
rsos.royalsocietypublishing.org

Research

Accepted article
in press

Subject Areas:

Computing

(bioinformatics, medical computing, etc)

Keywords:

Interactive system,

Numbers & numerals, Human error

Author for correspondence:

harold@thimbleby.net

Interactive numerals
Harold Thimbleby,1 Paul Cairns2

1 University of Swansea, Wales, SA2 8PP
2 University of York, England, YO1 5DD

Although Arabic numerals (like “2016” and “3.14”)
are ubiquitous, we show that in interactive computer
applications they are often misleading and surprisingly
unreliable. We introduce interactive numerals as
a new concept and show, like Roman numerals
and Arabic numerals, interactive numerals introduce
another way of using and thinking about numbers.

Properly understanding interactive numerals is
essential for all computer applications that involve
numerical data entered by users, including finance,
medicine, aviation and science.

1. Introduction
This paper introduces the new concept of interactive
numeral. Interactive numerals highlight a wide range
of hitherto unnoticed issues with entering and using
numbers reliably with interactive computer systems. The
reach of the concept is very broad, covering calculators,
spreadsheets, medical devices, computerised forms, web
sites, airplane cockpits — in fact, all forms of numerical
data entry system.

Interactive numerals highlight common avoidable
defects in many interactive systems where people use
numbers. Incorrectly implemented interactive numerals
cause subtle and sometimes critical problems. A proper
understanding of interactive numerals should help
researchers identify related problems and seek suitable
solutions, as well as help practitioners recognise design
problems and to decide on effective responses to
problems: whether re-implementing systems, training
users, upgrading or replacing or even banning the
systems.

Understanding interactive numerals makes error
management more reliable: deciding what to do after
an error has occurred requires understanding the root
causes of the error. In particular, until interactive
numerals are properly implemented, using data logs in
investigations of alleged user error is unreliable (devices
tend to record what they do, not what the user tells them
to do).
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This paper shows that poorly implemented interactive numerals are surprisingly widespread;
even systems developed by the world’s leading programmers are not immune. In hospitals —
to take just one example of a critical application of interactive numerals — clinicians routinely
enter drug doses and radiation doses into interactive systems, where numerical errors can be
fatal and are often treated as criminal. It is therefore important to properly understand interactive
numerals and any limitations they have in current systems. Indeed, this paper shows that many
numerical errors are caused, not by users, but by the poor design of the systems. We will present
some worrying examples taken from a wide-range of systems in the body of the paper.

The implication is that interactive numerals are not well understood; this paper aims to correct
that. This paper provides an analysis that should help everyone appreciate the causes of the
problems and the limitations of current interactive systems. The aim is to begin to move towards
more robust implementations of numbers in all digital devices, systems and services.

2. Numbers and numerals
We take it for granted that 2016 and 3.14 are numbers, but strictly they are numerals, ways of
printing or writing number values. When we see 2016, we may think of a particular number, but
what we see is not the number but strictly speaking it is just various ink patterns that we interpret
to represent a numerical value. More specifically, the four ink patterns “2016” make up an Arabic
numeral, just like “two thousand and sixteen” makes up an English numeral, and MMXVI is a
Roman numeral. Note that the same number can be represented by many different numerals, and
even by many different Arabic numerals (thus 003.14 is equal to 3.14, though 3.1400 is generally
not considered exactly the same as the number represented by 3.14 because it is more precise).

We now think of Roman numerals as being rather awkward. For example, the Romans had
no sensible way of writing 3.14, and Roman numerals seriously limited how people could use
and think about numbers. Nevertheless, after Fibonacci introduced Arabic numerals to Europe
around 1200 [1] it still took centuries for Arabic numerals to become more popular: people were
attached to the familiar, and anyway many people used counting boards and other devices for
everyday arithmetic.

Today we are facing a new transition, we argue as dramatic as the move away from Roman
numerals to Arabic numerals. We call the new way of thinking about numbers interactive
numerals.

As well as popularising decimal positional notation, Arabic numerals transformed arithmetic
by introducing the cipher, an explicit symbol for zero. Arabic numerals, however, cannot
distinguish between no number and zero, as “no number” has no valid Arabic representation.
It turns out that this and many other subtle problems are rife in interactive computer systems —
and often cause problems that are hard for users to understand or avoid. Interactive numerals
help us think clearly about such issues, and — properly implemented — directly address such
issues, as we will show in this paper.

Arabic numerals, which we are now very familiar with, are written down usually on paper
or displayed on screens and then we read them as numbers. Interactive numerals look much the
same but, unlike Arabic numerals which are only read and used after being written, interactive
numerals are read and processed by a computer that has to represent them (at least on the screen if
nowhere else) as they are being written. Thus interactive numerals consider the process of writing
down a numeral, corrections and all, not just its final form as a fully-fledged numeral. As a special
case, interactive numerals handle the case of no numeral yet written. In contrast, nothing yet
written is impossible to represent correctly as an Arabic numeral since it has no digits.

Imagine typing the number –0.5 into a computer; unlike the traditional piece of paper, the
computer has to make sense of each and all of the intermediate steps as we type – , then 0

then • and so on. This raises many subtle problems. For example, – itself is not a number at
all, and –0 is strictly equal to 0. Yet the computer has to decide how to represent the interactive
numeral at every step, even before the user has finished entering it. In many cases, as we will
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show, the computer makes premature decisions about the representation that also change the
meaning of what is being entered.

Interactive numerals occur everywhere users enter numeric data into computers. Put very
briefly: the problem is that not all interactive numerals are Arabic numerals, but assuming they
are — which is a common conceptual error — leads to problems and use errors that are very hard
to recognise, let alone correct. Indeed, in our early work [2], where we noticed there was a problem
but had not fully grasped its extent, we did not make a sharp distinction between numerals and
numbers, and we fell victim to some confusions ourselves. The new contribution of this paper,
then, is not just bemoaning the problem, but providing a formal framework wherein problems
can be identified and solutions can be worked out.

Unfortunately, as we will show, problems with interactive numerals are widespread. When
mathematicians, programmers and scientists notice and can reason about these problems and
hence seek solutions, every user (and their work) will benefit — even if they do not notice any
changes.

3. Definitions

(a) Numeral
Numerals are sequences of symbols that follow agreed conventions for interpreting them as
number values. In this paper, we consider digit-based systems of numerals for representing
numbers rather than, say, counters or linguistic word-based numerals like English phrases.

Given a set of symbols S, generally called digits, a numeral is a non-empty string of symbols
S+ together with a surjective function N that maps each string to a numeric value. Typically, N
can be expressed explicitly in a simple arithmetical way. Note that special symbols, such as π ∈ S,
may or may not be considered numerals depending on the context.

For example, conventional binary numerals can be defined:
· · · binary digits are the symbols 0 and 1:

S = {0, 1}
· · · binary values are natural numbers {0, 1, 2 . . . }:

V =N
· · · a functionN converts binary numerals of at least one digit to natural number values:

N : S+→ V

· · · the value of the numeral st is twice the value of the numeral s plus the value of the final digit t:

For s∈ S+ and t∈ S,
N [[st]] = 2×N [[s]] +N [[t]]

· · · the value of the single digit numeral 0 is the natural number zero:

N [[0]] = 0

· · · the value of the single digit numeral 1 is the natural number one:

N [[1]] = 1

There are trivial generalisations so S can include signs (+, −), radix points1 and digit block
separators (e.g., the space or comma), and of course generalising to other bases than 2 is trivial.
Further notation may be used to represent precision, choice of base, and so on [3].

B SinceN defines an equivalence class, if for two numerals x, y we haveN [[x]] =N [[y]] we
tend to say x equals y or even that x is y. It is therefore common and very easy, and
frequently harmless, to confuse numerals and numbers.

