Appendix.nb

Usability Analysis with
Markov Models

Specifications and
Mathematica details

This Mathematica notebook should be read in conjunction with the full paper. As well as afew
calculations used in the paper, this notebook contains the Mathematica appendix from the paper and
code to draw the graphs used in the paper. If you have Mathematica all of this notebook can be run
and tried out.

Example Mathematica code

This Appendix gives example Mathematica code to show how easily Markov analysisisto do. In
particular, by making minor changes to the definitions here, other devices can easily be analysed in
the same way: supporting our claim for the approach being reusable.

An exampl e device definition

The Mathematica code shown in this Appendix is the complete code to calculate the numbers quoted
in the body of the paper for the microwave cooker, including the conversion of Sharp's definition of
the cooker to a probability transition matrix.We will also show how easily its user interface can be
simulated.

The code starts by loading the standard Mathematica package for combinatorics (to load a shortest
path function, which we will need for calculating the designer's optimal transition matrix), and a
utility routine.

<< Di screteMat h® Conbi natorica’
| ndexCf [vector , e_]:=Position[vector, e][1, 11;

Here is Jonathan Sharp's definition of the device.

Appendix.nb 2
devi ce =
"clock"™ "clock"™ "clock" "clock" "clock" "clock"
qd qd qd qd qd qd
"timerl" “"tinmerl" "tiner2" "tinmerl" "tinmer2" “"tinmerl" | /.
"clock"™ "clock"™ "clock" "clock" "clock" "clock"
"cl ock" qd "power 1" "power2" "powerl" "powerl"
gd £"qui ckDefrost";
st at eNames = {"cl ock", "qui ckDefrost",
"timerl", "timer2", "powerl", "power2"},;
butt onNanes = {"cl ock"”, "qui ckDefrost", "tine", "clear", "power"};
Display the table as in the paper:
neat Tabl e[" Jonat han Sharp's M crowave cooker",
devi ce, stateNanes, buttonNanes]
Buttons —States—
clock quickDefrost timerl timer2 powerl power?2
clock clock clock clock clock clock clock
quickDefrost | quickDefrost | quickDefrost | quickDefrost | quickDefrost | quickDefrost | quickDefros
time timerl timerl timer2 timerl timer2 timerl
clear clock clock clock clock clock clock
power clock quickDefrost powerl power2 powerl powerl

JonathanSharp' sMicrowavecooker
We now work out from the device specification how many states and buttons there are:

nunber O St at es = Lengt h(st at eNanes;
nunber O But t ons = Lengt hdbut t onNanes;

Example analysis and graph drawing

Thefirst analysis discussed in the paper was for tasks getting from state power 1 to power 2.

start =1 ndexX [st at eNanes, "power1"];
goal =1 ndexf [st at eNanes, "power2"7;

The random user matrix (called P in the paper) is directly calculated from device; all button presses
are treated as equiprobable — by adding 1/numberOfButtons to elements of the matrix.

randonlser = Tabl e[0, {nunberf States}, {nunmberCf States}];
Do[randomJser [i, | ndexCF [st at eNanes, devicefb, i 1] +=
1 /nunber O Buttons, {b, nunberOfButtons}, {i, nunberOF States}];

Appendix.nb

The designer's matrix is based on the optimal route from the start to the goal states. Notice how the
random user matrix (which, conveniently, has non-zero elements precisely where there are transi-
tions) is converted to aGraph type to find shortest paths. In the paper, this matrix was called D.

