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Reducing number entry errors:
solving a widespread, serious problem

Harold Thimbleby1,* and Paul Cairns2

1Future Interaction Technology Laboratory, Swansea University, Swansea SA2 8PP, UK
2Department of Computer Science, University of York, York YO10 5DD, UK

Number entry is ubiquitous: it is required in many fields including science, healthcare, edu-
cation, government, mathematics and finance. People entering numbers are to be expected
to make errors, but shockingly few systems make any effort to detect, block or otherwise
manage errors. Worse, errors may be ignored but processed in arbitrary ways, with
unintended results. A standard class of error (defined in the paper) is an ‘out by 10
error’, which is easily made by miskeying a decimal point or a zero. In safety-critical
domains, such as drug delivery, out by 10 errors generally have adverse consequences.
Here, we expose the extent of the problem of numeric errors in a very wide range of sys-
tems. An analysis of better error management is presented: under reasonable
assumptions, we show that the probability of out by 10 errors can be halved by better
user interface design. We provide a demonstration user interface to show that the approach
is practical.

To kill an error is as good a service as, and sometimes even better than, the establishing of
a new truth or fact.

(Charles Darwin 1879 [2008], p. 229)

Keywords: number entry; human error; dependable systems; user interfaces

1. INTRODUCTION

At first sight, typing numbers is such a mundane task
that it seems not to merit a second glance. Naturally,
when it comes to entering numbers, humans are prone
to make errors, but—astonishingly—many systems
make no effort to detect or manage possible errors,
causing incorrect and unpredictable results. This
paper exposes the extent of this problem in a wide
range of systems. We show that the problem cannot
be dismissed merely by blaming the user: indeed, we
show that some system logs, which might otherwise be
thought of as a formal record of user actions, cannot
be relied on to assign blame.

Systems should be designed to manage errors, as
errors will always eventually occur regardless of user
skill or training. We therefore show how better designs
for number entry may be approached; we present a new,
improved user interface for preventing many number
entry errors, and we argue that the new approach can
approximately halve the probability of an important
class of adverse events arising from number entry error.

We note that problems with complex software are
widely recognized (Leveson 1995; Fox et al. 2009;
Hoare 2009; Jackson 2009), but, to our knowledge, this
article is the first to report the extent of serious problems

with the seemingly trivial issue of processing number
entry.

2. WIDESPREAD PROBLEMS WITH REAL
SYSTEMS

Entering numbers seems like an apparently routine
task, but it is in fact less dependable than it appears.
Figure 1a shows an everyday example, here taken
from Microsoft Excel (or Apple Numbers; the two
applications behave in essentially the same way for
the purposes of this paper). Two columns of numbers
are supposed to be added up. In figure 1, the column
totals should be the same, but small typing errors
make the totals incorrect without any warning, even
though no user is likely to want things that look like
numbers (e.g. ‘3.1’) to be treated as anything but the
numbers they seem to be. Using Excel’s ‘show pre-
cedents’ feature, there is no indication that there is a
problem (see figure 1b). And with frankly devious use
of the formatting functions, even greater errors are poss-
ible, as in figure 1c—though we note that it is very easy
to lose track of formatting, and the type of error illus-
trated here could arise by accident and be very hard
to track down.

The examples in figure 1 illustrate the problems: the
errors, whether caused intentionally or through acciden-
tal slips, are not immediately obvious to a casual glance,
though for illustrative purposes the examples are not so

*Author for correspondence (harold@thimbleby.net).

Electronic supplementary material is available at http://dx.doi.org/
10.1098/rsif.2010.0112 or via http://rsif.royalsocietypublishing.org.

J. R. Soc. Interface (2010) 7, 1429–1439
doi:10.1098/rsif.2010.0112

Published online 7 April 2010

Received 27 February 2010
Accepted 15 March 2010 1429 This journal is q 2010 The Royal Society

 on March 9, 2011rsif.royalsocietypublishing.orgDownloaded from 

mailto:harold@thimbleby.net
http://dx.doi.org/10.1098/rsif.2010.0112
http://dx.doi.org/10.1098/rsif.2010.0112
http://dx.doi.org/10.1098/rsif.2010.0112
http://rsif.royalsocietypublishing.org
http://rsif.royalsocietypublishing.org
http://rsif.royalsocietypublishing.org/


large that the totals cannot readily enough be done in
one’s head. Of course, in typical applications of Excel,
the spreadsheets will be much larger, and errors will
be correspondingly harder to find.

2.1. Human error

Human error can be broadly classified as violations, mis-
takes and slips (Reason 2008). If users intend to make an
error in their spreadsheet, perhaps to claim higher
expenses, this is a deliberate violation. This type of
error is unlikely to be detected by a computer except
probabilistically using pattern matching, which might
reveal it as anomalous behaviour. Secondly, the user
may have picked up the wrong receipts: they intend to
enter correct numbers, but the ones entered are in fact
erroneous; this is a mistake. Finally, the user may
know and intend to enter the correct number, but they
fumble or accidentally hit the wrong keys; this is a slip.

Although slips may produce errors that are syntactic
errors, syntactic errors cannot necessarily be attributed
to slips. For example, the error in figure 1a could arise
for all sorts of reasons: perhaps the user thought
ending numbers with full stops was innocuous, which
would be a mistake; or the user wanted to conceal incor-
rect financial accounts, which would be a violation; or
the user accidentally hit the decimal point again,
which would be a slip. In any case, the consequence is
that a syntactically incorrect number is processed as if
it were a valid number.