1‘Radix point’ is the generic term for decimal point, without regard for the base of the numeral. This paper generally uses the
term ‘decimal point’ because of its familiarity, but without implying any loss of generality.
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Now, depending on howN is implemented (programmed) from its specification above, it can
interpret a numeral like 11.1 in different ways:

N [[11.1]] =



1 (by stopping at the radix point, reading from the right)
3 (by stopping at the radix point, reading from the left)
7 (by ignoring the radix point)
9 (by using “subtract ASCII code of 0” to get values of symbols)
guarded so it cannot occur
undefined
report an exception
excluded by type checking at compile time, since S cannot contain ‘.’

but in no case will it have the “obvious” value of 3.510 (11.1 in binary is 3.5 in decimal), at
least if sensibly refined from our explicit specification above. This is obviously something of a
toy example, but it highlights that any implementation of evaluation on a computer has to make
explicit things so the computer can do them that are not necessarily explicit in the specification.

One fundamental implementation problem that is unavoidable is that computers, being finite,
cannot implement the natural numbers, N (let alone the real numbers, R etc), correctly. At the
very least, any implementation of numerals must decide how to limit the infinite and, if done
well, how to minimise and manage the impact of the ensuing errors. (Using arbitrary precision
numbers would obviously help.) Implementations that neglect the impact of such fundamental
problems are, as we will see, likely to cause severe problems.

(b) Interactive numeral
The definition of numeral, above, takes a numeral to be a fixed entity that denotes a numerical
value. In contrast, an interactive numeral includes the process intended to create a numeral. In
other words, an interactive numeral additionally specifies the procedural implementation of a
numeral, in contrast to the conventional purely declarative specification of an ordinary numeral,
which abstracts away from the process of construction.

An interactive numeral may therefore be defined by a vector of string buffers bi ∈B, an
initial contents b0 = d (sometimes called the ‘default,’ possibly the empty string), a set of actions
A : B × N→B to modify buffers: i.e., the action a on buffer bi gives bi+1 = a(bi, i), together with
a surjective function Nint to map buffer strings to realisable numeric values V ∪ E including
exception and other conditions E. Buffers generally have associated invariants, for instance on
their length, e.g., ∀i : 0≤ |bi| ≤ 8.

An implementation will usually optimise buffers into a single object, such as a string,
and update it on each action rather than creating a new buffer each time. In many incorrect
implementations of interactive numerals, buffers are optimised directly to a numeric value, which
of course cannot correctly represent exceptions (such as entering too many digits or numerals with
as-yet incorrect syntax).

For example, pressing the digit 1 is an action that will create a buffer bi+1 = bi1 by appending
1 to the previous buffer bi. However, if bi is too long, then 1 cannot be appended, and some
exception condition will be flagged (or be ignored or be handled inappropriately) and typically
we will have bi+1 = bi (for some i). Interactive numerals may additionally having timed actions,
so for instance if there is a timeout (e.g., when “no other action occurs for 1 minute”), then
typically bi+1 = d.

A realisable value is an implementable representation of a numeric value; for example, for
a cash machine (ATM) it may be 10n, n∈N : 1≤ n≤ 25; or it may be an IEEE 754-2008 floating
point number, with or without rounding and exceptions. In contrast, for a conventional numeral,
the range of valid numerals and values are rarely if ever explicitly specified. While IEEE floating
point has peculiar properties that may “leak” into the user interface (we give examples below),
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arbitrary precision reals do not avoid problems as the buffer invariants cannot be broken, and in
any case buffers are not required to be real numerals (e.g., because of syntax errors).

Often there are conventional actions, such as an action OK ∈A to “submit” a buffer (and
perhaps leave it unchanged); an action to clear a buffer C (bi, i) = d; and so on. When actions
can include mouse movement, ← , → , UNDO , and DEL the buffer is generally refined to include
pointers or stacks. In any case, note that A must include every possible action, not just a small set
of conventional digits — the set A has to cover the possibility that the user can do anything. If the
user presses a non-numeral like the space bar, what should happen? In particular, we cannot rely
on type checking (as might forbid the example of N [[11.1]] above) because every input is valid —
type checking does not control what a user does.

In short, an interactive numeral includes how the numeral is dynamically created, giving
it a continual interpretation, including for all its intermediate representations and exception
conditions. In contrast to numerals, then,Nint for interactive numerals is complex — its definition,
even without the algorithm, is far more complex than a conventional numeral. We therefore do
not show a specification ofNint here.

B Since numerals “are” numbers in common thinking (see note in section 3(a) above), it is
very easy to turn a blind eye to the daunting complexity ofNint, considering it instead to
be effectivelyN , and therefore gloss over considering all the exception cases. This is a
tempting category error, and one with consequences this paper explores.

(c) Quasi-numerals
Strings of symbols that look like numerals are frequently used in contexts that might be
considered more strictly to be names or identifiers. We call these quasi-numerals.

Bank account numbers and book numbers (ISBNs) are examples of quasi-numerals. Despite
commonly being called numbers, arithmetical operations (such as doubling or adding one) make
little sense with such numbers. In other respects, however, they behave very like interactive
numerals. They are entered as digits and have a structure, and the value denoted must fall in
a particular range to be valid. In fact, the range of correct values may be highly constrained by
hidden arithmetic operations that specify a check digit as part of the numeral. (Incorrect check
digits should cause exceptions.)

But bank account “numbers” do not denote members of a set of conventional numeric values
like N, despite being countable. Similarly, many strings of symbols that are not just digits, such as
passwords or people’s names and social security numbers, are used in a similar sense of denoting
members of sets. The decision of what is a digit and what is not within any character code is an
arbitrary convention (e.g., is 0 a digit or a capital letter?), so inevitably the boundary between
numerals and general strings is blurred.

The user interfaces that permit quasi-numerals (bank account numbers, car registration
numbers, personal ID numbers, and so on) to be created are very similar to the user interfaces
that permit interactive numerals to be created. Sometimes, and confusingly, the user interfaces
are identical. Therefore there is considerable and interesting overlap in design issues across the
various types of numeral and quasi-numeral. In the present paper, however, we are particularly
concerned where, somehow, the user interface must preserve relevant arithmetical properties of
the numbers the interactive numerals are taken to represent. There is a large area of concern where
the natural conception — the user’s natural conception — ofN should be very simple but in fact
confusingly fails to be so.

(d) What interactive numerals are not
Interactive numerals arise in many areas and applications, from web pages, spreadsheets, to
handheld calculators, as well as in special purpose instrumentation, burglar alarms, medical



6

rsos.royalsocietypublishing.org
R

.S
oc.

open
sci.

0000000
..............................................................

devices, and more. However, it is important not to confuse interactive numerals for the
applications that use them. In many areas the applications blur the distinctions, which plays into
our natural tendency to equate numerals and numbers.

Spreadsheets make the problems particularly acute. A cell in a spreadsheet can certainly allow
the user to enter an interactive numeral. However, the number value it finally denotes depends
on the formats and formulae in its and other cells. For example, if the numeral “5.5kg” is entered
in Microsoft Excel, if it is subject to the operation SUM it has value 0, but subject to PRODUCT it
has value 1.2 Furthermore, if the numeral entered is “1.” it will typically be displayed as exactly
1, without a decimal point. These interactions are complex to explain in adequate detail, and can
be confusing traps for both spreadsheet implementors and users.

Another area of confusion is with calculators, which come as basic calculators (left-to-
right operator precedence), so-called “algebraic” calculators that respect conventional operator
precedence, and reverse Polish notation (RPN) calculators. In all forms of calculator the issues of
interactive numeral are very similar; however, the main differences between types of calculator
are in arithmetic expression parsing — which is independent of interactive numeral treatment.
In particular, while RPN calculators are popular among certain communities, they have serious
problems that interfere with their otherwise consistent arithmetic parsing: the RPN stack is
generally limited to a small size, and stack overflow has undefined effects [4]. Such complex and
invisible problems, in our opinion, eclipse their alleged benefits.

(e) Other forms of numeral
There are many generalised types of numeral, “things that denote number values” — such as dice,
dials, increase/decrease chevron buttons, speech, clocks, counters, etc [5], as well as names (such
as month names denoting month numbers) — but the focus of this paper is on the dominant case
of left-to-right sequential typing, canonically typing and entering conventional Arabic numerals
to specify numeric values for interactive devices, computer programs or other applications.

We note that sensors may be considered a broad generalisation of numeral for when physical
or other processes rather than humans define numeric values. Clearly, to measure a temperature,
either a thermal sensor can be directly connected to a computer, or a human can use a
conventional thermometer and enter a numeral denoting the temperature that has been “read
off” numerals shown on the thermometer. Sensors, however, often employ numeric transforms
such as low pass filters to improve measurement dependability.