(The definition depends on the choice of start and goal states.)

desi gner =Tabl e[0, {nunber Of States}, {nunmberf States}];

Do [Modul e [{p = Shortest Pat h[Graph[randomJser, {}], i, goal 1},
designer[i, If[Length[p] >1, p[21, i]11=11,
{i, nunberOF States}];

Define the vector of ones of appropriate size, the identity matrix of suitable dimensions, and a utility
function for submatrices:

Zer oRowCol [matrix_, rc_]:=
Table[If[i arc||] arc, O, matrix[i, jI1,
{i, LengthGmatrix}, {j, LengthOGmatrix}];

We give the definition of the mean first passage timein its most direct form.

meanFi r st Passage[_, start_, start_]:=0;

nmeanFi r st Passage[matrix_, start_, goal _]:=

Modul e[{One =Tabl e[1, {LengthOmatrix}],
Id=IldentityMatrix[LengthOmatrix]},
(Inverse[ld-ZeroRowCol [matrix, goal J] . One) [start]
1

The function may be used thus:

nmeanFi r st Passage [r andomJser, start, goal]

120

The expected time to get from the start state (power1) to the goal state (power2) is 120 button
presses. The knowledge/usability graph can easily be plotted:

Appendix.nb

Pl ot [neanFi r st Passage [k designer + (1 -k) randoniJser, start,
goal 1, {k, 0, 1}, AxesLabel £ {"Know edge", "Expected\nCost"}];

Expect ed
Cost

120
100
80
60
40
20

Know edge

Smulating the user interface

To simulate the device, we use a global variable to keep track of the state of the device as buttons are
pressed. For the sake of argument, we start the device in state clock.

state ="cl ock";

When a button on the simulation is pressed, Mathematica will arrange for the function press to be
called, with the button as a parameter. This function uses the device specification to determine the
next state. The next few lines of the function locate the device's display cell in the current Mathemat-
ica notebook (Mathematica can have several notebooks — that is, windows — running together,
which iswhy the variable nb is required); the text displayed in that cell is selected and replaced with
the name of the new state.

The simple definition of press given below shows the name of the current state in the display. It is
possible to display any image in the display, not just plain text, but to do so would take us beyond
the scope of this example.

press[theButton_]:=
Modul e[{nb = Butt onNot ebook []}, state =device[
| ndexOf [butt onNanes, theButton], | ndexXf [stateNanes, state]];
Not ebookFi nd[nb, "di splay", All, Cell Tags];
Sel ecti onMove[nb, All, Cell Contents];
Not ebookW ite[nb, Cel |l [state]];

]

Appendix.nb

Mathematica cells can be displayed in several ways. The following code is the definition of arow of
buttons to control the device. To use the buttons, Mathematica would change the display mode of the
cell, and show arow of actual buttons as shown in a Figure in the paper.

cl ock | qui ckDefrost | tine| cl ear | pover |

In the code given above, the button names and their actions were "hard coded.' However, Mathemat-
ica can generate button definitions automatically from a device specification, such as the one given
earlier in this Appendix. Thus, the user interface itself can be implicitly defined by the same device
specification. This, of course, isvery important to make the analysis — both mathematical and
empirical — use consistent specifications; they can be changed easily and only in one place.

CellPrint[
Cel | [BoxDat a[RowBox [Map [Butt onBox [#, ButtonFunction] press[#],
Butt onEval uat or £ Autonatic] &,
buttonNames]]], Active £True]];

cl ock | qui ckDefrost | ti me| clear | power |

The device's simulated display is asimple cell, with an appropriate name so that the press function
can locateit. Inits'raw' formitisjust Cel I ["", Cell Tags->"di spl ay"]: normally it
would be displayed as shown in a Figure in the paper.

The definitions of the buttons and device display given in this Appendix have been simplified. If
desired, Mathematica allows them to contain further 'typographical’ details, such as their font, size
and colour. For example, the device's display could easily be made to ook more like atypical LED
display of green text on a black background, by writing Font Fami | y->"Courier”, Font-
Col or->R@BCol or[0, 1, 0], Background->GrayLevel [0] asoptionsin the definition
of the cell (see below). For simplicity, we omitted such details from the definitions given here.

cl ock

Checking the paper’s data

Some checks, so we can check against the body of the paper:

Appendix.nb

randonlser // Traditional Form

o B o o
o Y o o

0
0
0

0§

o o

o
o uE
o v

o

¥

desi gner // Traditional Form

O OO o oo
O OO o oo
O O OO K Bk
OPFr OFr OO
O OO o oo
R OFP O OO

The combination lock

1-p IO).