Ironically, the more skilled a user, the less attention
they will pay to what ought to be routine outcomes, so
the more likely these types of error will go unnoticed
until they have untoward consequences. The reason is,
as users become skilled, they automate actions, so
their attention can be used more selectively; thus as
they become more skilled, they pay less attention to
the display, whose routine behaviour they have learnt
to expect (Wickens & Hollands 2000). Worse, many
users will be very practised in handling typing errors
in word processors, but the error-correction features
(such as delete keys) of word processors typically do
not work in the same way on other devices (we give
examples below), so this will encourage transfer errors,

which again ironically will be worse for more skilled
IT users.

Fortunately, blocking the consequences of some
errors can be done without interpreting the user’s
slips, goals or aims, as this paper will show.

2.2. Safety-critical applications of number entry

Although the problems are ubiquitous, to our knowl-
edge affecting all areas using numbers, the hazards
are perhaps most powerfully illustrated in drug delivery,
an area where such errors may have clear and
rapid adverse outcomes: injury or death may be the
consequence of number entry errors.

Consider the following scenario:

The Alaris Infusion Pump involved was acciden-
tally programmed for 68 mL/hr instead of the
ordered rate of 6 † 8 mL/hr. [. . .] The patient
expired the next day. It is believed that, although
the pump did not malfunction, inherent design
flaws in the infusion pump may have contributed
to this event.

(Food and Drug Administration 2009)

Investigation revealed that the pump keypad was
designed in such a way that it required more force to
press a decimal point than a digit and that it was easy
to think that you had pressed it when in fact the machine
had not registered it. Nor was there feedback. Thus,
while the cause of the death was attributed to the
nurse making an error, the machine did little to support
the nurse, particularly given that human error must be
acknowledged as a known aspect of using any machine.

The Graseby 3400, a typical and representative drug
delivery system widely used in hospitals, has a variety of
problems in number entry, including the following.

— If the user enters an erroneous number, it will be
accepted without complaint, but it will be misinter-
preted. Thus keying will enter 1 † 3.

— The Graseby 3400 user manual (Graseby Medical
Ltd 2002) states that number entry works ‘like a cal-
culator’, yet on calculators will generally
enter 1 † 23.

11.9 11.9
23 23

3.1 3.1.
27.3 27.3
2.7 2.7

total 68.0 64.9

11.9 11.9
23 23
3.1 3.1.

27.3 27.3
2.7 2.7

total 68.0 64.9

11.9 11.9
23 23

3.1 3.1
27.3 27.3
2.7 2.7

total 64.9 1000.0

(a) (b) (c)

Figure 1. Errors in adding numbers in Microsoft Excel. Excel’s SUM() function, which is used to total all columns in this figure,
ignores values that are not numbers. No errors are reported in any of the examples. (a) Two apparently identical sums giving
different results. The erroneous sum in the right-hand column is caused by 3.1. having a final decimal point/full stop, and
hence being treated as text, and thus processed as zero by SUM. The difference between the column sums may not be noticed
by a user, particularly since in normal use they are unlikely to double-check the ‘same’ columns, as used here for illustrative pur-
poses. (b) The ‘show precedents’ feature is one way to help check calculations. It highlights the operands of a cell, but here the
precedents for the incorrect total are shown as including the value that has been ignored. Evidently, Excel’s notion of ‘precedents’
is the range of possible operands, rather than the actual operands, and therefore the feature is misleading. (c) Through innocent
error or intentional mischief, even more unusual column sums can be produced. In the left column, the cell ‘3.1’ is generated by
the formula =’3.1’, which turns the apparently correct number 3.1 into a string, with value zero as before. In the right column,
the cell ‘23’ is actually the number 995, but formatted as ‘23’ using a custom format.
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— Entering 10 000 mg/h (i.e. keying in
the mg/h mode) is recorded by the Graseby as
100 † 00 mg/h.

— If the user takes more than approximately 4 s to
enter a number, number entry silently resets.
Thus, entering could enter either 1 † 90 or
9 † 00 in the mg/h mode. Users are unlikely to be
familiar with this behaviour because it occurs
rarely.

— If the dose units are changed (say from mg/h to
ml/h), then the number being entered does not
reset to zero and the user’s keystrokes continue
entering the number: so entering after a unit
change could enter, say, 991 † 0 ml/h if 99 had
been entered in the previous (mg/h) mode.

— Like many devices, the Graseby does not follow rec-
ommended practice for unit names (e.g. both the
Institute for Safe Medication Practices (2006) and

the National Patient Safety Agency (2010)
recommend not using a lower case l for litre as it is
confusable with the digit 1).

In none of the errors does the Graseby report any warn-
ing. Worse, if a user is in a busy situation where one of
these problems occurs, they are surely also unlikely to

Table 1. Illustrative results from keying on various systems and devices. Note how different rules can produce the
same result (e.g. iPhone Drug Infusion and Graseby 500) that for other input (e.g. ) would give different results.

system example value rationale

creatinine clearance calculator Xeloda 71CRCL 123 despite the decimal point on the keypad, all data entry
silently ignores it

search engine Wolfram Alpha 6 treated as 1 ! 2 ! 3
office software Microsoft Word tools

calculate
1 † 5 treated as 1 † 2 þ 0 † 3

infusion pump Graseby 3400 1 † 3 dot zeros the decimal part, so enters 1 † 0, then
the updates it to 1 † 3 (or 1 † 30 and 1 † 300
depending on mode)

handheld calculator Casio HS-8V
(Thimbleby 2005)

1 † 23 second and subsequent decimal points are ignored

mobile phone iPhone DrugInfusion 1 † 2 second decimal point terminates number
infusion pump Graseby 500 1 † 2 discards everything after first decimal digit
maths package Wolfram

MATHEMATICA

0 † 36 treated as 1 † 2 ! † 3

spreadsheet Microsoft Excel 0 converted to a string, which may be treated as zero
spreadsheet Sun OpenOffice 01/02/03 converted to a date—ambiguously, 1 February,

2 January, 3 February, 1901, 2001 . . . , etc.

Table 2. The Abbott Aimplus infusion pump illustrates two common problems of number entry with its varied response to the
single key sequence . Pressing on the Abbot (or pressing or equivalent on other devices) immediately
before entering a number is crucial to the outcome. (a) When has just been pressed, the display is cleared, and

can only mean one thing, although exactly what depends on which mode the pump is in. (b) If has not
been pressed, the behaviour is almost arbitrary, and many values are possible depending on the user’s prior keystrokes. Although
the behaviour described in this table is specific to the Abbott Aimplus, like very many devices a display of ‘0 † ’ or ‘0 † 0’ is
ambiguous, as it may be the result of pressing , which resets the display, or it may be the result of previous keystrokes
(such as , say, which produce exactly the same display but has a different effect on subsequent number entry).