4. Problems with interactive numerals

(a) Ubiquitous examples from calculators
One of the best inventions of computers is the delete key, which allows us to correct mistakes.
Suppose you want to enter 0.5 but you mistakenly enter 0 • • 5 , with two decimal points.
You will want to correct this error. But try this on almost any calculator, and you will find that
the calculator has already “corrected” your error: it has decided you entered 0.5 before you have
even started correcting it. Ironically, that means if you do correct the error, you will make things
worse, perhaps entering 5 instead. The computer decided what you were entering before you had
finished entering it; it ignored the second decimal point, which then made correcting it counter-
productive.

The computer (or, rather, the computer’s programmer) wants to ensure syntactically correct
numerals so they can always be represented as simple number values along with allowing you
2Excel’s (v15.30 for OSX) PRODUCT calculates the product of a set of numbers. Curiously, if the set only contains 5.5kg, etc,
the product is zero, but if there are “conventional” values as well in the set, like 32, then the PRODUCT operation treats 5.5kg
as 1.0. The documentation for PRODUCT is incorrect too: “You can also perform the same operation by using the multiply
(*) mathematical operator; for example, =A1 * A2.” But * does not implement the same operation, as it gives #VALUE!
when PRODUCT behaves as described above. This suggests that Microsoft has lost track of the semantics of their interactive
numerals.
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(a) Apple iOS (b) Apple MacOS pane (c) Apple MacOS app

Figure 1. Three contemporaneous calculators, all the latest versions as of August 2016. As explained in the paper: (a)

The error in the iOS calculator occurs when the user tries to enter ± under some circumstances when it displays –0; it

ought to display 0, not Error. (b) NaN occurs when the user tries to enter ± under some circumstances when the MacOS

calculator displays 0; it ought to display –0. (c) A 40 digit number entered by the user and displayed in the MacOS app

calculator is impossible to read, being about 1mm high on the original screen. The calculator displays only some of the

least significant digits of the number, so the display is misleading even when it can be read.

to correct them with delete. Specifically, the computer is programmed to display a valid number
because that is how the value is represented internally (e.g., as a floating point number). But
numbers cannot represent all interactive numerals: for example, nothing with two decimal points
has any number value to represent it, but it can be corrected to be a valid numeral. It follows
that trying to do both leads to unreliable and inconsistent behaviour. This is a problem, one
of “premature semantics”: computers generally try to treat the user’s errors as valid numbers
too soon when no sensible numerical meaning can or should be assigned to them at that point.
Premature semantics is explained more fully below, in section 5(a).

B It may be argued that a user might have entered 0 • • 5 intentionally, for
instance because they know how the user interface works, and pressing decimal point
twice increases the chance it has been correctly pressed at least once. If so, what is the
problem? The problem is that the programmer has prematurely committed the user’s
probable error to be a valid number, and the error and its consequences are now
unknown to the user. The programmer does not know what a user intends, and an error
is usually indicative of a failure to carry out an action as intended. For example, the user
may have intended to enter 0.05, but because the 0 and • keys are close, the • key
was pressed accidentally. The programmer has no idea. Throwing away information on an
assumption is dangerous, and avoidable.

If you set out to enter –3 on the Apple MacOS v10.11.6 calculator, the key sequence AC ± 3

leads to the result of 3.3 The change sign is probably ignored because –0 did not seem meaningful
to the designer: –0 is equal to 0, which is what is displayed, so the change sign key had no effect!

And if you make a mistake, say typing ± 3 ± DELETE ± you get NaN (on MacOS),
which means Not a Number. NaN is an internal value representation (e.g., defined in IEEE floating
point standards) that means nothing to non-technical users — clearly, displaying it to general
users is a fault in the calculator itself: it has ignored an error, and its number representation code
has failed to display it as either a number or as an error message.

3Similar problems are ubiquitous across many devices and applications. In this paper, we present some initial examples from
Apple calculators, though figure 2 shows problems are not limited to Apple. Apple have a leading reputation for high quality
user interfaces, and also develop across several distinct and widely-available platforms. We provide version numbers so
results can be easily reproduced.
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Figure 2. Google’s Android calculator calculating 5/6 = 0.8333 . . .. In the right-hand image, scrolling the answer left/right

produces a bizarre multiplier (E–17, presumably meaning ×10−17), and a hidden decimal position (off the left of the

screen and out of sight), thus resulting in a meaningless result. (Compare with the Apple calculator’s use of reduced font

size shown in figure 1(c); neither approach works correctly for the user.) Screenshots provided by Martin Atkins.

Typing AC ± DELETE ± DELETE crashes Apple’s iOS v9.3.3 calculator (the effect of DELETE

on iOS is achieved by swiping the finger left/right across the numeric display). But the same
sequence displays 0 on both Apple’s MacOS calculators (the standalone app and the notification
pane calculator).

Keying AC 8 9 ± DELETE gives –8 (MacOS pane calculator) or –89 (MacOS app
calculator). The key ± is handled differently too: on iOS, AC ± 8 9 gives –89 but on
MacOS it gives 89 on both calculators, but AC 8 ± 9 gives either –89 or 9.

So three modern calculators from a leading manufacturer that are clearly designed to look the
same, which all have the same “look and feel,” and therefore would be expected to be identical
in behaviour all implement the same actions differently — and all behave incorrectly by any
standard interpretation. Arguably they should be consistent, even if we disagree about what
should be correct behaviour.

Evidently, handling interactive numerals properly is problematic. It is surprising that
calculators, which have had their current form for over 40 years, are still implemented
inconsistently and incorrectly. Defects of this sort are rife in all data entry devices, not just
calculators.

Cut and paste, like delete, is a basic feature of modern computers: in particular, typing text
and pasting text typed elsewhere should be interchangeable. The Apple calculators, however,
respond to pasting differently. If you type AC then 2 + 3 = , all calculators will display 5
correctly. If instead you paste 2+3=, the calculators respond differently: iOS and MacOS pane give
2, but the MacOS app calculator gives 23 (though it gives 2 if 2–3 is pasted, so + and – are treated
differently). None report an error or give any indication that keystrokes are being adjusted or
discarded. But cut and paste can be done correctly: in the Windows 7 calculator v6.1, for instance,
pasting “2+3=” produces a 5 in the display.

To give another example from Apple’s calculators: typing AC 9999999999999. . . , a number
almost as large as you like, will display as exactly 999,999,999 (that is, 9 digits on the iOS and pane
calculators) and then doing + 1 = will display 1e9 (i.e., meaning 109) which is wrong as the
correct answer is much larger. However, on the Apple MacOS app calculator, as larger numbers
are entered they get displayed in progressively smaller and smaller fonts, and finally become so
small they are completely unreadable. Then pressing + 1 = , as before, the large number is
presented in a clear full-size 1E43 (or whatever). In other words, the calculators can display large
numbers, but not when the user enters them directly!

Note that E and e are different notations, and in fact neither are the standard mathematical
notation. In standard notation, 1E43 or 1e43 should be written 1043 or more generally, a number
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(a) Invalid numerals entered as data (b) Apparently valid result

Figure 3. Screen shots from QRISK2, a clinically-validated risk calculator, available at www.qrisk.org. Note that no errors

are reported by QRISK2, so the user may be unaware of any problems, and then will act inappropriately. These screen

shots were taken in October 2016.

like 2.3E43 (or 2.3e43) would be written 2.3× 1043, which all of the Apple calculators, with their
high resolution displays, are technically able to display.

Curiously, when the iOS calculator is turned sideways (to make it landscape) it becomes a
scientific calculator and the user can then enter large numbers directly — except using a key
labeled EE , not E . One speculates because having two very similarly named keys, namely e

(the base of natural logarithms) and E (raising to a power of ten), would have been thought
to be too confusing. We would argue, then, if the key names would be confusing, this is another
reason not to use the non-standard notation E (or e) at all in numerals!4

Although we have used Apple for the concrete examples above, other leading manufacturers,
such as Casio and Microsoft are not immune to these problems. It seems that before clarifying the
concept of interactive numerals (as we do in the present paper) or equivalent, nobody thought
about these details, probably since numeric data entry seems trivial and does not require much
thought to seem to get working. But interactive numerals are not obvious and there has been a
failure to learn and employ rigorous computational thinking throughout design — apparently
nobody considered it necessary! The result is that there is no standard approach. Swapping one
calculator for another will give different results for exactly the same calculation, and (as we have
shown elsewhere) there are many other bugs in calculators as well [4]. It is dangerous.

