a 2009 paper reporting a model of
H5N1 pandemicmitigation strategies [33] provides no details of its code. Its SupplementalMaterial,
which might have provided code, no longer exists.

Almost all scientific papers rely on generic computer code (for statistics or for plotting graphs,
and so on) but what is of interest here is whether, and, if so, to what extent, code developed
specifically as part of or to support a research contribution can be understood by colleagues and
scientifically scrutinised.

A sample of 32 recent papers, not including themotivating papers discussed above, and covering
a broad range of science were selected from the online editions (as of July 2020) of Lancet Digital
Health (N = 6), Nature Digital Medicine (N = 12) and Royal Society Open Science (N = 14). The
survey sampled the recent work of 264 published authors, perhaps directly involving around 392
leading scientists in all (authors, editors, reviewers — ignoring multiple roles). The survey was not
intended to be a formal, representative sample of all scientific research in general, but it is hoped
it will be sufficient to dispel the possibility that the issues described above in earlier sections of
this paper are isolated practice, perhaps an idiosyncrasy of a few authors or of a particular field or
perhaps due to a chance selection bias.
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Number of papers sampled relying on code 32 100%
Access to code

Have some or all code available 12 38%
Some or all code in principle available on request 8 25%

No code available 12 38%
Evidence of basic good software engineering practice

Evidence program designed rigorously 0 0%
Evidence source code properly tested 0 0%

Evidence of makefile or equivalent 0 0%
Other methods, e.g., independent coding methods 1 3%
Documentation and comments

Good code documentation and comments 2 6%
Basic comments 3 9%

No or only trivial comments (e.g., copyright) 29 91%
Repository use

Code repository (e.g., GitHub) — 1 was empty 10 31%
Data repository (e.g., Dryad or GitHub) 9 28%

Adherence to journal code policy (if any)
Papers published in journals with code policies 26 81%

Clear breaches of code policy 11 42% (N = 26)

Table 1: Summary of the exploratory survey. Note that code quality was assessed (by reading it)
for human use — due to the paper authors’ complex and/or narrative interpretation of data in
most papers, code, data and hardware/operating system dependencies, no assessment was made
whether the code provided was sufficient to reproduce a paper’s specific claims. Details of the
survey methodology and the breakdown of measures into individual papers can be found in the
Supplemental Material.

It is important that this survey is not taken as an evaluation, whether praise or criticism, of any
specific paper: any measurement is subject to error, and individual paper assessments are inevitably
noisy. Instead, by evaluating a set of diverse papers, the noise will tend to average out. Mean scores,
as summarised in table 1, are more reliable measurements.

The methodology, data and analysis are provided in the Supplemental Material (which is also
available from a repository — see details at the end of this paper).

Nature Digital Medicine and Royal Society Open Science have clear data and code policies (see
Supplemental Material section 5), but actual practice falls short: 11 out of the 26 papers (42%) pub-
lished in them and sampled in the survey manifestly breach their code policies. In contrast, Lancet
Digital Health, despite substantial data policies, has no code policy at all to breach.The implication
of these results is that the fields, and the editorial expertise of leading journals, misunderstand and
dismiss code policies, or they are technically unable to assess them — and, if so, they also fail to
say they are unable to assess them. This lack of expertise is consistent with the limited awareness
of software best practice manifest in the published papers themselves.

Code repositories were used by 10 papers (31%), though one paper in the survey claimed to have
code on GitHub but there was no code in the repository (at the time of doing the review or when
double-checked six months later): in other words, the repository had never been used and the code

Submitted ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2021.



A proposal to achieve professional software engineering in scientific research 9

had very probably not been reviewed.∗ This is a pity because repositories like GitHub provide help
and targeted hints like “No description, website, or topics provided […] no releases published.”

Overall, there was no evidence that any code had been developed carefully, let alone by using
recognised professional software engineering methods. In particular, no papers in the survey pro-
vide any claims or evidence of effective testing, for instance with evidence that tests were run on
clean builds. While it may sound unrealistic to ask for evidence on software quality in a paper
written for another field of science, the need is no less than the need for standard levels of rigor
in statistics reporting, as discussed in the opening of this paper.

Data repositories (the Dryad Digital Repository, Figshare or similar) were used by 9 papers
to provide structured access to their data. Unlike GitHub, which is a general purpose repository,
Dryad has scientifically-informed guidelines on handling data, and all papers that used Dryad pro-
vided more than just their raw data — they provided a little, sometimes substantial, documentation
for their data.

The findings from the survey are summarised in table 1, and discussed at greater length in the
Supplemental Material.

6 DISCUSSION
Effective access to code is not routine. Using structured repositories that provide suggestions for
and which encourage good practice (such as Dryad and GitHub), and requiring their use, would
be a lever to improve the quality and value of code and documentation in published papers. The
evidence suggests that, generally, some but not all manually developed code is uploaded to a repos-
itory just before submitting the paper in order to “go through the motions.” In the surveyed papers
there is no clear evidence (over the survey period) that any published code was maintained using
the repositories.

The Supplemental Material provides a summary of the analysis and full citations for all papers
in the sample.

6.1 Possible further work
Further work to extend the scope of the survey and challenge beyond the basic requirements of
the present paper will be worthwhile. For example:

(1) The journal The Lancet published and then subsequently retracted a paper on using
hydroxychloroquine as a treatment for COVID [26]. The paper was found to rely on
fraudulent data [37, 38]. The Lancet subsequently tightened its data policies [41], for
instance to require that more than one author must have directly accessed and verified the
data reported in the manuscript. Curiously, the original (now retracted) paper declares
“… all authors participated in critical revision of the manuscript for important
intellectual content. MRM and ANP supervised the study. All authors approved the
final manuscript and were responsible for the decision to submit for publication.”

which seems to suggest that several original authors of the paper would have been happy
to make the new declarations — and, of course, if there is fraud (as was established in this
case) it seems likely that authors who make the new declarations of accessing and
verifying data are unlikely to make reliable declarations.

The Lancet still has no code publication policy (see the Supplemental Material), and for
more than one author to have “direct access” to the data they are very likely to access the
data through the same code. If the code is faulty or fraudulent, an additional author’s
confirmation of the data is insufficient, and there is at least as much reason for code to be

∗GitHub records show that it had not been deleted after paper submission.
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fraudulent (not least because code is much harder to scrutinise than data). Code needs
more than one author to check it, and ideally reviewers independent of the authors so they
do not share the same assumptions and systems (for instance shared libraries, let alone
potential collusion in fraud).

(2) In 2020 the Journal of Vascular Surgery published a controversial research paper [14],
which had to be retracted on ethical grounds [4, 42]: it was a naïve study and the editorial
process was unaware of digital norms. Notably, the paper fails to provide access to its
anonymised data (with or without qualification), and fails to define the data anonymisation
algorithm, and also fails to even mention the code that it developed and used to perform its
study. The journal’s data policy is itself very weak (the authors “should consider” including
a footnote to offer limited access to the data) and, despite basic statistics policies, it has no
policy at all for code (see Supplemental Material section 5). Ironically, the retracted article
[14] is still online (as of August 2020) with no reference to any editorial statement to the
effect that it has been retracted, despite this being trivial — and necessary — to achieve in
the widely-accessed online medium.

(3) Medical research often aims to establish a formula to define a clinical parameter (such as
body mass index, BMI) or to specify an optimal drug dose or other intervention for
treatment. These formulas, for which there is conventional clinical evidence, are often used
as the basis for computer code that provides advice or even directly controls interventions.
Unfortunately a simple formula as may be published in a medical paper is never sufficient
to specify code to implement it safely. For example, clinical papers do not need to evaluate
or manage user error when operating apps, and therefore the statistical results of the
research will be idealistic compared to the outcomes using an app under real conditions —
which is what the clinical research is supposedly for. A widespread bug (and its fix) that is
often overlooked is discussed in [48]; the paper includes an example of a popular clinical
calculator (based on published clinical research) that calculated nonsense, and potentially
dangerous, results. The paper [55] summarises evidence that such bugs, ignored by the
clinical research literature, are commonplace in medical systems and devices.