(a) mode pressed value rationale

mgm mL21 123 decimal points are ignored
mL hr21 1 † 2 ignores anything after one decimal digit
time 1.23 AM or

1.23 PM
in some time modes, decimal points change AM/PM. resets

the time to 0.00 but does not reset AM/PM

(b) mode not pressed possible value rationale

mgm mL21 9999 † 9 anything ignored unless pressed first
mL hr21 0 † 1 a user previously pressed, e.g.
mL hr21 0 † 0 a user previously pressed, e.g.
time 0.00 AM or

0.00 PM
it looks like was pressed, but pressing , etc., locks the

display except for AM/PM, which still changes with the decimal point

Must not have more than one decimal point

Figure 2. Snapshot of the error-blocking user interface after an
error has occurred. The snapshot of the demonstration user
interface shows handling a slip where the user has just entered
a number with two decimal points (in our design, the device
beeps and the screen also goes red to make the error more sali-
ent). An interactive demonstration is available.
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be viewing the Graseby’s LCD screen closely enough to
confirm that the device is behaving as they intended.
The Graseby is a safety-critical device that, we believe,
ought to manage errors predictably and sensibly
through blocking and giving the user an opportunity
to correct errors. Like many devices it does neither.
As table 1 indicates, many devices ignore errors and
are inconsistent in the way they respond; table 2
shows how handling numbers within a single, typical
device can be inconsistent. Some even change their be-
haviour depending on the number as it is entered: for
example, on the Baxter Colleague, the decimal point
disappears with values over 100, so will enter
10 † 5, but will enter 1005.

It is clear that there is no systematic approach to user
error, even for such a well-understood application as
number entry. The resulting inconsistency between and,
alarmingly, within systems (e.g. figure 1) will cause nega-
tive transfer (Wickens & Hollands 2000), which increases
error rates. However, in some domains, there is clear gui-
dance on number syntax; for example, the guidelines
produced by the Institute for Safe Medication Practices
(ISMP) (2006), adopted by the Food and Drug Adminis-
tration (FDA) in 2006, provide specific guidelines for
healthcare. Some relevant parts of the ISMP rules are
summarized in table 3. The UK guidelines are similar
(National Patient Safety Agency 2010).

Unfortunately, there are no clear data on how often
keying errors are made in practice because, although
many medical devices allow logging so that cases can
be investigated, they log what the device interpreted,
not what the person using the device keyed in. Thus,
even in the earlier FDA scenario, it is conceivable
that the nurse did in fact enter 6 † 8 by pressing

, but, because of some unlogged internal state
of the device, the number was taken to be 68. Another
possibility is that the nurse perhaps keyed

and the deliberate single delete,
unnoticed by the user, deleted both decimal points—
this would be similar behaviour to the iPhone pCalc
calculator (Thomson 2009), which in this case would
delete the decimal points and the preceding digit!
Logs that record the result but not the user’s exact
actions (including timings for devices that have time-
outs) are clearly inadequate to determine whether
these or any other error or design confusion is
the case; conventional device logs are inadequate for
investigations if the user is at risk of blame.

3. A NEW USER INTERFACE TO PREVENT
ERRORS

We propose blocking the entry of numbers that do not
conform to the ISMP guidance for the reliable format-
ting of numbers (table 3). We have built a
demonstration user interface for number entry that
shows how this works in practice and how the ideas
could be implemented on many current devices
(figure 2); a very similar user interface has also been
made available in a drug dose calculator (Thimbleby
2008), which can be used on the Web or on the Apple
iPhone as an example of a realistic device using the
approach. The approach can be generalized to block
numbers that fail any specified criteria. In fact,
although not specified by ISMP, by way of illustration
our demonstration blocks entry of numbers that are
too long using a limit that can be changed. Such block-
ing is done very rarely by calculators, with resultant
problems we avoid (see below and table 4).

The definition of the number entry interface is
straightforward. The display shows exactly the character
string that is in a buffer, which is initially empty. On
each keystroke, the corresponding character is appended
to the buffer; if the keystroke is or , the
buffer either has the last character, if any, deleted, or the
entire buffer is cleared. After the buffer has been
updated, it is parsed; there are then three cases:

(1) The buffer is not a prefix of any valid number (e.g.
the user has keyed two decimal points)—then a
beep is made and an appropriate error message is
displayed.

(2) The buffer is not a valid number, but it is a prefix
of a valid number (e.g. the user has entered ‘0 † ’,
which must have more digits to follow the decimal
point)—then a ‘continue’ symbol is shown.

(3) The buffer is a valid number (e.g. the user has
entered ‘2 † 3’ and they may key more)—an indi-
cator is shown, perhaps by enabling or
highlighting the button.