We note that people use calculators primarily because they do not know or are not certain of
the answers, so bugs in calculators are very hard for them to spot and work around.

B Though these details may sound like nit-picking, they have real effects. For example,
two students narrowly avoided death after an incorrect calculation performed on a
mobile phone [6].

Doing a calculation more than once, and in a different way remains good advice, not just because
it helps protect against user error but it also helps protect against design error.

(b) Medical examples
We have elsewhere given examples of medical devices with interactive numeral problems [7–11,
etc] too. Another example, shown in figure 3, is taken from a “clinically validated risk calculator.”
Evidently, clinical validation is not sufficient to check for the sorts of interactive numeral errors
that are shown in the figure — which of course could undermine any clinical value of using the
calculator.

Screen shots from an award-winning app are shown in figure 4. The figure shows the problem
of interactive numerals getting too large for their display regions; what is apparently display as
a patient weight of 60 kg is much larger, but the value is too large to fit in the small display. The
app should not allow numbers to overflow their input fields, because they are ambiguous when
they do. The result will be confusion, hopefully noticed by the user, and potential patient harm.
4E and e are commonly used interchangeably in decimal numerals in programming languages to mean power of ten, so
programmers may already be comfortable with the notation, but this does not excuse carrying over a programming notation
into a general-purpose user interface notation, especially when it so obviously creates knock on problems for the user. Most
users aren’t programmers.
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(a) Weight of patient in kg (b) Calculated dose, from screen shot
Apparently 60kg is displayed The huge dose is clearly incorrect

Figure 4. Screen shots from Mersey Burns, a multi-award winning app. The app is available from merseyburns.com. In

this example, no errors are reported by Mersey Burns so the user may act inappropriately from the advice displayed.

Here, the calculated dose looks very obviously wrong (the first 7:54 hours dose is over 109 litre per hour, compared to

an average adult blood capacity of 5 L): evidently the app does no or inadequate validation and sanity checking. More

generally, less obvious errors may be missed by clinicians using this app, with potentially harmful effects. Note that Mersey

Burns is used for treating burns victims — who may be in considerable pain, and whose treatment will be urgent — so

what may seem obvious to us calmly reading this paper may be easily misinterpreted under real clinical conditions. Screen

shots taken in November 2016.

It is interesting that despite the obvious programming problems, as illustrated in the figure,
the app not only won prizes but is well-known for being the first British “CE marked” medical
app. CE marking is a European legal mark, here meaning that an app is approved for clinical use
in Europe, so evidently the CE approval process failed in this case to adequately check interactive
numeral processing. We know many other problematic medical devices that have CE marks [7–12,
etc], so this implies the CE marking process is flawed as it overlooks serious design defects that
may adversely affect patients.

(c) Banking example
In 2007 Greta Fossbakk lost 500,000 Norwegian Krone (the then equivalent of about US$100,000)
due to an interactive quasi-numeral bug, a problem that still persists in many bank systems [10,
13]. Fossbakk keyed in an extra digit in an account code that, despite making it an invalid account
number, was not caught by the online banking system (see figure 5). Her bank argued that she
could not prove that she keyed twelve digits — as with other user interfaces this paper discusses,
it seems to be no coincidence that the user interface does not log what the user does, which is to
the bank’s advantage. Olsen’s [13] experiments with users entering bank account details suggest
that 0.2% of all interactive bank transactions will suffer from a similar (unnecessarily) undetected
error: given the scale of internet banking, this is a huge unnoticed problem.

Apart from not silently truncating numbers, the problem would also be reduced if numerals
are displayed with separators (spaces, dashes, etc), breaking the digits up into groups thus
making them easier to read and, indeed, easier to type correctly. Thus, because the computer
system failed her, Fossbakk alone had to notice the difference between 71581555022 and
71581555502; this would have been much easier if the numerals had been displayed as
715-815-555-502 and 715-815-555-022, which are more obviously different. Indeed, it is concerning
that credit card numbers are usually displayed with account numbers split into chunks, but user
interfaces typically delete the gaps thus deliberately making the numerals much harder to read,
type and check.

Problems with interactive numerals are widespread, and users like Fossbakk are often
penalised for design failings. We suspect that manufacturers are in denial for a combination
of reasons: they do not explore the issues because of an unfortunate interpretation of product
liability (they do not want to discover any problems that may be their fault) and by assuming
their “competent” programmers would never make mistakes over something so “trivial.” And of
course, logging exactly what users do and exactly how systems respond to them would expose
manufacturers to the truth, which may work against them in court.
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Fossbakk’s daughter’s account number 71581555022
What Fossbakk keyed 71581555 5 022 (inserting an extra 5)

What she saw: numeral truncated to 11 digits 71581555502
. . . which has the correct check digit

Figure 5. Fossbakk used her bank’s user interface to transfer money to her daughter’s account. Unfortunately she double-

pressed a key, resulting in a longer account number. The user interface truncated the number, thus obtaining another, but

valid, account number. Thinking she had keyed the correct number, Fossbakk confirmed the transfer, despite it being to a

differently-named account, which apparently was not displayed, checked or confirmed. Details taken from [13].

(d) IP numbers
IP numbers (both IPv4 and IPv6) are made up from blocks of digits. IP version 6 numbers are
blocks of 4 hexadecimal digits separated by colons. Each block can have leading zeros suppressed,
so 0012 and 12, for instance, would be treated as identical.

In 2011, Nigel Lang was arrested for downloading illegal material onto a PC owned by his
wife. The police had added an extra digit onto somebody else’s IP number, obtained his wife’s
physical address, then assumed he had committed an offence (males are more likely to commit
internet offences). His arrest and subsequent stigma ruined Lang’s family life. Fortunately his
efforts to defend his innocence eventually resulted in a settlement of £60,000 from the police for
making the errors [14], which made him and his family suffer considerably.

It is alarming that a single digit error in a user interface can have such unchecked consequences
— as well as taking over six years to resolve. If nothing else, the design of IP numbers (strictly,
IP numerals) and IP user interfaces used by the police (and others) shows little maturity about
human factors, such as using check digits (which are common on ISBNs, bank account numbers,
etc).

(e) Forms
Forms often include interactive numerals. In addition to problems with individual interactve
numerals (which are generally as discussed above), forms often impose contraints on the relations
between some or all numerical values they allow, as well as how they can be entered.

For example, dates may be entered on a form as a triple of numerals: the day number,
the month number, and the year number. If the user edits the date 12/30/17 (representing 30
December, 2017), say, to 2/28/17 (perhaps starting by deleting the first 1 in 12/30/17) there are
possible intermediate values that are not valid dates (such as 30 February) — yet the user interface
must permit editing to allow the date to be corrected. Many (bad) forms force the user to make
a circuitous edit so the date is always valid; if so, this is a case of premature semantics, which we
discuss more generally in section 5(a) below.

We note that, as with many interactive numerals, it is rarely possible for a user to save a form
before it is valid. For a single interactive numeral, this may be a useful precaution as “saving” and
“acting on” a single value are closely related and perhaps too easily confused, but with a form the
user may be inhibited from saving many values (such as names and addresses); in this case, the
imposition of premature semantics seems to us to be a serious step backwards from paper forms,
which of course save the user’s work continually regardless of its validity.

(f) Discussion
Though the examples come from diverse contexts, the problems can fall into one of two types:
problems of construction and problems of representation. Interactive numerals are constructed
by the user but as they are being constructed they are also being interpreted by the system, at
the very least so they can be represented in the display. People, though, make mistakes and so in
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the process of constructing interactive numerals they can be expected both to make mistakes
and to try to correct those mistakes. Mistakes are also made by programmers — typically in
unconsciously assuming that the input of numbers is trivial.