7 CALL TO ACTION
Computer programs are the laboratories of modern scientists, and should be used with a compa-
rable level of care that virologists use in their laboratories — lab books and all [36] — and for the
same reasons: computer bugs accidentally cultured in one laboratory can infect research and pol-
icy worldwide. Given the urgency of rigorously understanding COVID-19, any epidemic for that
matter, it is essential that epidemiologists engage professional software engineers to help develop
reliable laboratory methodologies. For instance, code lab books can be generated and signed easily.

Software used for informing public health policy, medical research or other medical applications
is critical software. Professional critical software development, as used in aviation and the nuclear
power industry, is (put briefly) based on correct by construction: [53] effectively, design it right first
time, supported by numerous rigorous techniques, such as formal methods, to manage error. (See
extensive discussion in this paper’s Supplemental Material.) Not coincidentally, these are exactly
the right methods to ensure code is both dependable and scrutable. Conversely, not following these
practices undermines the rigour of the science.

An analogous situation arises in ethics. There are some sorts of research that are ethically un-
acceptable, but few people have the objectivity and ethical expertise to make sound ethical judge-
ments, particularly when it comes to assessing their own work. Misuse of data, exploiting vulner-
able people, and not obtaining informed consent are typical ethical problems. National funders,
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and others, therefore require Ethics Boards to formally review ethical quality. Medical journals
will not publish research that has not undergone appropriate ethical review.

Analogously, and supplementing Ethics Boards, Software Engineering Boards would authorise
as well as provide advice to guide the implementation of high-quality software engineering. Just
as journals require conflicts of interest statements, data availability statements, and ethics board
clearance, we must move to epidemic modelling papers — and in due course, all scientific papers
— being required to include Software Engineering Board clearance statements as appropriate. Soft-
ware Engineers have a code of ethics that applies to their work in epidemic modelling [2].

The present paper did not explore data, because in almost all cases the code and data were
explained so poorly and archived so haphazardly it would be impossible to know whether the
author’s intentions were being followed.† Some journals have policies that code is available (see
the Supplemental Material), but they should require that code is not just available in principle but
actually works on the relevant data. Ideally, the authors should test a clean deployed build of their
code and save the results. Presumably a paper’s authors must have run their code successfully
on some data (if any, but see section 3 in the Supplemental Material) at least once, so preparing
the code and data in a way that is reproducible should be a routine and uncontentious part of the
rigorous development of code underpinning any scientific claims. This requirement is no more
unreasonable than requesting good statistics, as discussed in the opening of the paper. And the
solution is the same: relevant experts — whether statisticians or software engineers — need to be
routinely available and engaged with the science. SEBs would be a straight forward way of helping
achieve this.

There need to be many Software Engineering Boards (SEBs) to ensure convenient access and
oversight, potentially at least one per university. Active, professional software engineers should
be on these SEBs; this is not a job for people who are not qualified and experienced in the area or
who are not actively connected with the true state of the art.There are many high-quality software
companies (especially those in safety-critical areas like aviation and nuclear power) who would
be willing and competent to help.

Open Source generally improves the quality of software. SEBs will take account of the fact that
open source software enables contributors to be located anywhere, typically without a formal con-
tractual relationship with the leading researchers. Where appropriate, then, SEBs might require
local version control, unit testing, static analysis and other quality control methods for which the
lead scientist and software engineer remain responsible, and may even need to sign off (and cer-
tainly be signed off by the SEB). Software engineering publishers are already developing rigorous
badging initiatives to indicate the level of formal review of the quality of software for use in peer
reviewed publications [1]. See this paper’s Supplemental Materialfor further suggestions.

A potential argument against SEBs is that they may become onerous, onerous to run and oner-
ous to comply with their requirements. A more mature view is that SEBs need their processes to
be adaptable and proportionate. If software being developed is of low risk, then less stringent en-
gineering is required than if the software could cause frequent and critical outcomes, say in their
impact on public health policy for a nation. Hence SEBs processes are likely to follow a risk analy-
sis, perhaps starting with a simple checklist. There are standard ways to do this, such as following
IEC 61508:2010 [19, 30] or similar. Following a risk analysis (based on safety assurance cases, con-
trolled documents and so on, if appropriate to the domain), the Board would focus scrutiny where
it is beneficial without obstructing routine science.

A professional organisation, such as the UK Royal Academy of Engineering ideally working in
collaboration with other national international bodies such as IFIP, should be asked to develop

†For the present paper, all the code, data, analysis and documents are available for download in a single zip file.
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and support a framework for SEBs. SEBs could be quickly established to provide direct access to
mature software engineering expertise for both researchers and for journals seeking competent
peer reviewers. In addition, particularly during a pandemic, SEBs would provide direct access to
their expertise for Governments and public policy organisations. Given the urgency, this paper
recommends that ad hoc SEBs should be established for this purpose.

Further issues are discussed in the Supplemental Material.

8 CONCLUSIONS
While this paper was originally motivated by Ferguson’s public statements (e.g., [7, 25]), the
broader evidence reviewed in this paper suggests that coding practice makes for poor science
generally, not just in epidemiology — and many other studies (e.g., the classic [15]) support this
view. Certainly, with such high stakes, we need to improve the quality of software engineering
that supports public health policies, both in research and in public policy issues informed by re-
search, such as track and trace [43] and in balancing COVID mutation pressures against vaccine
shortages and delays between vaccinations [51].

The challenge to epidemic modelling, and to scientific research more generally, is to manage
software development to reduce the unnoticed impact of bugs and poor programming practices.
Computer code should be explicit and properly documented. Papers should be explicit on their soft-
ware methodologies, limitations and weaknesses, just as Whitty expressed more generally about
the standards of science [52]. Professional software methodologies should not be ignored.

Unfortunately, while programming is easy, and is often taken for granted, programming well is
very difficult [44]. We know from software research than ordinary programming is very buggy and
unreliable. Programming well is essential for informing public health policy. Simply put, without
quality code and data, research is not open to scrutiny, let alone proper review, and its quality
should be suspect. Many would argue that availability of code and data ensure research is repro-
ducible, but that is a very weak criterion: both need to be documented and clear enough to be open
to informed scrutiny [5, 29, 49].

We must prioritise getting appropriate professional software engineering skills and resources
particularly to bear on the COVID-19 pandemic without delay. Software Engineering Boards (in-
troduced in this paper) are a straight forward, constructive and practical way to support and im-
prove computer-based modelling. This paper’s Supplemental Material summarises the relevant
professional software engineering practice that Software Engineering Boards would use, includ-
ing discussing how and why software engineering helps improve code dependability and quality.

Future work should extend improving software engineering standards into other areas, partic-
ularly in healthcare [44, 56].
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1 FURTHER ISSUES FOR SOFTWARE ENGINEERING BOARDS (SEBS)
1.1 Brief definition
Software Engineering Boards, henceforth SEBs, will be used to help and assure that critical code,
including epidemic modelling, is of high standard, to provide assurance for scientific papers, Gov-
ernment public health and other policies, etc, that the code used is of appropriate quality for its
intended uses.

Further details of the SEB proposal is in the main paper. Here we raise further issues for SEBs
(additional to those covered in the main paper’s introduction to SEBs), potential limitations and
possible responses that can be addressed over time:

(1) Until there are national qualifications, nobody — certainly nobody without professional
training in software — really knows just how bad (or good) they are at software
engineering.

(2) When code is taken seriously, concerns may be raised on programmers’ contributions to
research, intellectual property rights, and co-authoring [85]. Software engineering is a
hard, creative discipline, and getting epidemiological (and other scientific) models to work
is generally a significant challenge, on a par with the setting up and exploring the
mathematical models themselves. Often software engineers will need to explore boundary
cases of models, and this typically involves hard technical mathematics [13]. Often the
software engineers will be solving entirely new problems and contributing to the research.
How this is handled needs exploring. How software engineers are appropriately credited
and cited for their contributions also needs exploring.