There is an key, which on our demonstration
represents the user ending the number; it is of course
an error if is pressed in cases (1) or (2) above.
Finally, if the user does not correct an error but keys
a digit or a decimal point, the buffer is extended and
the error message is changed to specific instructions to

Table 3. Selected entries from the Institute for Safe Medication Practices (2006) List of error-prone abbreviations, symbols and
dose designations. Example errors that ‘. . . should NEVER be used when communicating medical information’ [their
emphasis]. Reproduced with permission. Copyright q ISMP 2009.

dose designations intended meaning misinterpretation correction

trailing zero after decimal
point (e.g. 1 † 0 mg)

1 mg mistaken as 10 mg if the decimal
point is not seen

do not use trailing zeros for doses
expressed in whole numbers

‘Naked’ decimal point
(e.g. † 5 mg)

0 † 5 mg mistaken as 5 mg if the decimal
point is not seen

use zero before a decimal point when
the dose is less than a whole unit

large doses without
properly placed commas
(e.g. 100000 units;
1000000 units)

100, 000 units
1, 000, 000 units

100000 has been mistaken as
10, 000 or 1, 000, 000; 1000000
has been mistaken as 100, 000

use commas for dosing units at or
above 1, 000, or use words such as
100 ‘thousand’ or 1 ‘million’ to
improve readability
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delete or clear the error rather than a description of the
number error itself.

Note that, in our approach, the buffer is initially
empty, and the display shows nothing. In contrast,
most number entry user interfaces initially display ‘0 † ’
or ‘0 † 0’ as the case may be, even when the user has
entered nothing (table 2). Since the display does not
change when either or is keyed, this design creates
a serious ambiguity: when the display shows ‘0 † ’ sub-
sequently pressing could display either ‘0 † 5’ or ‘5 †

’—which differ by a factor of 10. Our user interface uses
a large decimal point and smaller digits following the dec-
imal point, both recommended techniques to reduce the
chance of misreading the display, as can be seen in figure 2.

It is important to note that our user interface makes
no difference to users who make no keying errors; it
simply blocks invalid numbers, which would typically
be incorrectly handled by number entry systems.

Almost all interactive devices and certainly all PC
applications have ample power and screen size to run
our user interface; for many devices, nothing more
would be required than an appropriate firmware
update at their next service. If it is too hard to
update the firmware, this in itself must be considered
a design problem, as it has been well known at least
since the 1980s that software needs revision, most par-
ticularly for safety-critical devices where unfixed bugs
could have dangerous consequences. Single-line seven-
segment digit displays would also be problematic, but
these make decimal points inconspicuous and are
therefore problematic for other reasons too.

4. QUANTIFYING THE BENEFITS OF
PREVENTING ERRORS

To analyse the potential impact of this form of
number entry interface, we consider the types of
errors that arise by hitting the wrong key from that
intended when entering a drug dosage in a typical hos-
pital device. Some errors simply replace one digit or
decimal point with an incorrect digit or decimal
point. Some errors though are a termination slip
where a wrong key effectively terminates the number
entry. The proportion of termination slips to incorrect
digit errors is likely to be substantially greater than 1
as many devices take any key press other than a digit
or a decimal point to terminate number entry and
process the number.

4.1. Defining errors

We define valid numbers as those meeting the form
described by the ISMP, as outlined in table 3, with
the additional rules—which the ISMP does not men-
tion—that multiple decimal points are invalid, and
leading zeros, except for numbers less than 1, are inva-
lid. One might also consider rules about valid ranges of
numbers and for significant figures, though doing so is
beyond the scope of the present paper.

Not all errors result in serious problems: an erro-
neously entered value of 1 † 3 is probably fine if the
intended value is 1 † 31. Thus, we define the notion of
out by r errors where the ratio of the original intended
number to the final processed number acted on or
vice versa is at least r. Specifically, if the intended
number is i and the number finally acted on is a, then
there is an out by r error if i/a # r or a/i # r.
Obviously, out by r errors are only errors when r . 1.

For instance, if the intended number is 20, ending up
with 2 or less or ending up with 200 or more are both out
by 10 errors, and in fact both are out by r errors for any r
less than 10 as well—they are both out by 2 errors, since
the number processed or acted on in both cases is at least
a factor of 2 out from the intended value of 20. We are
careful to say ‘the number processed or acted on’ since
the number entered by the user may be one thing, but
the device may misinterpret it (for instance, when
there is a keying error): what matters, whether there is
an out by r error, is the final number acted on compared
with the intended number, not what the user entered nor
what they thought they entered.

Whether harm or other unwanted outcomes arise
from an out by r error is another matter. For example,
an out by 2 error in an intravenous chemotherapy drug
would probably be far more serious than an out by 10
error in counting vitamin C pills, as well as being
harder to notice at the time the numerical error
occurred; in contrast, in accountancy, any out by r
error warrants investigation. However, out by 10
errors are very likely to occur with decimal point or ter-
mination slips (e.g. keying too few or too many digits),
and they are widely recognized as leading to adverse
outcomes in healthcare (Lesar 2002).

4.2. Analysis methods

The purpose of the analysis is to see the extent to which
syntax checking reduces out by 10 errors when entering
numbers in a typical interactive device. The main

Table 4. Calculators make decimal points inconspicuous and ignore over-long number entry. The table shows the results of
calculating the 2009 US population as a proportion of world population on a typical handheld calculator, here a Canon LS-
270H, compared with values correctly rounded for an eight-digit display. In all cases, the calculator displays an incorrect
result, only in one case reporting an error, and then with a relatively inconspicuous marker. (Many calculators display a small
‘E’ instead of the full word.) Compare the standard inconspicuous seven-segment decimal point in the calculator results
column against its clear presentation in the column of correct values.

calculation keystrokes result drawn to scale correct value

percentage 100 306900000 6707000000 4 † 575 816 3

percentage 306900000 6707000000 100 4 † 575 816 3

fraction 306900000 6707000000 0 † 045 758 2
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problem in conducting this analysis is that there are no
easily available data on the kinds of errors made when
doing number entry, the underlying rate of error, or
the distribution of numbers being entered. The analysis
therefore takes an exhaustive approach looking at all
possible number entries within a given range.