In the case of Fossbakk, the mistake was not detected by the computer even though it could
have been. In the calculator examples, unlike bank accounts, it is not possible to know what
numbers or sorts of numbers are intended by users, but it should be expected that users will
attempt to correct mistakes they notice. However, as we showed, the use of standard features like
using the delete key, which is supposed to help can, ironically, lead to confusion.

These are serious problems. In our experiments [15,16] we have found that users regularly
enter numbers incorrectly and nearly 4% of the time do not notice. (If you think this rate is high,
then that is because you are not noticing your own errors, and you mistakenly think the rate
should therefore be lower.) Some novel styles of entering numbers can reduce the error rate to
experimentally undetectable levels [17].

We note that standard texts on human factors and error (e.g., Reason’s classic error taxonomy
[18]) rarely discuss noticing error, and hence rarely note the important role that computers
can have in helping users notice (and hence correct or manage) numerical and other errors,
particularly because computers could in principle help notice errors and, in particular, help notice
many sorts of errors humans are poor at noticing (such as errors in check digits). Insidious
cases like those discussed in [19] about radiotherapy computer systems show that numerical
and calculation errors caused by mixes of poor programming and innocent use error can persist
unnoticed for decades, and hence affect thousands of people.

Other common methods of construction, such as cut and paste fail to alert the user to
interpretations of what was constructed that deviate substantially from what was pasted.

The problems of representation are unavoidable for interactive numerals because the numbers
must be represented and are unbounded but displays are finite. Either a display truncates
the interactive numerals leading to incorrect values or attempts to display them leading
to the problems of unreadable displays as seen in both calculators and medical apps. The
representations also fail to match with existing mathematical notations and moreover do not
allow users to use such notations in a consistent way.

The conclusion from these various examples must be that this is not simply manufacturer
sloppiness so much as interactive numerals are deceptively different to standard Arabic numerals;
they are a newly identified and surprisingly complex phenomenon.

Indeed, realising that interacting with numbers is complex and a serious design challenge [2]
(issues we now recognise as falling within the scope of interactive numerals), we have sought
and found various ways of reducing the error rate [20,21] — ways that would be invaluable in
critical applications such as finance, avionics, and medicine. Because we can reduce error rates
with improved approaches to interactive numerals proves that current accepted ways of entering
numbers are unnecessarily unreliable.

The science of interactive numerals (and other classes of user interface design issues) has not
been extensively studied, particularly in the HCI (human-computer interaction) field, which one
might feel would be its natural home. In contrast, say, to the widespread activity in security [22],
this lack of attention seems remarkable (CHI+MED is an exception [23]). Why? Although the
final outcomes of security problems and safety problems may be broadly indistinguishable, there
are interesting cultural and economic differences. For security, there are many outsiders who are
known to be bad, and therefore defending against them is expected; investment in security (and
hence investment in security research) make sense. In contrast, for safety, there are insiders who
are expected and often required to be professional; blaming the user is then an easy option as the
user has apparently failed to do a good job — they are the proverbial bad apple. For safety, then,
it often seems the user has failed rather than the system. Hence little investment or research is
demanded for user interface safety.

Since poor interactive numeral design induces use error, we hope accident and other
investigators will consider it as a possible cause of incidents, and thus we hope this paper
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will stimulate new avenues of critical investigation and research that will reduce error and its
consequences.

5. Analysis
It has long been recognised that computers do not do normal arithmetic. Thus, normal addition
satisfies the associative rule, a+ (b+ c) = (a+ b) + c, but on a computer this rule fails because of
rounding errors. For example, 0.1 as a decimal number is a recurring binary fraction, so it cannot
be represented as a simple binary value precisely.5

The field of numerical analysis concerns itself with such error analysis, so-called ill-
conditioning and related issues [3]. Good programmers are therefore very careful to do arithmetic
in ways that take numerical problems into account. Some calculators do arithmetic in base
ten (e.g., using binary coded decimal, BCD), so that users are not surprised by decimal-binary
conversions causing unexpected rounding.

The corresponding problems of interactive numerals have only just been recognised (they are
systematically reported here for the first time), but they are no less serious, as our examples above
show. Unfortunately there has been nothing like “a numerical analysis” for interactive numerals,
so we aim to address that.

The problems of interactive numerals fall into the following categories:

(a) Premature semantics
Premature semantics is an idea we identify in this paper for the first time.

For a computer program to interpret the user’s data entry, it must impose some semantics.
For example, it may interpret numerals as floating point numbers; this semantics is very easy to
implement and means that as a user enters a number it must be a floating point number at all
times. Using the definition of interactive numerals from section 3(b), the program will use Nint

to evaluate the numeral bi at each step i as the user enters it; furthermore, any user action that
makes Nint fail (i.e., fail to be a floating point value) will be ignored. As an interactive numeral is
being constructed under this form of premature semantics, then, at every stage it is interpreted as
a meaningful number. But this means the program has prematurely implemented the user’s input
as a number before they have finished interacting and confirmed it. In particular, it means that an
erroneous sequence of interactions like 0 • • 5 (and many others) cannot be processed
correctly because the program has prematurely implemented the user’s input as a number and
there is no floating point value that represents anything with two decimal points!

In other words, although the program eventually wants a number, in this case it has prematurely
imposed the semantics of number instead of, for instance, string semantics (which can represent
arbitrary keyed input from a user).

The example NaN given above is a symptom of premature semantics. Here, the computer has
been programmed to prematurely use a number to represent the user’s input, but the user has
attempted some interactive numeral action on a number that the programmer has not correctly
anticipated. This results in the program performing a non-numeric operation on what was
prematurely (and incorrectly) programmed as a number value. The computer itself has responded
with the number turning into an invalid number, namely NaN. Then the bad programming
has failed to recognise this, and NaN (which is a technical term that is meaningless to normal
people) is displayed directly to the user. In other words, displaying NaN proves the program has
prematurely implemented something as a simple number (probably an IEEE float).

Shneiderman describes a common data quality problem [24]: a hospital was analysing the
age distributions of patients and finding statistically significant differences, etc; but Shniederman
found patients who were 999 years old. Of course, clinicians do not always know a patient’s age
but the program they used prematurely required a number (and nothing else). A patient’s age is
5Obviously the decimal value 0.1 can be represented using structured binary values, such as rationals (e.g., as two binary
numbers, representing one divided by ten) or as binary coded decimal, and in many other ways.
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certainly a number, but interactively there is a point before the number is correct or even known,
as in this case. But premature semantics requires a number regardless. The clinicians thus have
to find a workaround, such as entering 999, which is a number for the computer but it is not a
number for the clinicians — it is an exception flag denoting “unknown.” Unfortunately, 999 was
an exception flag known to the users, but not implemented by the programmers.

It is understandable that any such system needs some way of handling missing data but
forcing a semantically correct number value here led to (perhaps well-intentioned) violations,
a specific type of error [18] that can have serious consequences later. Indeed, this 999 violation
worked every time, so it became standard practice. Yet it ruined data analysis, and probably
disrupted hospital auditing and hence the day-to-day efficient operation of the hospital before
Shneiderman uncovered the practice.

Now we recognise premature semantics as such, it explains a wide range of familiar problems.
Web forms, for example, often require a user to fill in details they do not yet know: this is because
the form implements the fields as simple values (numbers, dates, etc), which premature semantics
prevents from being left blank or partly filled in — a routine procedure that is very convenient
and indeed trivial on paper forms.

A special case of premature semantics might be called premature representation — the
representation is a consequence of an internal, premature, semantic choice. Many systems display
a numeral even before anything has been entered, because the display is assumed to always
display a number:

• Many interactive systems display 0 if the user has entered nothing: they then cannot
distinguish a user who has entered nothing from one who has explicitly entered zero.

B More generally, interactive systems displaying default values (such as 0) when the
user has entered nothing makes it very difficult to distinguish a user entering a
default value and actually doing nothing — not even recognising “they” have
entered a value, which may therefore not be what they intended.

• Some systems display 0 to show that they are switched on, but this creates the ambiguity
whether the user has started to interact or not. Instead, they could display patterns like
- - - - rapidly alternating with - - - so they are obviously on and working.