(3) SEBs require policies on professional issues such as membership, transparency, and
accountability.

(4) There should be a clear separation between the SEB members’ activities as part of the
Board, and their other activities, including professional advice, code development, or
training (which is likely to be in demand from the same people who require formal
approvals from the SEBs).

(5) Professional Engineering Bodies have a central role to play in professionalism, ranging
from education and accreditation to providing professional structures and policies for SEBs.
For example, should and if so how should the programming skills taught to computational
scientists (epidemiologists, computational biologists, economists, computational
chemists, …) be accredited?

(6) In the main paper, SEBs are viewed as a constructive contribution to good science,
specifically helping improve the quality of epidemiological modelling. More generally,
SEBs will have wider roles, for instance in overseeing software subject to medical device
regulation [44].

(7) SEBs may fruitfully collaborate with other engineering disciplines to share and develop
best practice. For example, engineers in other domains (e.g., civil engineers) routinely sign
off projects, yet, on the other hand, they often overlook the quality of software engineering
their projects implicitly rely on — for the same reasons as the scientific work discussed in
this paper overlooks the dependence on quality software.

(8) Clearly, at least while this paper’s concepts are tested and mature, SEBs will need to
collaborate closely with research organisations, journals, and funding agencies in order to
develop incremental developments to policies and processes that will be most effective, and
which can be introduced most productively over time to the scientific community at large.
Funding agencies may wish to support such strategic work, as they have previously funded
one-off projects such as [80].
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There are other ideas to help make SEBs work, but it is clear they are part of the solution. We must
not let perfection be the enemy of the good. SEBs don’t need to be perfect on day one, but they do
need to get going in some shape or form to start making their vital contribution.

1.2 Relationships of SEBs to Ethics Boards
(1) Although SEBs may start with a checklist approach, like Ethics Boards generally do, it

cannot be assumed that people approaching SEBs know enough about software
engineering to perform adequate software assessments when there is any risk (as there is
in public policy, medical apps, and so on). SEBs may also provide mentoring and training.

(2) Unlike Ethics Boards, which provide hands-off oversight, SEBs should provide professional
advice, perhaps providing training or actually helping hands-on develop appropriately
reliable software. During a pandemic SEBs would be very willing to do this, but in the long
run it is not sustainable as voluntary labour, so all research, particularly medical research,
should include support for professional software engineering.

(3) Ethics Boards typically require researchers to fill in forms and provide details, which is a
feasible approach as researchers know if they are doing experiments on children, for
instance, so the forms are relatively easy to fill in (if often quite tedious). On the other
hand, few healthcare and medical researchers understand software and programming, so
they are not able to fill in useful software forms on their own. SEBs need to know how well
engineered the software really is, not how good its developers think it is. As typical
programs are enormous, SEBs are either going to need resources to evaluate programs, or
they will need to supervise independent bodies that can do it for them.

(4) SEBs should have a two-way collaboration with Ethics Boards.
• SEBs have to deal with ethical concerns, and how they may be implemented in code. One

of the papers [105] in the survey (discussed later in this Supplemental Material) is a case
in point, as is the growing cross-fertilisation between AI and ethics (e.g., [72]).

• Ethics Boards also have to deal with software, and it is clear that they often fail to do this
effectively. The case of the retraction of a peer reviewed articles for The Lancet
[37, 38, 41] and the Journal of Vascular Surgery [4, 14, 42], discussed in the main paper,
are cases in point.

(5) Like some Ethics Boards, SEBs might become, or be perceived as becoming, onerous and
heavy handed — as if the Board is not interested in ethics but only in following a
bureaucratic pathway. It seems essential, then, that SEBs have (and perhaps are chaired by)
experienced, practising, professional software engineers to avoid this problem.

1.3 SEBs are necessary but not sufficient
The main paper provides evidence and argues that SEBs (or equivalent) are necessary to help
improve the quality of science, specifically science relying, explicitly or implicitly, on tools or
methods based in software.

SEBs address the problems identified at the laboratory end of doing science; they do not address
the processes of review, editorial control, and action based on claimed results. As shown in the
review of 32 papers, only some journals have code policies, and the policies are not enforced.
In other words, improving the professionalisation of software engineering has to proceed from
doing science, which the paper covers, to the downstream issues of review and publication. SEBs
may work with journals, funding agencies and even international standards agencies to improve
broader awareness of professional software engineering, but this is a topic the present paper has
not addressed. It needs doing.
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2 SOFTWARE ENGINEERING BEST PRACTICE
2.1 Introduction and standard references
This Supplemental Material provides more explanations and justification for following standard
software engineering practices that support reliable modelling, reliable research, and, most gener-
ally, reliable science.

The reader is referred to standard textbooks for more information (e.g., [79, 69]), as well as to
specialised texts that are more specifically addressed to software engineering in science (e.g., [80]).

The book Why Programs Fail [87] is a very good practical guide to developing better code, and
will be found very accessible. Humphrey [67] outlines a thorough discipline for anyone wanting
to become a good programmer. Improvement is such an important activity, Humphrey has also
published a book to persuade managers of the benefits [66]. Further suggestions for background
reading can be found throughout this section.

2.2 Essential components of best practice
Software Engineering includes the following topics, which are discussed at more length below:

(0) Requirements
(1) Formal methods
(2) Defensive programming
(3) Using dependable programming languages
(4) Open source and version control
(5) Rigorous testing
(6) Good documentation and record keeping
(7) Usability
(8) Reusing quality solutions
(9) Simplicity

(10) Compliance with standards
(11) Effective multidisciplinary teamwork
(12) Continuous Professional Development (CPD)
(13) Security and other factors

(0) Without defining requirements, not enough skilled effort will be put into designing
and implementing reliable software — or excess effort will be wasted.

It is not always necessary to program well if the code to be produced is for fun, experimenting,
or for demonstrations. On the other hand, if code is intended for life-critical applications, then it
is worth putting more engineering effort into it. The first step of software engineering, then, is
to assess the requirements, specifically the reliability requirements of the code that is going to be
produced.

In practice, requirements and expectations change. Early experimental code, developed infor-
mally, may well be built on later to support models intended to inform public policy, for instance.
Unfortunately, prototypes may impress project leaders who then want to rush into production
software because, it seems, “it obviously works.” Fortunately, best practice software engineering
can be adopted at any stage, particularly by using reverse engineering. In reverse engineering, one
carefully works out (generally partly automatically) what has already been implemented.This spec-
ification, carefully reviewed, is then used as the basis for a more rigorous software engineering
process that implements a more reliable version of the system.

Submitted ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2021.



6 Supplemental Material DRAFT | Thimbleby

(1) Without formalmethods, there is no rigorous and checked specification of a program,
so nobody — including its developers — will know exactly what it is supposed to do.

In the physical world, to do something as simple as design and build a barbeque, you would
need to use elementary mathematics to calculate how many bricks to buy. To build something
more substantial, such as block of flats, you would need to use structural engineering (with certi-
fied structural engineers) to ensure the building was safe. Although programming lends itself to
mathematical analysis, it is surprising that few programmers use explicit mathematics at all in the
design and implementation of software.

The type and use of mathematics used in software engineering is formal methods. Not using
formal methods ensures the resulting code is unsafe and unreliable. Of particular relevance to
scientific modelling: there must be an explicit use of formal methods to ensure mathematical mod-
els (such as differential equations) are correctly implemented in code (and to understand the any
limitations of doing so).

Formal methods require sophisticated knowledge of logic [53], as well as practical knowledge
of using appropriate formal methods tools (Alloy, HOL, PVS, SPARK, and many others). Using the
right tools is essential for reliable programming, because the tools do quickly and reliably what,
done by hand, would be slow and error-prone. Standard tools cover verification, static analysis of
code, version control, documentation, and so on — this paper explains why some of these activities
are essential for reliable programming below.

Crucially, tools are designed to catch common human errors that we are all prone to. Many tools
are designed to avoid common human errors arising in the first place; notably, the MISRA C toolset
simply stops the developer using the most error-prone features of normal C, and hence improves
the quality of programming with little effort.