This is a somewhat unconventional approach to user
interface evaluation, as it is done without human par-
ticipants—the unforced human error rates are so low
and the probability of an error coinciding with a notice-
able design defect so low that conventional evaluation
could not have produced reliable results within reason-
able resources. We also note that well over 30 years of
conventional user interface evaluation performing
empirical experiments with users (Johnson 2006) has
failed to spot, let alone evaluate, the problems this
paper addresses.

We first analysed the impact of syntax checking
using a Monte Carlo method. The Monte Carlo
method is both conceptually simple and simple to pro-
gram, and it is therefore likely to be valid because any
errors in its programming should be reasonably obvious.
However, because our initial results were surprising, we
chose to program two other approaches independently,
using quite different techniques, and using two different
programmers working independently.

We thus programmed three independent analyses:

— a Monte Carlo simulation of number entry with
varying error rates;

— an exhaustive method where each target number in
the range is considered in turn;

— a symbolic analysis where the proportion of blocked
out by r errors is calculated as a function of the
underlying keystroke error rates.

The Monte Carlo method and the symbolic analysis were
both written in MATHEMATICA by H.T., and the exhaus-
tive method was written independently in Java by
P.C., making use of Microsoft Excel for convenient
data presentation. (All program source code is available
in the electronic supplementary material; the MATHEMA-

TICA code is an interactive ‘notebook’ and provides
detailed explanations, and options to analyse different
number-parsing strategies.) In all methods, the general
approach was to consider a number intended to be
keyed, simulate user slips in the keying of that number
and then parse the resultant key sequence to assign it
a value, as a typical device might do (we explored var-
ious ways of parsing numbers, covering the cases
illustrated in table 1). We are thus able to estimate the
probability of out by 10 errors and the probability of
out by 10 errors that would be blocked by syntax checks.

4.2.1. Parametrizing error probabilities. For a given
single key-press when entering numbers, we use e to
denote the probability that any key other than the
intended key was pressed. From other contexts, it can
be inferred that e is at most 0 † 1, but it is more likely
to be between 0 † 01 and 0 † 05. However in the case of
high stress such as users may encounter during surgery,
e may be somewhat higher; then again, with trained
and relaxed professionals, e may be somewhat lower

(Wickens & Hollands 2000). The only certainty is
that e is greater than zero as human error is inevitable.

Sometimes, the incorrect key pressed has the effect of
terminating the number entry, for example, by mista-
kenly pressing an or key, which would
make the device accept the entered number and start
functioning. In other cases, the incorrect key is simply
the wrong digit or a decimal point and number entry
is able to continue.

We denote the probability of miskeying but not ter-
minating the number entry by p and the probability of
incorrect termination errors by q. Clearly, e ¼ p þ q,
but in order to simplify the variations in p and q
while ensuring 0 $ e $ 1, we define k ¼ q/p, that is, k
is the proportion of termination to non-termination
errors. Given that in many devices we considered
there are many keys that when pressed cause a termin-
ation of number entry, we believe that 0 † 5 $ k $ 10 is
a realistic range for k.

4.2.2. The Monte Carlo method. The simplest approach
is to use a Monte Carlo method, as it closely models how a
user would enter a number: a certain number is intended
but keying errors mean that another number may
be keyed in. Thus, the Monte Carlo program randomly
selects a number from 0 † 01 to 99 † 99 in increments of
0 † 01, works out the correct key sequence to enter this
numberand thenuses the parameters p and q, as described
above, to randomly alter the key sequence with the appro-
priate probabilities. The key sequence is then parsed
according to the device being simulated and given a
value. The sequences are marked as to whether they
would produce an out by 10 error and whether syntax
checking as we propose would have blocked it.

Because there are many numbers to sample and the
probabilities of error are relatively low, the Monte Carlo
method has to be run for a long time to obtain accurate
results. Of course, the longer it is run, the more accurate
the results will be.

A plot of results from a typical Monte Carlo analysis
is shown in figure 3.

4.2.3. Exhaustive simulation. In Monte Carlo, target
numbers are chosen at random and sample the range;
in contrast, in exhaustive simulation, every number
from 0 † 01 to 99 † 99 in increments of 0 † 01 is treated
in turn as the target number. The analysis then exhaus-
tively considers every possible miskeying of the target
number and calculates the probability of producing
each erroneous entry. As before, the miskeyed entries
are marked as to whether they would produce an out
by r error (the program does not just consider out by
10 errors) and whether syntax checking would have
blocked them. Thus, by summing the probabilities,
it is possible to say what the probability of an out
by 10 error is for a given target entry, and also what
proportion of those errors would be blocked.

Data for selected values of e and k are given in table 5.
For particular values of k it is notable that differences in
e have only a small effect on the proportion of out by 10
errors that are blocked by syntax checking. Also, even for
what we believe to be very low values of k, syntax
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checking still blocks around a third of all out by 10
errors. Both the program and full data are available in
the electronic supplementary material.

4.2.4. Symbolic method. MATHEMATICA is a symbolic
mathematics system that can be programmed, but it
does not need to know values. For example, adding
p þ q þ p in MATHEMATICA will give the expression 2p þ
q as its result, whereas, in a conventional programming
language, specific numerical values would be needed for
both p and q before they could be added. The result in
a conventional language would be numerically equal to
2p þ q (within limits of precision), but would be a
number, not an expression as it is in MATHEMATICA. In
particular, in MATHEMATICA, values of p and q can even
be assigned later, for instance to plot a graph, whereas
in a conventional programming language, assigning
different values to variables later would not change a
previously calculated expression’s value.