• Many systems permanently display a decimal point [25], so if a user has entered nothing
they will display 0. with a decimal point. This means that the user cannot tell whether
they previously pressed just 0 or 0 • : they cannot know from the display whether
pressing 5 will change the number to either 0.5 of 5. This lack of predictability is a
high price to pay for the “simplicity” of always displaying a decimal point even when
one has not been entered.

(b) Feature interaction
Feature interaction is the name given to unanticipated interactions between system features [26].
Feature interaction is hard to anticipate because we focus so readily on individual features and
think about them independently: it is much harder to think about features working together. In
fact trying to think about two things at once interferes [27]: we do not do it very well and we tend
to avoid doing it.

On calculators one feature is that we want users to be able to enter large numbers, and another
feature is that the display screen can only show up to a fixed number of digits, typically 8 or
so. The feature interaction here happens when a user keys in more than the allowed 8 digits
— what should happen? Each feature separately makes sense, and in fact each feature is so
straightforward and obvious it hardly needs thinking about at all. Yet, put together the two
features conflict. Most calculators ignore the resulting feature interaction, with the result that the
users will perform incorrect calculations without warning — and generally without noticing.
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We want to allow users to make and correct errors, but that obviously desirable feature
interacts with the equally obvious feature that only correct numbers are displayed — what should
happen when a user keys in a syntactically incorrect number? How can it be corrected? This is
another feature interaction.

Another feature interaction is the way negate works combined with the way delete works.
The negate ( ± ) key changes the sign of a number and on most number entry systems it can be
pressed at any time as a numeral is entered, in part because it is always represented as a prefixed
minus sign whenever it is pressed. Thus on the iOS calculator and many other devices with a
change sign key, all of the following (pressed after AC so they all start in the “ground state”): ±

1 2 ; 1 ± 2 ; and 1 2 ± all result in –12 being displayed.
Delete seems simple, but is an interesting feature. In general, one would expect that a sequence

of keystrokes . . . ki−2, ki−1, ki followed by DELETE would be equivalent to . . . ki−2, ki−1. That is,
the most recent keystroke ki “disappears” when DELETE is pressed. Put into formal terminology,
ki DELETE is the identity (for ki 6= DELETE ), or it should be expected to be.

However, a feature interaction between change sign and delete arises. What happens when
DELETE is pressed is unpredictable — it may or may not delete the sign prefix. The problem, of
course, is that change sign key is implemented to put the negative sign at the left of the numeral,
yet the delete key works on the right-most end of the numeral. After a change sign, the delete key
cannot both work both at the end and at the start of a numeral, and that causes an unfortunate
feature interaction. A simple solution would be for the delete key to work on the most recent key
pressed, not on the right-most key shown — but this is a little harder to implement.

The DELETE feature interaction is caused by premature semantics: treating an interactive
numeral as a simple signed number, and then not having any representation of what the user
has done so that DELETE can be disambiguated.

(c) Illegibility
If a numeral is ambiguous or unreadable (or inaudible if spoken, e.g., by synthesised speech) it is
unreliable.

Legibility seems a self-evident criterion for a good interactive numeral, but as the Apple
MacOS app example shows (see figure 1c) it is easy to overlook. Other number entry systems
routinely truncate numerals to fit displays, causing potential problems that are very hard to see.
Elsewhere we have discussed legibility in more detail [25], and in particular criticised poor choice
of numeral fonts, such as 7 segment displays.

Legibility ought to be an obvious requirement, and achieving it (particularly with today’s high
resolution displays and quality audio outputs) is completely unproblematic. Yet poor legibility
continues to be a factor in accidents and other problems [25] — this reference gives brief details
of a fatal plane crash caused by poor numeral legibility as well as many recommendations for
improving numeral legibility more generally.

(d) Ignoring error
Sooner or later, users make errors, and they may or may not be aware of their errors [17]. We
have shown elsewhere [20] that if interactive numeral systems detect syntax errors (such as two
decimal points) the effective error rate can be reduced; for instance, the “out by ten” (the number
entered is ten times too large or too small) error rate can be halved.

In practice, interactive number entry systems rarely detect user error. We gave examples above
of a user entering numbers that are too large: the results are wrong — yet detecting this error is
trivial programming. On some systems user error is ironically treated as a “feature.” For example
on the Graseby 3400 infusion pump (a drug delivery device) the decimal point is treated as a
special case of C : it deletes the decimal part of a number, so 3 • 4 • 5 enters 3.5,
whereas many other systems (like the Apple iOS and MacOS pane but not the MacOS app) will
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just ignore additional decimal points, even though they key-click misleadingly confirming the
keys are being processed normally.

Displaying NaN is a simple example of ignoring error. NaN is displayed when the program
attempts to perform an invalid operation on a number: the hardware (or the virtual machine) has
detected the error that the programmer has ignored (see figure 1b).

Unlike the other Apple calculators, the MacOS app allows the user to enter arbitrarily large
numbers, which as we explained above get displayed in a smaller and smaller font until they are
unreadable. Continuing the app eventually makes an erroneous calculation and displays NaN.
Presumably, as each digit, say, 9 is pressed the interactive numeral processing calculates d′ =
10d+ 9 updating the displayed number d to d′ but eventually 10d or 10d+ 9 is too large for the
underlying floating point representation to handle. A correct program would check dwas in range
before attempting an invalid calculation — even better, it would also check d′ would be displayed
correctly (which none of the Apple calculators do). Even displaying the resulting NaN to the user
is another ignored error.

All the three Apple calculators allow pasting in a number. For example: 1,2,3.4.5 becomes 123.4
on the iOS and pane calculators, but 123.45 on the app. None of the calculators detect the errors.
Ignoring the commas “makes sense” only because it is an easy way to handle correct numbers like
1,000. But the same reasoning also ignores problems with erroneous numerals like 10,00. Ignoring
errors, including discarding digits and decimal points, is very unhelpful — users expect correct
answers, not any old answers.

Many systems do detect use error; for example one of many studies using “smart pumps”
(interactive drug infusion devices with number range error detection) along with other
interventions reduced error rates by 73% with paediatric patients [28]. Given the obvious benefits
and effectiveness of error detection, then, it is very surprising that interaction error is so widely
ignored: it is clearly not a problem with reporting error as such (which is how so-called smart
pumps work), but of bothering to program systems to detect errors during the process of
interactive numeral entry.

Ignoring error is a special case of poor programming, which we discuss next.

(e) Poor programming
Poor programming explains many problems.

We can describe the programming problem succinctly: user operations on numeral syntax
define an abstract date type for data entry. The continual mapping of that abstract data type
to computer number representations (e.g., floating point numbers) as the user enters and edits
numbers, becomes a mess if not programmed correctly.

Type checking helps detect inconsistencies within a program and helps improve program
quality generally, but it does not specifically help improve interaction. To make the point, figure
6 illustrates problems that can arise without type checking. Clearly, some possible interaction
design defects can be completely prevented by using a typed language, however type checking
alone is not sufficient to correctly manage problems of the user entering “numerals” that are not
even parsable, as illustrated in the figure.

When interacting with programs, users can do anything, and a dependable interactive
program has to respond coherently to all possible user interactions. Interestingly, neither the
philosophies of static or dynamic type checking align well with this requirement: incorrect types
cause incorrect programs to be rejected, and the programmer has to start again after fixing
the errors. While that makes sense and is undeniably a very useful approach for dependable
programming, in contrast, in user interface interaction rejecting the user’s input is rarely a good
option — an interactive program has to keep running despite error, and it has to manage error as
the user gradually repairs the input to something acceptable. Even if it may be a good idea for
the user to “start again” (e.g., when entering a quasi-numeral as an incorrect security code) the
program cannot terminate.
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var input = "I don’t know";

if( input < 0 ) alert("User input is negative");

else if( input > 0 ) alert("User input is positive");

else alert("User input is zero");

Figure 6. A user might enter the data “I don’t know” into a numeric field on a web site programmed in JavaScript.

JavaScript is a very popular web language but it is not type-checked. JavaScript will happily compare the non-numeric

string the user has entered with the number zero, without any errors at compile time or run time. Since what the user

entered is neither negative nor positive, the program will deduce it must be zero, which of course it isn’t. The error may

then propagate through the program and cause further problems. In a type-checked language, strings and numbers are

not comparable and a program like this would not compile, so the programmer would have to develop a “type correct”

program before it could be used.