Many programming languages and programming environments have integrated features that
support formal methods. For example, Hoare’s triples [17] (and formal thinking based on similar
ideas) are readily supported by assertions, as either provided explicitly in a programming lan-
guage or through a simple API. In particular, assertions readily support contracts, an important
rigorous way of programming: assertions allow the program, the programming language, or tools
(as the case may be) to automatically (and hence rigorously) check essential details of the program.
Hoare’s original 1969 paper [17] is very strongly recommended because it is a classic paper that
has stood the test of time; in the 1960s it was leading research, but now it can be read as an ex-
cellent introduction, given how the field of software engineering has advanced and become more
specialised and sophisticated over the decades since. Hoare is also a very good writer.

Formal methods have the huge advantage that they “think differently” and therefore help un-
cover design problems and bugs that can be found in no other way. Because formal methods are
logical, mathematical theories (safety properties, and so forth) can be expressed and checked (of-
ten automatically); this provides a very high degree of insight into a program’s details, and hence
supports fault tolerance (e.g., redundancy). Ultimately, formal methods provides good reasons to
believe the quality of the final code — that it does what it is supposed to do. Unfortunately, because
formal methods are mathematical, few programmers have experience of using them. Fortunately
tools are widely available to help use formal methods very effectively.

(2) Without defensive programming, any errors — in data, code, hardware, or in use —
will go unnoticed and be uncorrected.

Defensive programming is based on a range of methods, including error checking, independent
calculation (using multiple implementations written by independent programmers), assertions,
regression testing, etc. Notoriously, what are often unconsciously dismissed as trivial concerns
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frequently lead to the hardest to diagnose errors, such as buggy handling of “well-known, trivial”
things like numbers [48]. The great advantage of defensive programming is that it detects, and
may be able to recover from, bugs that have been missed earlier in the development process (such
as typos in the code). Defensive programming requires professional training to be used effectively,
for example it is not widely known that some choices of programming language make defensive
programming unnecessarily hard [83].

A special case of defensive programming appropriate for pandemicmodelling ismixingmethods.
Do not rely on one programming method, but mix methods (e.g., different numerical methods) to
use and compare multiple approaches to the modelling.

(3) Using inappropriate programming languages undermines reliability.

Many popular languages are popular because they are easy to use, which is not the same as being
reliable to use. The fewer constraints a language imposes, the easier it seems to be to program in,
but the lack of constraints means the language cannot provide the checks stricter languages do. C,
for instance, which is one of the languages widely used for modelling [7, 63], is not a good choice
for a reliable programming language — it has many intrinsic weaknesses that are well-known to
professionals, but which frequently trap inexperienced programmers. (This is not the place for
a review [83] but Excel is even worse in this regard.) In particular, C is not a portable language
(unless extreme care is taken), which means models will work differently on different types of
computer. SPARK Ada is one example of a much more appropriate programming language to use.
SPARK Ada also has the advantage that most Ada programmers are better qualified than most C
programmers.

(4) Version control and open source organises and helps software development.

It is appreciated that the models may change and be adapted as new data and insights become
available. Changing models makes it even harder to ensure that they are correct, and thus empha-
sises the relevance of the core message this paper: we have to find ways to make computer models
more reliable, inspectable, and verifiable. Version control keeps a record of what code was used
when, and enables reconstruction of earlier versions of code that has been used. Version control
is supported by many tools (such as Git, Subversion, etc).

If version control is not used, one has no idea what the current program actually is. Version
control is essential for reproducibility: [5] it enables efforts to duplicate work to start with the
exact version that was used in any published paper, provided that the published paper discloses
the version and a URL for the relevant repository. Note that version control should also be used
for data and web site data used by code, otherwise the results reported are not replicable.

If results cannot be reproduced, has anything reliable been contributed? When a modelling pa-
per presents results from a model, it is important to reproduce those results without using the
same code. Better still, research should be reproduced without sharing libraries or APIs (for exam-
ple, results from a model using R might be reproduced using Mathematica — this is a case of N
(where, in this case, N = 2) version Programming [15]). Reproducing the same results relying on
the same codebase tells you little. The more independent reproductions of results the greater the
evidence for belief in the implications.

Clearly, with the transformations a program from avian flu in Thailand [9] to COVID-19 in
the United States and in Great Britain [11] taking place over many years, version control would
have been very helpful to keep proper track of the changes. Note that professional version control
repositories also provide secure off-site back up, ensuring the long-term access to the code and
documentation — this would avoid loss of Supplemental Material problems, as occurred in [33].

Submitted ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2021.



8 Supplemental Material DRAFT | Thimbleby

Most version control systems would, in addition, enable open source methods so the code could
be shared — and reviewed — by a wider community. Open source is not a panacea, however; it
raises many trade-offs. Particularly for world-wide concerns like pandemic modelling, it increases
diversity in the software developers, and fosters a diverse scientific collaboration. Open source can
raise people’s standards — some countries [58, 59] are using Excel models to manage COVID-19,
and open source projects properly implemented would help these people enormously.

Open source raises important licensing and management questions to ensure the quality of
contributions. A salutary open source case is NPM, where lawyers from a company called Kik
triggered Azer Koçulu, that is, a single programmer, to remove all his code from a repository. This
caused problems to many thousands of JavaScript programmers worldwide who could no longer
compile anything — ironically, including Kik itself [74].

Critically in the case of epidemic modelling, open source democratises the model development
and interpretation, and enables properly-informed public debate. Note that many (if not most) suc-
cessful open source projects have had a closed team of highly dedicated and well-paid developers.

(5) Without professional testing, there is no acceptable evidence that a program works
under real conditions.

In poorly-run software development it is very easy to miss bugs, because the flawed thinking
that inserted bugs in the code is going to be the same flawed thinking with the same misconcep-
tions that tries to detect them. Rigorous testing includes methods like fault injection. Here, the
idea is that if testing finds no bugs, that may be because the testing is not rigorous enough rather
than that the program actually has no bugs. Fault injection inserts random bugs, and then testing
gives statistical insights into the number of bugs in a program (depending on howmany deliberate
bugs it successfully finds).

It is very tempting to test code while it is being built, save some or all of the code on a repository,
but forget to check that the code has not changed out of recognition of the earlier tests — tests
should be saved so that modified code can easily be tested again. For example, if a test reveals a
bug, the bug should be fixed and the test needs to be re-run to check the fix worked (and did not
introduce other bugs previously eliminated).

It is important that code is saved and then downloaded to a clean site, confirmed it is consistent,
and a new build made (preferably by an independent tester), which is then re-tested. If this proce-
dure (or equivalent) is not followed, there is no assurance that the code made available with the
paper is complete and works reliably.

There are many other important testing methods [15, 79, 69].

(6) Without documentation and record keeping, nobody — least of all the programmer
— knows what code is supposed to do or how to get it to do it.

Documentation covers internal documentation (how code works), developer (how to include it
in other programs), configuration (how to configure and compile the code in different environ-
ments), external documentation (how the code is used), and help (documentation available while
using the program).

For critical projects, such as for pandemic modelling, all documentation (including software)
should be formally controlled, typically digitally signed and backed up in secure repositories. One
would also expect a structured assurance case to be made, both to help the authors understand
and complete their own reasoning and to help reviewers scrutinise it [12].

For purely scientific purposes, perhaps the most important form of internal is internal docu-
mentation: how to understand how and why the code works. This is different from developer
documentation, which is how to use the code in other programs. For example, code for solving a
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differential equation needs explaining — what method does it use, what assumptions does it have?
In contrast, the developer documentation for differentiation would say things like it solves ordi-
nary differential equations with parameters e for the function f with the independent variable x
in the interval [u,v], or whatever, but how it solves equations is of little interest to the developer
who just needs to use it. How code works — internal documentation — is essential for the epi-
demiologist, or more generally any scientist. An example of a simple SIR epidemiological model’s
internal documentation can be found at URL http://www.harold.thimbleby.net/sir

There are many tools to help manage documentation (Javadoc, Doxygen, …). Literate program-
ming is one very effective way of documenting code, and has been used for very large program-
ming projects [70]. Literate programming has also been used directly to help publish clearer and
more rigorous papers based on code [49] — a paper that also includes a wider review of the issues.