Iock:(0 1)

nmeanFi r st Passage [l ock, 1, 2]

p

meanFi r st Passage [(1 - k) | ock +k (8 1) 1, 2]

Appendix.nb

Generating Figures

normali se[m]:=
Table[m[i, jO1/PlusGamiq, {i, Length[m}, {j, Length[m]}];
zeroDi agonal [m] := Table[lf[i &j, O, m[i, jI1,
{i, Length[m]}, {j, Length[m]}];
LEDUser =nornmal i seGzer oD agonal GrandomJser;
LEDUser // Tradi ti onal Form

o4 & ooo
§ o4 ooo
g8 o E O
8 & o0o0R
4 B ol oo
FEh o000

sharpGraph =Pl ot [
{3, neanFirst Passage [k designer + (1 -k) LEDUser, start, goal],
nmeanFi r st Passage [k desi gner + (1 -Kk) randoniJser,
start, goal 1}, {k, O, 1}, Pl ot Range £ {0, 130},
AxesOrigin £ {0, 0}, TextStyle £ {Font Si ze £10},
Pl ot Styl e £ {Dashi ng[{. 001, .01}1,
Dashing[{. 04, .01}], Dashing[{1, 0}1}]1;

120
100 |
80 |
60
40 ¢

20 ¢

We save the graph as an epsf file so that we can put it in the paper.

Set Directory["Mci nt osh HD: Mar kovfil es"]

Maci nt osh HD: Mar kovfil es

Export ["graph. epsf", sharpG aph, | nageSi ze £72*4.57;

Appendix.nb

0 p 0 0 0 1-p
1-p O p 0 0 0
. _ 0 1-p 0 p 0 0
M9 =19 0o 1-p 0 p o0
0 0 0 1-p 0 p
p 0 0 0 1-p O
ri ngG aph =

Pl ot [Eval uat eGTabl e [neanFi r st Passage[ring, 1, r]1/6, {r, 1, 6}1,
{p, 0, 1}, Pl otRange -> {{0, 1}, {0, 1.6}},
Text Styl e £ {Font Si ze £10}1;

1.6
1.4}
1.2
11
0.8 7
0.6 |
0.4
0.2

0.2 0.4 0.6 0.8 1

Export ["ring.epsf”, ringG aph, | nageSi ze £72*4.57;

The Nokia 2110 is a bit harder!

noki aMenu [" St andby"] =

{"Recent calls", "Messages", "Call divert", "Phone settings",
"Security options", "Duration and cost", "Network sel ection”,
"Menory functions", "Personal rem nders", "In-call options",
"FAX or data call", "Ringing options", "Nunber editor"};

noki aMenu["Recent calls"]={"Dialled calls",
"Received calls", "Mssed calls", "Erase all recent calls"};

noki aMenu [" Messages"] =
{"Listen to voi ce nmessages", "Read nessages”, "Wite nessages",
"Show deliver reports", "Message settings"};

noki aMenu [" Message settings"] = {"Message centre numnber",
"Message sent as", "Accept reply costs", "Delivery reports",
"Message validity", "Set nmil box nunber"};

Appendix.nb

noki aMenu["Cal | divert"] =

{("Divert all calls", "Divert when busy",
"Di vert when not answered", "Divert if not reachable",
"Divert all data calls", "Cancel all diverts"};

noki aMenu [" Phone settings"] = {"Lights", "Ri ngi ng vol une",

"Ri ngi ng tone", "Keypad tones", "Warni ng tones",

"Automatic redial", "One touch dialling", "Automati c answer",
"Cell info display", "Om nunmber sending", "Call waiting",
"Restore factory settings", "Menu list", "Language"};

noki aMenu[" Security options"] ={"PIN code request",

"Security level", "Call barring", "View fixed dialling",
"Change access codes", "C osed user group"};
noki aMenu["Call barring"] =
{"Qutgoing calls", "International calls",
"Int except to hone country", "lInconing calls",
"I ncoming calls if abroad", "Cancel all barrings"};

noki aMenu [" Change access codes"] =
{" Change security code", "Change PI N code",
"Change PI N2 code", "Change barring password"};

noki aMenu["Duration and cost"] = {"Call duration",
"Call costs", "Call costs linmt", "Show costs in"};

noki aMenu["Menory functions"] =
{"Menmory sel ection", "Menory status", "Copy between nenories",
"Menory erasing options", "Show own nunber"};

noki aMenu [" Personal rem nders"] =
{"Wel cone note", "Countdown tiner"};

noki aMenu[_] = {};