Very often there are unhelpful compromises: the user can make an error, but their input will
not be saved (or otherwise processed) until all the data is “correct.” This is essentially the type
correct part of the program refusing to allow the user to continue interaction until all detected
errors are fixed. If the user needs to pause while they decide how to proceed, many programs
will further aggravate the situation by timing out and discarding the user’s partial input. Put in
other words, the problem is the “correct” program has required numbers prematurely, but the
user interface is supporting interactive numerals — and the program is expecting the user only
to save when all interactive numerals are well-formed numerals (and similarly for other types of
data, not just numerals). As explained elsewhere in this paper (section 5(a)), this is a premature
semantics.

Users learn how to enter numbers on systems and will acquire habits (such as shortcuts and
specific ways to use the correction features). Thus users will internalise the “mess” and if the
mess is different on different systems, this will induce unnecessary errors (so called transfer
errors). The unnecessary variation, despite their very similar look and feel, between the three
Apple calculators is a case in point.

Examples earlier showed large numbers may be accurately displayed when they are the result
of a calculation, but not when the user enters them. Thus, although numbers as such are handled
well, interactive numerals are not. Worse, there is usually no warning to the user that displayed
values are incorrect when numbers entered by the user have been truncated.

The problems with large numbers probably happen because a standard, general-purpose,
number output routine is used to display calculated values, but user-input numbers are displayed
differently: a basic programming inconsistency. Considering the additional inconsistencies over
cut and paste discussed above, it is likely that those calculators do not use standard text entry
routines, but handle button presses in ad hoc ways.

We conclude that correct interactive numeral programming is harder than most people think —
poor programming is deceptively easy. The cognitive effort to program well creates tunnel vision:
that is, programmers make mistakes they are unaware of [29]. Modern software engineering
techniques like formal methods and code review must be used to mitigate these predictable
problems, and evaluation techniques must be used to evaluate whether designs meet their
requirements when they are used.

The evidence presented in this paper suggests major manufacturers are not using such
techniques to help avoid problems. We would argue that any computer system programmed by
people who do not use such techniques [30] should not be used for any critical application.

B Some readers of this paper have pointed out that some programming languages, such as
Haskell and Swift (and more generally, many programming languages that have strong
typing), have built-in mechanisms to help avoid premature semantics. However, the
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problems this paper has pointed out can be avoided in any programming language. The
issue is not the programming language used, or the programming language that might
have been used, or even whether the programmer uses data validation. The issue is the
lack of knowledge about interactive numerals.

6. Conclusions
Interactive numerals are more complex than most programmers think, so they implement them
simplistically. Even the world’s very best programmers are not immune. If programmers are
unaware of premature semantics and feature interaction, they will make mistakes, which will
then catch out users later. Understandably, users are unaware of these issues and they risk being
misled, particularly in situations of error — precisely, then, at the very times when being misled
is especially counter-productive.

This paper makes several important points:

(i) Our definition of interactive numerals is essentially equivalent to a high-level
specification that programmers could implement. Variations from this specification
would allow programmers to identify with clarity any design compromises, and so
reason about the consequences of their compromises in their approach to interactive
numerals.

(ii) The everyday practice of programming has not yet advanced to the point where
interactive numerals are reliably implemented, nor to a point where users can reliably
use them. We have developed some evaluation tools [21] that can rapidly highlight
problems and help select safer designs, but formal methods should also be used to avoid
problems in the first place.

(iii) Premature semantics is a concept describing a common type of defect in programming,
and is particularly prevalent in poor interactive numeral implementations. Now named,
it can be actively managed by programmers.

(iv) Problems with interactive numeral implementations mean that logs of interactive
system usage may record what systems do but do not reliably record what was done by
users. This hinders accurate understanding of any use problems, and may have legal
repercussions: logs must not be naïvely used as evidence of what users have or have not
done [31] — they only show what the systems record after premature semantics has
over-simplified it. Logs do not give any reliable insight into what users did (let alone
why [31]), unless there is rigorous evidence of correct design and operation, including
appropriate forensic procedures (e.g., digital signatures) to confirm log data is not
contaminated by poor programming or cyberattacks.

(v) Interactive numerals can be discussed rigorously because numeral syntax and number
semantics are familiar and are well-defined, precise concepts. It is therefore easy (if one
asks the right questions) to show whether they are implemented correctly. There are,
however, many other forms of interactive features that beg further study. For example,
typing letters with accents (e.g., ï, é, ç, as well as keys that are not on some keyboards
like æ, ß, ł, etc) requires several keystrokes; what then should key sequences like ¨ u

DELETE ı do? Indeed, the synchronisation of the user model and the program’s
semantic model at the keystroke level is a topic that has been excluded from classic
research [32].

Being able to buy and use safe interactive numeral systems, let alone assure yourself they
are as dependable as they seem, remains problematic. For the time being, in safety and mission
critical areas users must compensate for poor design by adopting strategies (such as repeating
calculations entered in different ways) to help detect error. It was beyond the scope of the present
paper to discuss human factors mitigations, such as range validation and the user interface
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redisplaying numbers in contrasting numeral formats (e.g., spoken words) to help the user
confirm that the number they intended to enter was correctly entered.

With this paper, we hope we have clarified the fundamental role of interactive numerals in
numerical interactive systems — that is, almost all interactive systems. From articulating the
design and use errors around interactive numerals, our examples show that users, designer
and procurers need to pay close attention to their correct implementation. And implementations
more consistent with our definitions are demonstrably possible. For instance, we can indicate
contingent semantic correctness [10,33] or systematically avoid premature semantics [34–36].
But these are entirely new approaches for users and designers of number entry systems. They
may bring new, different problems and there are most probably even better, more reliable,
more analysable implementations. However, having identified now the conceptual target of
interactive numerals, we are in a better position to work towards the engineering of more
dependable interactive systems. The extra effort needed has a very high leverage because, for
many applications, getting interactive numerals right will help millions of users over the lifetime
of the improved products.

Ethics statement
This research did not involve human or animal studies.

Data accessibility
All experimental data and results are fully described in the paper.

Competing interests
The authors have no competing interests.

Author’s contributions
The authors jointly wrote this paper, both making substantial contributions to the research,
analysis and interpretation. Both approve the final version.

Acknowledgments
The authors are very grateful for comments from Rod Chapman, Martyn Thomas and John
Tucker. Ben Shneiderman prompted the thinking that led to this exposition of interactive
numerals.

Funding statement
Harold Thimbleby was funded by Engineering and Physical Sciences Research Council [grant
number EP/L019272/1].

References
1. Fibonacci, Liber Abaci. Available at: https://en.wikipedia.org/wiki/Liber_Abaci 1202.
2. H. Thimbleby, “Interactive numbers — A grand challenge,” in Proceedings of IHCI 2011:

IADIS International Conference Interfaces and Human Computer Interaction 2011, K. Blashki, ed.
International Association for the Development of the Information Society, 2011, pp.
xxviii–xxxv.

3. J. L. Gustafson, The end of error. CRC Press, 2015.
4. H. Thimbleby, “Calculators are needlessly bad,” International Journal of Human-Computer

Studies, vol. 52, no. 6, pp. 1031–1069, 2000. DOI: 10.1006/ijhc.1999.0341

http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/L019272/1
https://en.wikipedia.org/wiki/Liber_Abaci
https://dx.doi.org/10.1006/ijhc.1999.0341


20

rsos.royalsocietypublishing.org
R

.S
oc.

open
sci.

0000000
..............................................................