Documentation should be supplemented by details of algorithms and proofs of correctness (or
references to appropriate literature). All the documentation needs to be available to enable others
to correctly download, install and correctly use a program— and to enable them, should they wish,
to repurpose it reliably for their own work. In addition, documentation requires specifications and,
in turn, their documentation.

A important role of documentation is to cover configuration: how to get code to work —without
configuration, code is generally useless. The most basic is a README file, which explains how to
get going; more useful approaches to configuration include make files, which are programs that
do the configuration automatically.

Without proper record keeping, code becomes almost impossible to maintain if programmers
leave the project. Note that computer tools can make record keeping, laboratory books etc, trivial
— if they are used.

(7) If code is not usable, even if it is “correct” it will not be used and interpreted correctly.

Usability is an important consideration: [76, 82] is the program usable by its intended users
so they can obtain correct results? Often the programmers developing code know it so well they
misjudge how easy it will be for anyone else to use it — this is a very serious problem for the
lone programmer (possibly working in another country) supporting a research team. Usability is
especially important when programs are to be used by other researchers and by non-programmers,
including epidemiologists.

In publishing science, an important class of user includes the scientists and others who will use
or replicate the work described. When code used in research is non-trivial, it is essential that the
process of successfully downloading code and configuring it to run is made as usable as possible.
Typically so-called makefiles are provided, which are shell scripts or apps that run on the target
machine, establish its hardware and other features, then automatically configure and compile the
code to work on that machine. Makefiles typically also provide demo and test runs and other
helpful features. Other approaches to improve usability are zip files, so every relevant file can
be conveniently downloaded in one step, and using standard repositories, such as GitHub which
allow new forks to be made, and so on.

(8) Without using existing solutions (libraries, APIs, etc) reinventing code merely rein-
vents bugs.

Reusing quality code (mathematical functions, database operations, user interface features, con-
nectivity, etc) avoids having to develop it oneself, saves time and avoids the risks of introducing
new bugs. The more code that is reused, the more likely many people will have contributed to
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improving it — for example, reusing a standard database package will provide Atomicity, Consis-
tency, Isolation, and Durability (so-called ACID properties) without any further work (nor even
needing to understanding what useful guarantees these basic properties ensure).

Note that reusing code assumes the originators of the code followed good software engineering
practice — particularly including good documentation; equally, if the code being developed build-
ing on it follows good software engineering practice, it too can be shared and further improved
as it gets more exposure. Its quality improves through having scrutiny by the wider community,
and in successful cases, leading to consensus on the best methods. Indeed, reuse, scrutiny, and
consensus are the foundations of good science.

Anticipating reuse during program development is called flexibility, where various program-
ming techniques can greatly enhance the ease and reliability of reuse [64].

A special case of reuse is to use software tools to help with software development. The tools
(if appropriately chosen) have been carefully developed and widely tested. Tools enable software
developers to avoid or solve complex programming problems (including maintenance) repeatedly
and with ease.

(9) Poor programmers often fix bugs rather than the causes of bugs: complexity and ob-
fuscation.

When a programdoesn’t quite dowhat is wanted, it is tempting to addmore features or variables,
or to treat the problem as an “exception” and program around it — which inserts more code and,
almost certainly, more bugs. This way lies over-fitting, a problem familiar from statistics (and
machine learning). Programs can be made over-complex and they can then do anything; an over-
complex program may seem correct by accident. Instead, the hallmarks of good science are that of
parsimony and simplicity; if a simple program can do what is needed it is more likely to be correct.
A simpler program is easier to prove correct, easier to program, and easier to debug. A special
case of needing simplicity is when fixing bugs: instead of fixing bugs one at a time, one should
be fixing the reasons why the bugs have happened. Generally, when bugs are fixed, programmers
should determine why the bugs occurred, and thence repair the program more strategically.

(10) International standards have been developed to support critical software develop-
ment.

To ensure adherence to best practice and, importantly, to avoid being unaware of relevant
methodologies, professional software development projects adopt and adhere to relevant stan-
dards, such as ISO/IEC/IEEE 90003:2018 [68]. However, for safety-critical models or models of
national policy significance, much stronger standards such as aviation software standards, such
as RTCA DO-178C/EUROCAE ED-12C [73], commonly called DO-178C, will be more appropriate.
Publications should then cite the standards to which their computer models comply.

Note that medical device regulation, which has its own standards, is lagging behind professional
software engineering practice, and currently provides no useful guidance for critical software de-
velopment [44].

(11) Effective multidisciplinary teamwork is essential because no individual has the ca-
pacity to develop non-trivial reliable software.

As this long list illustrates, Software Engineering is a complex and wide-ranging subject. Soft-
ware engineering cannot be done effectively by individuals working alone (for instance, code re-
view is impossible for individuals to perform effectively), even without considering the complex-
ities of the domain the code is intended for (in the present case, including pandemic modelling,
mathematical modelling, public health policy, etc). Multidisciplinary teamwork is essential.
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Modern software is complex, and no one person can have the skills to understand all relevant
aspects of all but the most trivial of programs. Furthermore, programming is a cognitively demand-
ing task, and causes loss of situational awareness (that is, cognitive “overload” making one unable
to track requirements beyond those thought to be directly related to the specific task in hand). The
main solution to both problems is teamwork, to bring fresh insights, different mindsets and skills
to the task.

Peer review of code is an essential teamwork practice in reliable program development: [61, 69]
it is easy to make programming mistakes that one is unaware of, and an independent peer review
process is required to help identify such unnoticed errors.

Almost all software will be used by other people, and user interface design is the field concerned
with developing usable and effective software. A fundamental component of user interface design
is working with users and user testing: without engaging users, developers are very likely to in-
troduce quirks that make systems less usable (often less safe) than they should be. In short, users
have to be brought into the software team too.

(12) Computing technologies are advancing rapidly, and best practice in software engi-
neering is continually evolving.

As computing technology continues to develop rapidly — especially as new programming tools
and systems are introduced — best practice in software engineering is also rapidly evolving. Con-
tinuous Professional Development (CPD) is essential.

Ironically, the more organised CPD the more likely the content itself will lag behind. There is
an argument for two-way links between universities (and other research organisations), research
science developers, including enabling developers to undertake part-time research degrees. Re-
search degrees teach not just current best-practice but also how to stay abreast of the relevant
technologies and literature as it develops.

The UK’s Software Sustainability Institute is one initiative that is making important contribu-
tions [62, 78], and its web site will no doubt remain timely and up to date in a way that this paper
cannot.

Note that CPD is not just a matter of learning current best practice, but a continual process as
best practice itself continually evolves. In software engineering, a current (as of 2021) initiative
concerns reproducible code artifacts and badging papers to clearly show the approaches they take
[1], and this will in due course have a direct impact on software engineering standards in other
fields.

(13) Other factors ….

Of course, there are many other factors to be considered for the professional development of
critical code, such as using appropriatemethods to ensure cybersecurity [60, 77], particularly while
also being able to up- and download secure updates.

For pandemic modelling specifically, understanding the limitations of numerical methods (in
particular, how numerical methods are affected by the choice of programming language and style
of programming) is critical.1 Hamming [13] is considered a classic, but there is a huge choice
available.

For reasons of space, the present paper does not discuss the issues raised by AI, nor the many
very important, non-trivial social and professional concerns, which have complex implications for
software engineering practice, such as managing programming teams, data ethics, privacy, legal
1For example [111] was noticed to use literal numbers at too high a precision for the chosen language, where conformant
implementations use IEEE 754 double precision 64-bit floating point. Such an error typically has an undefined impact on
results, and unfortunately is easy to overlook as the program almost certainly ignores the error when running.
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liability [75], or software as a matter in law, as in disputes over model results or disputes over
ownership of code [71].