In MATHEMATICA, we follow exactly the same pro-
cedure as in exhaustive simulation, except we do not

need explicit values for p or q, the probabilities of
keying error. The results are now formulas, for example
0 † 3e 2 0 † 062e2 þ 0 † 0061e3, here assuming k ¼ 10
(fixing k is not necessary, but simplifies the formula
considerably for illustrative purposes).

A disadvantage of MATHEMATICA is that it is slower
than Java, so we do not consider the same range of
numbers as in the two previous methods but instead
restrict the range to all values from 0 † 1 to 99 † 9 in
increments of 0 † 1.

To draw graphs, each possible number parsed is con-
sidered and its out by r value calculated. The
probability of each out by r value is accumulated
in bins. At the end of a run, the bins contain the sym-
bolic probabilities summed over a range (e.g. 9 † 995 $
r , 10 † 005) of out by r values. Figure 4 is an example
of plotting such functions.

4.3. Summary of findings

Detailed insights specific to the particular analysis
methods were discussed in the appropriate sections
above. The results confirm that an error-blocking
number entry system as we propose will reduce errors
and out by r errors in particular, because some keying
errors result in syntax errors that are given spurious
values on typical devices. Normally, reducing error
rates e by training or more careful checking becomes
increasingly costly the smaller e, but error blocking
has constant cost even as e goes to 0.

The probability of an out by 10 error of course
depends heavily on the basic rate of miskeying. Nonethe-
less, our analysis (by all three methods) indicates that
blocking invalid numbers results in roughly halving the
probability of an out by 10 error and that the reduction
is essentially independent of the underlying rate of mis-
keying. With reference to figure 4, we can see that the
graph is approximately linear for small e: halving e
approximately halves the rate of out by 10 errors.

Table 5. Out by 10 probabilities for selected values of e and
k. The table shows the probabilities of out by 10 errors
blocked by syntactic checking, generated from an exhaustive
analysis of errors when keying target numbers in the range
0 † 01–99 † 99 in steps of 0 † 01. The table shows clearly that
even with very conservative assumptions, over 30% of out
by 10 errors are blocked.

k

e 0 . 5 1 . 5 2 . 0 5 . 0 10 . 0

0 . 005 0 . 327 0 . 429 0 . 451 0 . 504 0 . 526
0 . 01 0 . 328 0 . 431 0 . 453 0 . 505 0 . 527
0 . 02 0 . 330 0 . 433 0 . 456 0 . 508 0 . 530
0 . 05 0 . 336 0 . 443 0 . 465 0 . 517 0 . 538
0 . 1 0 . 348 0 . 458 0 . 480 0 . 531 0 . 552
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Figure 4. Plot of probability of an out by 10 error against
probability of single key errors. As in figure 3, the solid line
shows the behaviour of a simulated real device, and the
dashed line shows the reduction in out by 10 errors by block-
ing syntax errors. The plot illustrates specifically how users
with a given e (here 0 † 1) have their effective error rate
approximately halved; since the graph is approximately
linear for small e, this improvement in out by 10 rate would
otherwise have to have been achieved by halving the user’s
keying error rate. The range of numbers covered in this plot
is 0 † 1 to 99 † 9 with k ¼ 10.

pr
ob

ab
ili

ty
 o

f o
ut

 b
y 

10
 e

rr
or

  →

0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

probability e of single key error  →

Figure 3. A plot of the probabilities of an out by 10 error and a
blocked out by 10 error as found in a 5000 sample Monte
Carlo method as a function of e for k ¼ 10. The solid line
shows the behaviour of a calculator-type device (all but the
first decimal point is ignored); the dashed line shows the
reduction in out by 10 errors by blocking syntax errors.
Note that at certainty of error (e ¼ 1), out by 10 errors are
not certain; this is because e measures keying error rates,
not out by 10 rates. (Some keying errors create numbers
that are out by less than 10.)
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5. DISCUSSION

Our proposed user interface design approach is (i) to
handle number entry consistently and (ii) to block
errors immediately, and this is clearly appropriate for
many applications. However, there are currently no
data on the situated effectiveness of this or of alternative
approaches.

Vicente et al. (2003) estimate the mortality rate for
avoidable user programming errors for a patient-
controlled analgesia (PCA) device to be 1 : 33 000 to 1 :
338 800 (by comparison, the mortality rate from anaes-
thesia is 1 : 200 000 to 1 : 300 000), with an absolute
rate of 65–667 deaths per year in the USA for a single
PCA model. A study by Lesar (2002) suggests that out
by 10 errors in medication dosing occur in 1 per cent of
hospital admissions and that 45 per cent of these result
in serious or severe outcomes. Although Lesar’s method-
ology involved pharmacy computers, he did not study
user errors with drug delivery systems, so these figures
underestimate number entry error in general.

Our approach, by approximately halving the prob-
ability of such errors, should have a valuable impact
in saving lives. However, it is also possible that protect-
ing users may encourage them to be more reckless; it is
possible that blocking a single error would create
anxiety or stress in the user that will increase their
longer term error rates (for example, if the device
beeps on detecting an error, it may make it embarrass-
ingly obvious that the user is making an error, which
may make the user more likely to make further
errors). It may even be that automatically correcting
erroneous input, even if not perfectly accurately, could
be more effective for reducing overall error rates.
Another possibility is that users would develop an
error-prone work-around to avoid blocking; for example,
rather than correcting , they might continue and
press, say, , thus getting the valid number form 4 † 09.
That would counteract the error warning, but almost
certainly would not correct the underlying error.

Given the importance and ubiquity of dependable
number entry, it is unfortunate that empirical evidence
one way or the other is simply unavailable owing to
inadequate device logs.