Appendix.nb 10

makeGadget [fcn_, root , Quitprob_1:=
Modul e[{def Li st = {}, vcounter =0, gcounter =0,
transition, donenu}, transition[from, button_ , to] :=
AppendTo [def List, {from to,
| f [button&"Quit", Quitprob, (1-Quitprob)/ 3]
j3
domenu[s_]:=
Modul e[{i, m=fcn[s], view, goal },
view="View options " <>ToStri ng[++vcounter];
transition[s, "Select", view]; transition[view, "Up",
mfLength[m]]]; transition[view, "Down", m[l]];
transition[view, "Qit", s 1;
For[i =1, i £Lengthdm i ++,
transition[mi J, "Down", m[lf [i &Length[m], 1, i +1]11];
transition[mfi], "Up", mIlf[i &1, Length[m], i -1117;
transition[mfi], "Qit", s];
If[fen[mIi]~ {},

dormenu [m[i 11,
(* has sonething that can be selected *)
goal ="Function " <>ToString[++gcounter];

transition[mi J, "Sel ect", goal ;

(* we assune any operation gets out of a function *)
Map[transition[goal, #, miJ] &

{"Up", "Down", "Quit", "Select"}];

]
]
I
dorenu [r oot];
Print [gcounter, " functions"];
Print [vcounter, " View Options itens"];

Ret ur n[def Li st]
1

synbol i cTransi ti ons = makeGadget [noki aMenu, " Standby", p];

64 functions

12 View Options itens

vocabul ary = Uni onQFl atten|[
synbolicTransitions /. {from, to_, prob_} £ {from to}];

Wi chNat [s_] :=Position[vocabul ary, s]1[1, 1T;
ToNats[s_]:=s /. {a_, b_, c_} 1 {Whi chNat [a], Wi chNat [b], c};

FromNat [n_] : =Part [vocabul ary, n];

st andbyN= Wi chNat [" St andby"];
goal =Whi chNat ["]I ncom ng cal | s"7];
nuneri cTransiti ons = ToNat s [synbol i cTransitions];

Appendix.nb

11

nunber O St at es =
Max GFl atten[nunericTransitions /. {from, to_, _} A {from to}]

152

g = Tabl e [0, {nunber States}, {nunberOStates}];
Scan[(gI#[11, #0211 +=#[I31) & nunericTransitions]

(* sone buttons do nothing in sone states,

so set diagonal of matrix, so each row adds to 1 *)
Do[g[i, il=1-Plusadgfil, {i, nunber(XStates}];

qui t Noki a[quitProb_] : =
meanFi r st Passage[g /. p £quitProb, standbyN, goal];

What is the expected time when the quit button is pressed with probability 0.25?

qui t Noki a[0. 25]

602235.

noki aGraph = Pl ot [qui t Noki a[p], {p, 0.001, 0.2}1;

100000 j
80000 ¢

60000 ¢

40000 ¢

20000 ¢

0.05 0.1 0.15 0.2

Export ["noki a. epsf", noki aG aph, | mageSi ze £72*4.57;

Find the minimum value:

Appendix.nb

Pl ot [qui t Noki a[p], {p, 0.03, 0.06}];

3300 ¢
3200 ¢
3100 ¢
3000 ¢
2900 ¢

2800

0,035 0.04 0.045 0.05 0.055 0.06

Fi ndM ni mum[qui t Noki a[p], {p, {0.03, 0.06}}]

{2675. 34, {p £0.0366612}}