3 CODE, DATA AND PUBLICATION
There is no fundamental difference between code and data, and no distinction that is relevant for
scientific publication purposes. There is no distinction one can imagine that cannot easily, even
accidentally, be circumvented. In other words, a journal’s data policies and code policies should
be the identical — and the conventionally stricter data policies should also apply to code. It is
baffling that some journals have data policies that are weaker than their data policies; it is certainly
indefensible to have no code policies at all.

Significant cybervulnerabilities result from there being no difference between code and data.
For example: an email arrives, which brings data to a user. The user opens an attachment, perhaps
a word processor text document, which is more data. The word processor runs macros in the text
document — but now it is code.Themacros move data onto the user’s disc.The data there then runs
as code, and corrupts the user’s data across the disc — which includes both data and code stored
in files. And so on. Each step of a computer virus infection crosses over non-existent “boundaries”
between data and code [84].

This section’s discussion may sound like arcane and irrelevant pedantry, but these issues are at
the very foundations of Computer Science.2 If we ignore or misunderstand these basic things — or
overlook them in policies and procedures — bugs are the inevitable (and confusing) consequence.

The main paper points out that data is often embedded in code as “magic numbers.” Let’s now
explain how.

A fragment of program code might say
x = 324.9+sin(theta*pi/2);

This is clearly all source code, but the number 324.9 above is likely to be some sort of relevant
data, though it might be a physical constant whose value does not depend at all on this experiment.
The next hard-coded value mentioned in the calculation is difficult to categorise: is the value of π
empirical data or is it part of a standard formula? Historically, even π was definitely an empirical
value, but today it is a mathematical constant — except in experiments to determine its value
empirically. The point is, the distinctions between data, program and even mathematical constants
are purely a matter of perspective.

Unfortunately, there is data that is extremely easy to overlook (and therefore is very hard to
manage). You may assume that the function sin, as used in the calculation example above, is the
standard trigonometric function for calculating sines (and because of π , you assume it is taking
radians as the parameter type) but almost all programming languages allow sin to be any function
whatsoever. Confusingly, it is generally a different function when the code is run on a different
computer.

It is impossible to tell. More complex code will often have many facts “hard wired” into the code
— so in fact the code contains data. Code can even read in formulas from data and compile them
to perform further calculations, and so on. Equally, data can control the flow of code. For example,
data summarising patients may include their gender, but the program processes males and females
differently. Then data starts becoming like code.

Many computer programs blur the distinctions deliberately, to create virtual machines. Data is
then run on the virtual machine as program. Many programs provide standard features to do this,

2Many of the foundational issues were explored thoroughly by Christopher Strachey and others in the 1960s; Strachey’s
classic lectures are reprinted in an accessible 2000 publication [81]. Being originally a very old paper this classic introduction
is much easier to read than many more recent discussions of the foundations of Computer Science.
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such as LISP’s and JavaScript’s eval functions. Henderson’s book [65] builds an elegant Pascal
program to run any LISP program as data, and then shows that the LISP program can run itself
running other programs, so it is now its own code and its data — despite being purely data to the
Pascal program. There are numerous advantages to doing this, including: the Pascal program is
not just reading data, but structured data that must conform to the rules of LISP; the LISP running
itself runs faster than the original Pascal running LISP, even though the Pascal virtual machine is
still doing it in the recursive case; LISP is a much more powerful language than Pascal, so a virtual
machine can be used to escape the barriers of a limited implementation such as Pascal. In short,
any distinctions between code and data are impossible to maintain.

In the present paper, we knowingly built on this blur between data and code. However, what we
did was not unusual except in our explicit and rigorous approach to managing and summarising
data reliably in the paper.

The paper and its Supplemental Material are typeset in LATEX, a popular typesetting language.
LATEX not only has text (as you are reading right now) but it also has code. For example, “LATEX”
was typeset by running the code for a macro called \LaTeX, which then calculated how to position
the letters as they are wanted. When π was written above, the code that generated what you
read actually said $\pi$ — so is this data that just says π or is it code that tells the computer
to change character sets from Latin to Greek, and then uses \pi as a program variable name to
select a particular glyph from the data about typesetting Greek characters?The distinctions are all
a bit moot. In other words, the publication itself is data to a LATEX program, and within that data it
includes further programs. Indeed, LATEX is run on a virtual machine, in exactly the same way that
Henderson’s LISP is, and doing so provides the same advantages.

The data for this paper’s survey was itself originally written as literal text in LATEX: it meant that
LATEX could process it to produce a typeset table (as in the Supplemental Material above). As the
extent of the data grew, it rapidly became apparent that LATEX is a poor choice to manage structured
data. A simple JavaScript program was written to convert the LATEX data into JSON (which is much
more readable than LATEX) and also generate CSV files that can be processed in standard office
software such as Excel, which some readers may prefer. In fact, examining and comparing the same
data in the contrasting formats, this typeset file, in JSON, and in Excel (reading the generated CSV)
provided multiple different perspectives of the data that increased redundancy and confidence that
the data was correct and correctly handled.

It is important to note that using such techniques is quite routine in science publication, though
often pre-existing tools are used to streamline the process (and to ensure that it is more widely
understood).The paper [100], for example, in addition to using a typesetting system for publication,
also placed its code in a repository using R Markdown [86], a programming environment based on
R designed for generating and documenting lab books — almost the polar opposite of LATEX, which
is designed for publication but can be used for programming.

Finally note that what look like magic numbers used throughout the present paper (such as the
32 in “32 papers were evaluated”) are all in fact named, calculated and placed in situ directly from
statistical computations performed on the JSON paper’s data.

4 THE SPEIGELHALTER TRUSTWORHINESS QUESTIONS
David Speigelhalter is concerned how statistics is often misused and misunderstood. In his The
Art of Statistics [40] Speigelhalter brings together his advice for making reliable statistical claims:
they need to be accessible, intelligible, assessable, and usable — the claims need to be properly
accountable. Speigelhalter proposes ten questions to ask when confronted with any claim based
on statistical evidence. Some of his questions are quite general, and might be applied to any sort
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of scientific claims, but all have analogous questions that could be addressed to software code or
papers relying on code — analogues are suggested in bold below.

What might seem like dauntingly technical software issues are no more demanding than the
basic statistical issues that are regularly acceded to; failing to ask them is as risky as dismissing
statistical scrutiny.

4.1 How trustworthy are the numbers?
(1) How rigorously has the study been done? For example, check for ‘internal validity,’ appropri-

ate design and wording of questions, pre-registration of the protocol, take a representative
sample, using randomization, and making a fair comparison with a control group.
▶ How rigorously has the software engineering been done? Section 2 in the

Supplemental Material provides a list of important issues that must be
addressed for any reliable software.

▶ “Internal validity” assumes that there is evidence the programmers had
uncertainty in the code’s reliability and checked it. Were different methods used
and compared, or was all confidence put into a single implementation? What
internal consistency checks does the implementation have? Were invariants and
assertions defined and checked?

(2) What is the statistical uncertainty/confidence in the findings? Check margins of error, confi-
dence intervals, statistical significance, multiple comparisons, systemic bias.
▶ How are the claims presented that give us confidence in the code that they are

based on? Are there discussions of invariants, independent checks for errors,
and so on? Again, Supplemental Material section 2 provides further discussion
of such issues.

(3) Is the summary appropriate? Check appropriate use of averages, variability, relative and ab-
solute risks.
▶ If the claims are exploratory, weaker standards of coding can be used; if the

claims are a basis for critical decisions, then there should be evidence of using
appropriate software engineering (such as defensive programming) to provide
appropriate confidence in the results claimed.

4.2 How trustworthy is the source?
(4) How reliable is the source of the story? Consider the possibility of a biased source with con-

flicts of interest, and check publication is independently peer-reviewed. Ask yourself, ‘Why
does this source want me to hear this story?’
▶ The source of many science stories is the output of running some code. How

reliable is this code? What evidence is there that the code was well-engineered
so its reliability can be trusted?