5.1. Supplementary approaches

The goal is to improve the reliability of number entry,
but the focus of this paper on the advantages of error
blocking does not exhaust useful approaches to improve
reliability.

Often, displayed numbers have constant digit spacing
regardless of any decimal point: for example, there is
little visible difference between 35 and 3 † 5 when dis-
played on standard seven-segment displays as and

; worse, has an expanded spacing, even though
there is no decimal point (see also table 4). Moreover,
the standard, small decimal point aligned on the baseline
is easy to obscure behind an escutcheon at poor viewing
angles. Given the importance of decimal points, they
should be made more salient. Safety-critical domains
should avoid seven-segment and other limited resolution
displays. If seven-segment displays must be used, it

would be better to display a symbol for the decimal
point, as in . It would be far better to use higher
resolution indicators.

Decimal points should be larger, as used in our dem-
onstration user interface and indeed as used throughout
this paper. Decimal points can also be animated (e.g.
displaying , , , in turn), or numbers could be
spoken back to the user in synthesized speech—which
would also allow the voice to say ‘no decimal point’ as
the case may be.

The international standard IEC 60062 defines a
generalization of a decimal point, replacing it with a
more-visible ‘radix point’. Thus, the conventional
4.7 kV (i.e. 4700 V) is written 4 k 7 V, replacing the
decimal point with the more clearly visible multiplier,
here the SI prefix k. The technique can be used with
any units.

For some applications, it will be important to con-
sider grouping (for instance, requiring a comma key as
recommended by the ISMP, though the space is the
appropriate SI symbol) as this will be likely to reduce
undetected keying errors significantly, but at the cost
of being unconventional. In some domains, appropriate
choices of multipliers (k, m, etc.) can avoid commas to
the left of the decimal point: requiring numbers to be
entered in appropriate units would provide a further
check that the number keyed is the number intended.

There are systems of ‘preferred numbers’. If numbers
are known to be restricted to certain values (e.g. 1, 2, 5,
10, 20, 50, . . .), then the interactive system can check
that numbers entered conform to those restrictions.
There are established systems of preferred numbers,
such as IEC 60063; for example, the E6 series (10, 15,
22, 33, 47, 68, . . .) has six preferred values covering
any value to within 20 per cent. So-called dose error
reduction systems typically restrict acceptable values
to lie between given pre-defined limits, and again facili-
tate further checks, provided the ranges themselves are
error-free.

Further methods can be found outside of technology;
thus, improved training for operators or procedures
such as buddy systems (i.e. where two or more operators
must first agree) would help. Human factors should not
be ignored: for example, tired users have higher error
rates. Implementing human factors ideas will reduce
the underlying rate of miskeying, but our method of
blocking, being technology-oriented, is independent of
and in addition to improvements to human factors—it
would still halve the probability of any out by 10
errors even after human factors considerations had
reduced e.

5.2. The tip of the iceberg

The problems considered here are also exacerbated in
that users typically rely on other devices such as calcu-
lators to first work out what numbers need to be
entered: numbers will be entered into a calculator or
spreadsheet and then different numbers will be entered
into another application, thus providing multiple
opportunities for slips. Calculators are depended on
by people who do not know correct arithmetic results,
and therefore users are unlikely to detect incorrect
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or idiosyncratic results. Yet, it has long been known
that calculators are badly designed and ill-defined
(Thimbleby 2000). Specific to number entry, typical
eight-digit calculators permit the apparent entry of
longer numbers without alerting users to overflow,
and hence cause out by 10 errors (table 4).

There are problems even in such simple number
entry areas as entering times: some digital clocks
permit any ‘time’ up to 99.99 to be entered, and some
crash when numbers are entered that are not valid
12-hour times (Thimbleby & Witten 1993).

This paper has considered only those errors where
users make keying errors within the set of numeric char-
acters, or that are due to late or premature termination
of a number. In general, however, user interfaces pro-
vide many other keys, and user errors may extend to
incorrect pressing of any key. For example, a user may
press the erroneous sequence then on a calculator,
but typically it will be parsed as having some ‘valid’
meaning, idiosyncratic to the particular make, model
and version of the calculator. The user may remain una-
ware of their slip, and therefore unaware that their
calculation is incorrect. More obviously, if the user sub-
stitutes one operator for another in a slip (e.g. keying
instead of ), the calculator simply performs an unin-
tended calculation. Normal general purpose calculators
are inadequate for any safety-critical application.

There are also alternative number entry mechanisms
that bring their own particular problems, again without
consideration of the certainty that users occasionally
make errors. Up and down arrows to increment or
decrement a value can have ‘wrap-around’—for
instance, if a number goes above a certain value, say
99, then it wraps back to 0. A single incorrect key
press drastically alters the value of what was entered
from what was intended. Even when numbers are
entered using a single press to cycle between preset
values, the design of a device can be such that it triggers
unseen changes in the device. Exactly this method of
number entry on a blood pressure monitoring machine
nearly killed a patient in surgery (Degani 2001).

Number problems are not restricted just to user
interfaces of interactive systems, but extend into the
programming languages that implement the interfaces.
Providing dependable number user interfaces requires
a reliable programming language to implement the
user interface in.

Consider, for instance, that in JavaScript
parseFloat(001.2.300) gives the incorrect value
1 † 2 with no error reported; and parseInt(000800),
as might be used to handle input from a user
trying to enter the month of August, gives the sur-
prising value 0, again without error. Java, another
popular modern programming language, has no
reasonable way to input numbers, and the methods
it does provide have ad hoc exceptions to what
they can handle (Arnold & Gosling 1996): evidently,
dependable number input was not a design goal.

Critically analysing programming languages would
take us beyond the scope of this paper, but suffice to
say that if the languages themselves are unreliable—as
they are—dependable user interfaces will be hard to
construct even for the most experienced programmers.