5. P. Oladimeji, P. Masci, P. Curzon, and H. Thimbleby, “Issues in number entry user interface
styles: Recommendations for mitigation,” in Proceedings 5th EAI International Conference on
Wireless Mobile Communication and Healthcare, 2015. DOI: 10.4108/eai.14-10-2015.2261763

6. G. Swerling, “University risked lives in caffeine experiment,” The Times, 26 January, 2016.
Available at: http:
//www.thetimes.co.uk/article/university-risked-lives-in-caffeine-experiment-78ppx23r7

7. H. Thimbleby, “Interaction walkthrough: Evaluation of safety critical interactive systems,” in
Proceedings The XIII International Workshop on Design, Specification and Verification of Interactive
Systems — DSVIS 2006, Lecture Notes in Computer Science, G. Doherty and A. Blandford,
eds., vol. 4323. Springer Verlag, 2007, pp. 52–66. DOI: 10.1007/978-3-540-69554-7_5

8. A. Cauchi, A. Gimblett, P. Curzon, P. Masci, and H. Thimbleby, “Safer “5-key” number entry
user interfaces using differential formal analysis,” in Proceedings BCS Conference on HCI, vol.
XXVI. Oxford University Press, 2012, pp. 29–38.

9. H. Thimbleby, “Ignorance of interaction programming is killing people,” ACM Interactions,
pp. 52–57, September+October, 2008. DOI: 10.1145/1390085.1390098

10. ——, “Safer user interfaces: A case study in improving number entry,” IEEE Transactions on
Software Engineering, vol. 41, no. 7, pp. 711–729, 2015. DOI: 10.1109/TSE.2014.2383396

11. A. Lewis, J. Williams, and H. Thimbleby, “Making healthcare safer by understanding,
designing and buying better IT,” Clinical Medicine, vol. 15, no. 3, pp. 258–262, 2015.
DOI: 10.7861/clinmedicine.15-3-258

12. D. Cohen, “How a fake hip showed up failings in European device regulation,” British
Medical Journal, vol. 345, no. e7090, 2012. DOI: 10.1136/bmj.e7090

13. K. A. Olsen, “The $100,000 keying error,” IEEE Computer, vol. 41, no. 108, pp. 106–107, April
2008. DOI: 10.1109/MC.2008.135

14. M. Champion, “This is what it’s like to be wrongly accused of being a paedophile because of
a typo by police,” Buzzfeed Newa, 2017. Available at: buzzfeed.com

15. P. Oladimeji, A. Cox, and H. Thimbleby, “Number entry interfaces and their effects on errors
and number perception,” in Proceedings IFIP Conference on Human-Computer Interaction, 2011,
pp. 178–185.

16. F. Soboczenski, M. Hudson, and P. Cairns, “The effects of perceptual interference on
number-entry errors,” Interacting with Computers, vol. 28, no. 2, pp. 208–218, 2015.

17. P. Oladimeji, A. Cox, and H. Thimbleby, “A performance review of number entry interfaces,”
in Proceedings of IFIP Conference on Human-Computer Interaction, 2013, pp. 365–382.

18. J. Reason, Human Error. Cambridge University Press, 1990.
19. C. Moore, “Medical radiological incidents: the human element in complex systems,” in 25 at

25: A selection of articles from twenty-five years of the SCSC Newsletter Safety Systems, G. Jolliffe,
M. Parsons, and T. Kelly, eds. Safety-Critical Systems Club, 2017, pp. 25–30.

20. H. Thimbleby and P. Cairns, “Reducing number entry errors: Solving a widespread, serious
problem,” Journal Royal Society Interface, vol. 7, no. 51, pp. 1429–1439, 2010. Available at:
http://harold.thimbleby.net/interface/. DOI: 10.1098/rsif.2010.0112

21. H. Thimbleby, P. Cairns, and P. Oladimejii, “Unreliable numbers: Error and harm induced by
bad design can be reduced by better design,” Journal Royal Society Interface, vol. 12, no. 110, p.
20150685, 2015. DOI: 10.1098/rsif.2015.0685

22. Progress and research in cybersecurity Supporting a resilient and trustworthy system for the UK.
Royal Society, 2016.

23. A. Blandford, A. Cox, P. Curzon, and H. Thimbleby, Research manifesto. Available at:
http://www.chi-med.ac.uk/insights. www.chi-med.ac.uk, 2016.

24. B. Shneiderman, The new ABCs of research. Oxford University Press, 2016.
25. H. Thimbleby, “Reasons to question seven segment displays,” in Proceedings ACM Conference

on Computer-Human Interaction. ACM, 2013, pp. 1431–1440. DOI: 10.1145/2470654.2466190
26. M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec, “Feature interaction: A critical

review and considered forecast,” Journal Computer Networks, vol. 41, no. 1, pp. 115–141, 2003.
27. H. Pashler, “Dual-task interference in simple tasks: Data and theory,” Psychological Bulletin,

vol. 116, no. 2, pp. 220–244, 1994. DOI: 10.1037/0033-2909.116.2.220
28. G. Y. Larsen, H. B. Parker, J. Cash, M. O’Connell, and M. C. Grant, “Standard drug

concentrations and smart-pump technology reduce continuous-medication-infusion errors in
pediatric patients,” Pediatrics, vol. 116, no. 1, 2005. DOI: 10.1542/peds.2004-2452

29. H. Thimbleby, “Human error in safety-critical programming,” in Developing Safe Systems,

https://dx.doi.org/10.4108/eai.14-10-2015.2261763
http://www.thetimes.co.uk/article/university-risked-lives-in-caffeine-experiment-78ppx23r7
http://www.thetimes.co.uk/article/university-risked-lives-in-caffeine-experiment-78ppx23r7
https://dx.doi.org/10.1007/978-3-540-69554-7{_}5
https://dx.doi.org/10.1145/1390085.1390098
https://dx.doi.org/10.1109/TSE.2014.2383396
https://dx.doi.org/10.7861/clinmedicine.15-3-258
https://dx.doi.org/10.1136/bmj.e7090
https://dx.doi.org/10.1109/MC.2008.135
buzzfeed.com
http://harold.thimbleby.net/interface/
https://dx.doi.org/10.1098/rsif.2010.0112
https://dx.doi.org/10.1098/rsif.2015.0685
http://www.chi-med.ac.uk/insights
https://dx.doi.org/10.1145/2470654.2466190
https://dx.doi.org/10.1037/0033-2909.116.2.220
https://dx.doi.org/10.1542/peds.2004-2452


21

rsos.royalsocietypublishing.org
R

.S
oc.

open
sci.

0000000
..............................................................

Proceedings of the 24th Safety-Critical Systems Symposium, M. Parsons and T. Anderson, eds.
Center for Software Reliability, 2016, pp. 183–202.

30. I. Sommerville, Software Engineering, 10th. Pearson, 2015.
31. S. W. A. Dekker, “The disembodiment of data in the analysis of human factors accidents,”

Human Factors and Aerospace Safety, vol. 1, no. 1, pp. 39–57, 2001.
32. S. K. Card, T. P. Moran, and A. Newell, The Psychology of Human-Computer Interaction. L.

Erlbaum Associates Inc., 1983.
33. H. Thimbleby and A. Gimblett, “Dependable keyed data entry for interactive systems,”

Electronic Communications of the EASST, pp. 1/16–16/16, 2011.
34. H. Thimbleby, “A new calculator and why it is necessary,” Computer Journal, vol. 38, no. 6,

pp. 418–433, 1995. Available at: http://harold.thimbleby.net/calculators/index.html.
DOI: 10.1093/comjnl/38.6.418

35. W. Thimbleby, “A novel pen-based calculator and its evaluation,” in Proceedings Nordic
Conference on Human-Computer Interaction, 2004, pp. 445–448.

36. P. Cairns, S. Wali, and H. Thimbleby, “Evaluating a novel calculator interface,” in Proceedings
British Computer Society HCI Conference, A. Dearden and L. Watts, eds., vol. 2. Research Press
International, 2004, pp. 9–12.

http://harold.thimbleby.net/calculators/index.html
https://dx.doi.org/10.1093/comjnl/38.6.418

	1 Introduction
	2 Numbers and numerals
	3 Definitions
	(a) Numeral
	(b) Interactive numeral
	(c) Quasi-numerals
	(d) What interactive numerals are not
	(e) Other forms of numeral

	4 Problems with interactive numerals
	(a) Ubiquitous examples from calculators
	(b) Medical examples
	(c) Banking example
	(d) IP numbers
	(e) Forms
	(f) Discussion

	5 Analysis
	(a) Premature semantics
	(b) Feature interaction
	(c) Illegibility
	(d) Ignoring error
	(e) Poor programming

	6 Conclusions
	References