(5) Is the story being spun? Be aware of the use of framing, emotional appeal through quot-
ing anecdotes about extreme cases, misleading graphs, exaggerated headlines, big-sounding
numbers.
▶ Be wary of AI and ML which may have been trained by chance or specifically (if

not deliberately) to get the results described.
(6) What am I not being told? This is perhaps the most important question of all. Think about

cherry-picked results, missing information that would conflict with the story, and lack of
independent comment.
▶ Cherry picking with code is often unconscious and is very common: when

running code produces the “cherries” for a paper it is tempting to stop testing

Submitted ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2021.



Supplemental Material:
A proposal to achieve professional software engineering in scientific research

15

the code and just assume it is running correctly. So, what evidence is there that
the code was rigorously developed and cherry picking avoided?

4.3 How trustworthy is the interpretation?
(7) How does the claim fit with what else is known? Consider the context, appropriate compara-

tors, including historical data, and what other studies have shown, ideally in a meta-analysis.
▶ Is there any discussion of the code and how does it compare with other

peer-reviewed publications using code used for similar purposes?
(8) What’s the claimed explanation for what has been seen? Vital issues are correlation v. cau-

sation, regression to the mean, inappropriate claim that a non-significant result means ‘no
effect,’ confounding attribution, prosecutor’s fallacy.
▶ These are all good statistical questions. The software engineering analogy is: are

the claims backed up by a sufficiently detailed discussion of the algorithms and
software engineering that justify the appropriateness of the chosen software
implementation? The Supplemental Material list in section 2 provides examples
of expected explanations for the trustworthiness of running some code.

(9) How relevant to the story is the audience? Think about generalisability, whether the people
being studied are special case, has there been an extrapolation from mice to people.
▶ Generalisability is equivalent to is the code available, easy to understand and

use for more general purposes — including further work and checking the
reproducibility of the claims being made?

(10) Is the claimed effect important? Check whether the magnitude of the effect is practically
significant, and be especially wary of claims of ‘increased risk.’
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5 SUMMARY OF PILOT SURVEY
5.1 Assessment criteria and methods
A survey sampled of recent papers that were published online in July 2020, accepted for publication
after peer review in 3 high-profile, highly competitive leading peer-reviewed journals, namely
Lancet Digital Health (N = 6), Nature Digital Medicine (N = 12) and Royal Society Open Science
(N = 14). Papers were selected from the journals’ July 2020 new online listings where the paper’s
title implied that code had been used in the research. Commentary, correspondence and editorials
were excluded. The sample represents what the editorial and the broader peer review community
considers to be good practice.

The selection process will have certainly missed some papers that use code, but the criterion
selects papers where the wording of the title indicates that the authors consider code to be a
component of the scientific contribution. Indeed, all sampled papers used code in their research.
Although there is unavoidable subjectivity in the paper evaluations and uncontrolled bias from
using a single evaluator (the author of this paper), it is hoped that using a sample of 32 papers
from 3 diverse journals is sufficient to randomise errors so that they largely cancel out, and the
overall trends as discussed in this paper are reliable. It should be noted that, except where a paper
provides a URL to a code repository, much code was disorganised so possibly not all code was
reviewed because it was too hard to find (some emails to authors have not been responded to).

Since almost every scientific paper relies on generic computer code (calculating statistics, plot-
ting graphs, storing and manipulating data, accessing internet resources, etc), the baseline of pa-
pers using code was not assessed. Papers whose title indicated their contribution included or relied
on bespoke code were selected, and all those clearly relied heavily on their own specifically devel-
oped code. Papers that may have relied on bespoke code but whose titles made no such implication
were not assessed.

There is considerable debate over what good commenting practice is, but this is because com-
ments have many roles — from helping students to get marks in assessments, asserting intellectual
rights, reminding the developer of things to do, managing version control, to explaining the code
to third parties. Different programming languages also develop “cultures” that encourage differ-
ent approaches for comments (examples include R Markdown, Mathematica Notebooks, JavaDoc,
Haskell’s Haddock, and so on). For scientific code, however, the explanatory role is critical, and this
is what was assessed in this survey. Note that comments used for explanation does not preclude
any other uses.

The completeness or executability of code was not assessed, although if code was obviously
incomplete this was noted above. Whether code runs as claimed is a matter of research integrity,
which is beyond the scope of this survey. What is relevant to the study is whether the code is
described in sufficient detail that the methods used can be scrutinised. Obviously being able to run
the code will help, but clarity in documentation and comments is critical. It is more like “can we
see the critical pages from your lab book so we understand what you did?” rather than “can we
have free run of your laboratory?”
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As an informal survey, intended to establish whether the issues in epidemic modelling were
more widespread, and given the very poor level of documentation found in scientific code, it was
not felt necessary to have independent or blind assessment.

The data was recorded in JSON (JavaScript object notation), which is a simple standard data for-
mat. A JavaScript program sanity checks the JSON data and then converts it to various tables and
LATEX number registers that are used throughout the paper. The strict sanity checks found a few
oversights (e.g., if there are comments of any sort there must be some accessible code), which led
to a productive double-checking of all the facts of the original papers. For example, some papers
that apparently had no code available during the first assessment, presumably causing problems
for review, had uploaded code by the time of the double-checking.3 In turn, a field doubleChecked
was added to supplement the original data field accessed to track the human process of double-
checking the data — the double-checking also inevitably confirmed details like the DOI was pre-
viously typed correctly. (Previously the DOI had been just copied into the database and there had
been no necessity to double-check it against clerical errors.)

The JavaScript program generates files from the JSON, with all the definitions; these files were
then included in both the main paper and in this Supplemental Material, so when the paper or
Supplemental Material is typeset all tables and specific data items are typeset automatically, con-
sistently and reliably by LATEX. For example, the register \dataN is set to the value 32, which is the
total number of papers assessed in the JSON data, and the macro \journalBreakdown is defined
directly from the data to be the following text:

Lancet Digital Health (N = 6),Nature Digital Medicine (N = 12) and Royal Society Open
Science (N = 14)

— which of course is the JavaScript’s automatic breakdown of the total N = 32 by journal name.
The exact same text was also used in the main paper.

An interesting consequence of this automatic approach is that as the author found themselves
writing text such as:

Code repositories were used by 10 papers …
it motivated extending the JavaScript data processing so that all specific quantities mentioned

in the paper are traceable directly back to the JSON data. The phrase above is now in fact written
in LATEX in the paper as follows:

Code repositories were used by
\plural{\countUsesVersionControlRepository}{paper} …

where \plural automatically writes a word (“paper” in this case) in singular or plural form as
required. When typeset the text above is generated with the relevant number or numbers inserted.

Of course, the variable countUsesVersionControlRepository = 10 in this case.
The full JavaScript JSON data and processing code is provided on the repository as described in

the main paper.

5.2 Sampled journal code policies
Extract from Royal Society Open Science author guidelines
It is a condition of publication that authors make the primary data, materials (such as statistical
tools, protocols, software) and code publicly available. These must be provided at the point of
submission for our Editors and reviewers for peer-review, and then made publicly available at
acceptance. […] As a minimum, sufficient information and data are required to allow others to

3Note that double-checking was performed by the same person as the first assessment, though with the benefit of a six
month gap to bring a degree of independence.
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replicate all study findings reported in the article. Data and code should be deposited in a form
that will allow maximum reuse. As part of our open data policy, we ask that data and code are
hosted in a public, recognised repository, with an open license (CC0 or CC-BY) clearly visible on
the landing page of your dataset.

URL royalsociety.org/journals/authors/author-guidelines/#data
accessed 29 July 2020.

Extract from Nature Digital Medicine author guidelines
A condition of publication in a Nature Research journal is that authors are required to make
materials, data, code, and associated protocols promptly available to readers without undue qual-
ifications. […] A condition of publication in a Nature Research journal is that authors are required
to make unique materials promptly available to others without undue qualifications.