5.3. General purpose number entry and
what it should do

It is regrettable that there is not a standard number
entry algorithm available, with appropriate error hand-
ling, as at least part of the problem arises from
programmers reinventing number parsing algorithms
on a case-by-case basis and ignoring the complexities
of handling exceptions in their chosen languages.
Designing a standard algorithm that is robust in the
face of the defects of many programming languages
will be a challenging task.

Having detected problems, what should the interface
do with them? Under different assumptions, there will
be different trade-offs between ignoring certain user
errors, to correct some, and to warn of others. In
some domains, it will be reasonable to correct a user
keying to ‘0 † 3’, whereas under the ISMP rules, it
is not appropriate (what if the user meant 3 and the
decimal point was a slip?). The key trade-off is to bal-
ance what must be forbidden and what can be
corrected against the dependability and usability
requirements of the domain. A full discussion of the
trade-offs is beyond the scope of this paper, but clearly
any general purpose solution to number entry will have
to be configurable.

As an example of a different domain with different
rules, consider the numbers entered into personal
bank accounts, which never have more than two
digits after the decimal point. Although preventing
out by 10 errors is important, ‘out by r errors’ as such
are less pertinent to error analysis. Some bank cash dis-
pensing machines have a decimal point key that does
nothing, yet they show monetary values with two deci-
mal digits: users are expected to enter numbers always
followed by two zeros. ISMP rules do not apply to such
monetary numbers (for example, 3 † 50 is a valid mon-
etary value, but is not a valid drug dose because of
the trailing zero).

However, what is not acceptable, for almost all
domains, assumptions and trade-offs, is current
common practice: to ignore user errors and then act
unpredictably.

6. CONCLUDING REMARKS

We have shown that user errors are ignored or worse by
many number entry systems in user interfaces from
interactive devices to desk-top applications; in all
domains, this causes confusion and problems, possibly
leading to harm. Although many strategies can improve
error rates, such as better user training, our findings
suggest that improving user interfaces to prevent
badly formed numbers can halve the probability of
out by 10 errors. The improvement is available to all
users at essentially no further cost, since it does not
affect already correct number entry.

Further work is suggested. For example, we have
shown in this paper theoretical and engineering grounds
for improving number entry procedures. In ecological
settings, it is possible that error blocking will have
unwanted consequences. For example, operators think-
ing that a device is safer may take more risks, and
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some of those risks may result in consequences the error
blocking is unable to mitigate. Another possibility is
that blocking errors will increase stress (a ‘beep’
might embarrassingly draw bystanders’ attention to
the user’s errors), thus ironically increasing the baseline
rate of errors. Although it appears that blocking errors
as illustrated in figure 2 would be an essential improve-
ment in many contexts, exactly how best errors may be
blocked (audibly, visually, confidentially, etc.) in order
to achieve the best outcomes in the domain of use is yet
to be established with confidence. In practical terms, it
seems essential to develop a formal specification of a
better user interface for number entry (including
reliable logging), and it seems essential to devise practi-
cal ways of ensuring that systems conform to that
standard. The practical ways would involve formal
methods, code inspection, as well as error testing,
much as in this paper we tested the behaviour of devices
with . It would not be unreasonable to gen-
eralize the concepts to time entry, date entry and other
areas (e.g. social security numbers, surnames, post
codes, etc.) by using grammars, though to do so takes
us beyond the scope of the present paper.

At a far more basic level, very little is documented in
the literature about the types of errors people make and
the frequency with which they make them in any form
of number entry task. Even less is known about the
interaction of error rates with varying user interface
designs. Systematic gathering of number entry perform-
ance varying from experimental-style set-ups to
naturalistic observations would be invaluable in helping
to assess the causes and patterns of errors, and would
therefore suggest new ways to reduce errors, or to esti-
mate the harm caused and the economic or social
value of blocking errors as we propose.

One of the most strategic places to start to improve
number entry would be to improve the underlying facili-
ties provided in programming languages. In the short
run, libraries should be defined to provide definitive
and reliable number entry; in the longer run, new
languages should be defined to be dependable for user
interaction—it is astonishing that the designers of pro-
gramming languages are so keen on brevity and
backwards compatibility that dependability is know-
ingly sacrificed.

Although many systems such as Excel are scriptable
(i.e. they can be programmed by end users), it is
impossible to circumvent underlying dependability
defects simply by adding more code without having
appropriate built-in features: unfortunately, then,
many application programs will need major revision to
be more dependable (discussing the possible merits in
this regard for open source approaches is beyond the
scope of this paper). Certainly, programmers need to
be aware that dependable number entry is not a trivial
problem, and even the programming languages they are
using need careful checking.

While the flexibility and power of Excel can be con-
sidered a virtue, it is surprising that Excel and similar
programs do not have a mode where dependability (in
this case, WYSIWYG—‘what you see is what you
get’) can be rigorously enforced. Many programs, we
argue, could be improved by introducing an ‘honesty’

mode that restricts the features that can be used,
whether accidentally or deliberately, to limit the scope
for creating misleading results.

Users and their managers need to be aware that
number entry is not as dependable as is commonly
assumed: keying errors may remain undetected and
may result in erroneous numbers being processed with-
out warning. Independent checks should be used for
safety-critical number entry (this is a standard practice
in hospitals, where two nurses should independently
check calculations), but, moreover, the independent
checks should not be restricted to just the calculations
themselves, but must extend to the values actually pro-
cessed by the devices—to check whether the device
itself is registering the intended value. Our research
shows that commonly it may not be. Users and their
managers and, where appropriate, their legal represen-
tatives also need to be aware that device logs may
also be misleading.

Finally, we have provided a working demonstration
user interface that may be used as a model of
better practice for more dependable interactive
number entry.
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