URL www.nature.com/nature-research/editorial-policies/reporting-standards#availability-of-data
accessed 29 July 2020.

Extract from Lancet Digital Health author guidelines
— Has detailed data policies, but no code policy.

URL marlin-prod.literatumonline.com/pb-assets/Lancet/authors/tldh-info-for-authors.pdf
accessed 29 July 2020.

Extract from Journal of Vascular Surgery author guidelines
—Has detailed data policies, but no code policy. While no Journal of Vascular Surgery papers were
surveyed, the following statement on data policies is relevant for section 6.1 in the main paper:

The authors are required to produce the data on which the manuscript is based for examination
by the Editors or their assignees, should they request it. […] The authors should consider including
a footnote in the manuscript indicating their willingness to make the original data available to
other investigators through electronic media to permit alternative analysis and/or inclusion in a
meta-analysis.

URL www.editorialmanager.com/jvs/account/JVS_Instructions%20for%20Authors2020.pdf
accessed 29 July 2020.

5.3 Assessments and criteria
Legend:
Pc Journal has a code policy (see section 5.b)
Pc-breach Paper breaches journal code policy (see section 5.b)
Rc Paper uses a code repository (e.g., GitHub)
Rc-empty Code repository contains no code
Rd Paper uses a data repository (e.g., Dryad, Figshare, GitHub)
SNONE No code available at all (note: code is not expected for standard models, systems

or statistical methods)
Sp Paper says source code is available in principle
S+ Paper or URL provides source code
Srigorous Evidence that source code was developed rigorously
Stested Evidence that source code has been run with a clean build and tested
Smake Has makefile or other configuration (see section 2.b)
SotherSE Other evidence of good practice; see details in summary table
C0 Code has no non-trivial comments
C1 Code only has trivial comments (e.g., copyright)
C2 Helpful comments explaining code intent, rather than rephrasing the code
C+ Code has substantial, useful comments and documentation
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Ref Data Code
88 On request “Code is available upon request from

the corresponding author” (requested)
Pc Sp

89 “The datasets used in the current study
are available from the corresponding au-
thor upon reasonable request and under
consideration of the ethical regulations”
Rd

Matlab. Documented overview, but only
trivial comments Pc Rc S+ C1

90 “In accordance with Twitter policies of
data sharing, data used in the generation
of the algorithm for this study will not
be made publicly available”

“Due to the sensitive and potentially
stigmatizing nature of this tool, code
used for algorithm generation or imple-
mentation on individual Twitter profiles
will not be made publicly available” Pc
Pc-breach SNONE

91 “The datasets generated during and/or
analyzed during the current study are
available from the corresponding author
on reasonable request.”“”

“This code would be made available
upon reasonable request.” (requested) Pc
Sp

92 Nothing available Nothing available (despite building
two voice-based virtual counselors) Pc
Pc-breach SNONE

93 “The datasets generated and analyzed
during the study are not currently pub-
licly available due to HIPAA compliance
agreement but are available from the
corresponding author on reasonable re-
quest”

Poor commenting, no documentation Pc
Rc S+ C1

94 “The dataset generated and analyzed for
this study will not be made publicly
available due to patient privacy and lack
of informed consent to allow sharing
of patient data outside of the research
team”

No code available Pc Pc-breach SNONE

95 “The datasets generated during and/or
analyzed during the current study are
not publicly available due to institu-
tional restrictions on data sharing and
privacy concerns. However, the data are
available from the corresponding author
on reasonable request”

Empty GitHub repository: “Code
coming soon…” it says Pc Pc-breach Rc
Rc-empty SNONE
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Ref Data Code
96 “The i2b2 data that support the findings

of this study are available from i2b2 but
restrictions apply to the availability of
these data, which require signed safe us-
age and research-only. Data from UCSF
are not available at this time as they
have not been legally certified as being
De-Identified, however, this process is
underway and the data may be available
by the time of publication by contacting
the authors. Requesters identity as re-
searchers will need to be confirmed, safe
usage guarantees will need to be signed,
and other restrictions may apply”

Basic documentation, very little com-
ment Pc Rc S+ C1

97 “Not available due to restrictions in the
ethical permit, but may be available on
request”

Trivial comments, no documentation Pc
Rc S+ C1

98 “The data that support the findings of
this study are available in a deidentified
form from Cleveland Clinic, but restric-
tions apply to the availability of these
data, which were used under Cleveland
Clinic data policies for the current study,
and so are not publicly available”

“We used only free and open-source soft-
ware” some of which is unspecified Pc
Pc-breach SNONE

99 “The i-ROP cohort study data for ROP is
not publicly available due to patient pri-
vacy restrictions, though potential col-
laborators are directed to contact the
study investigators …”

Not all code on GitHub, minor com-
ments Pc Rc S+ C1

100 Data available on Dryad Rd Code and example runs available in R
Markdown Pc S+ C+

101 Data directly written into program code Basic Matlab with routine comments Pc
Pc-breach S+ C1

102 Data available on Dryad plus publicly
available data from the 1000 genomes
project. Currently (apparently) for pri-
vate view Rd

Code available for private view, though
some code available with minor com-
ments. Paper describes using two con-
trasting methods to help confirm cor-
rectness Pc Sp SotherSE C2

103 Data available on Dryad Rd Reasonaby commented code on Dryad,
but code is not complete and presumably
never checked Pc Sp C2

104 On request R lightly commented Pc Sp C1
105 No data required Unrunnable incomplete code fragment

Pc Pc-breach Sp
106 Data embedded in PDF No code available Pc Pc-breach SNONE

107 Data available on Dryad Rd Some comments, some code in Matlab
Pc Sp C2
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Ref Data Code
108 Partial data on Dryad Rd Documented R, including manual Pc Rc

S+ C+
109 No data required “We constructed a bioeconomic model

for an RSSF [restricted fishing effort
small-scale fishery] using game theory”
for which results are discussed, yet no
code is available Pc Pc-breach SNONE

110 Data cited, not all available Trivial documentation Pc Rc S+ C1
111 On Figshare Rd On Figshare, large amount of disorgan-

ised and undocumented code. Helpful
features to make usable for third parties
Pc S+ C1

112 Data on Dryad Rd No code available Pc Pc-breach SNONE

113 Data on various web sites No code available Pc Pc-breach SNONE

114 Data on request “The coding used to train the artificial in-
telligence model are dependent on anno-
tation, infrastructure, and hardware, so
cannot be released.” (!) Algorithm (not
source code) available on request. SNONE

115 Data on request Python scripts can be requested Sp
116 Unspecified location on large website re-

quiring registration Rd

Has overall documentation but poorly
commented Matlab code on GitHub Rc
S+ C1

117 Available to researchers who meet crite-
ria for access to confidential data

Despite the paper being a “deep learn-
ing algorithm” the code is not available
SNONE

118 Data access conditional on approved
study proposal

Almost completely uncommented
Python, but does have a basic setup
script Rc S+ C0

119 Unspecified locations on several large
websites

Python used and apparently GitHub, but
— an oversight? — no code is available
SNONE
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5.4 Summary of assessments
Number of papers sampled relying on code 32 100%

Access to code
Have some or all code available 12 38%

Some or all code in principle available on request 8 25%
No code available 12 38%

Evidence of basic good software engineering practice
Evidence program designed rigorously 0 0%
Evidence source code properly tested 0 0%

Evidence of makefile or equivalent 0 0%
Other methods, e.g., independent coding methods 1 3%
Documentation and comments

Good code documentation and comments 2 6%
Basic comments 3 9%

No or only trivial comments (e.g., copyright) 29 91%
Repository use

Code repository (e.g., GitHub) — 1 was empty 10 31%
Data repository (e.g., Dryad or GitHub) 9 28%

Adherence to journal code policy (if any)
Papers published in journals with code policies 26 81%

Clear breaches of code policy 11 42% (N = 26)

This is exactly the same table as table 1 from the main paper, reproduced here for convenience.
See section 5.5.1 in this Supplemental Material for details of the process that generated it.
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