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Number entry is ubiquitous: it is required in many fields including science, healthcare, edu-
cation, government, mathematics and finance. People entering numbers are to be expected
to make errors, but shockingly few systems make any effort to detect, block or otherwise
manage errors. Worse, errors may be ignored but processed in arbitrary ways, with
unintended results. A standard class of error (defined in the paper) is an ‘out by 10
error’, which is easily made by miskeying a decimal point or a zero. In safety-critical
domains, such as drug delivery, out by 10 errors generally have adverse consequences.
Here, we expose the extent of the problem of numeric errors in a very wide range of sys-
tems. An analysis of better error management is presented: under reasonable
assumptions, we show that the probability of out by 10 errors can be halved by better
user interface design. We provide a demonstration user interface to show that the approach
is practical.

To kill an error is as good a service as, and sometimes even better than, the establishing of
a new truth or fact.

(Charles Darwin 1879 [2008], p. 229)
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1. INTRODUCTION

At first sight, typing numbers is such a mundane task
that it seems not to merit a second glance. Naturally,
when it comes to entering numbers, humans are prone
to make errors, but—astonishingly—many systems
make no effort to detect or manage possible errors,
causing incorrect and unpredictable results. This
paper exposes the extent of this problem in a wide
range of systems. We show that the problem cannot
be dismissed merely by blaming the user: indeed, we
show that some system logs, which might otherwise be
thought of as a formal record of user actions, cannot
be relied on to assign blame.

Systems should be designed to manage errors, as
errors will always eventually occur regardless of user
skill or training. We therefore show how better designs
for number entry may be approached; we present a new,
improved user interface for preventing many number
entry errors, and we argue that the new approach can
approximately halve the probability of an important
class of adverse events arising from number entry error.

We note that problems with complex software are
widely recognized (Leveson 1995; Fox et al. 2009;
Hoare 2009; Jackson 2009), but, to our knowledge, this
article is the first to report the extent of serious problems

with the seemingly trivial issue of processing number
entry.

2. WIDESPREAD PROBLEMS WITH REAL
SYSTEMS

Entering numbers seems like an apparently routine
task, but it is in fact less dependable than it appears.
Figure 1a shows an everyday example, here taken
from Microsoft Excel (or Apple Numbers; the two
applications behave in essentially the same way for
the purposes of this paper). Two columns of numbers
are supposed to be added up. In figure 1, the column
totals should be the same, but small typing errors
make the totals incorrect without any warning, even
though no user is likely to want things that look like
numbers (e.g. ‘3.1’) to be treated as anything but the
numbers they seem to be. Using Excel’s ‘show pre-
cedents’ feature, there is no indication that there is a
problem (see figure 1b). And with frankly devious use
of the formatting functions, even greater errors are poss-
ible, as in figure 1c—though we note that it is very easy
to lose track of formatting, and the type of error illus-
trated here could arise by accident and be very hard
to track down.

The examples in figure 1 illustrate the problems: the
errors, whether caused intentionally or through acciden-
tal slips, are not immediately obvious to a casual glance,
though for illustrative purposes the examples are not so
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Abstract

Number entry is an ubiquitous activity, and is often performed in safety- and
mission-critical procedures, such as healthcare, science, finance, aviation and
in many other areas.

We show that Monte Carlo methods can quickly and easily compare the
reliability of different number entry systems. A surprising finding is that
many common, widely-used systems are defective, and induce unnecessary
error.

We show that Monte Carlo methods enable designers to explore the impli-
cations of normal and unexpected operator behaviour, and to design systems
to be more resilient to use error.

We demonstrate novel designs with improved resilience, implying that
the common problems identified and the errors they induce are avoidable.
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“Science is a way of trying not to fool yourself. The first principle is that
you must not fool yourself, and you are the easiest person to fool.”

— Richard P. Feynman [10, chap. 4]

1 Introduction

Number entry is often performed as a “simple” subtask within a bigger task. For
instance, using a calculator typically requires entering a series of numbers and
operators. Unnoticed errors while entering the numbers would result in an error
in the calculation. To the user who needs to use a calculator and therefore has no
precise expectation of the result, this error is likely to go undetected and escalate
higher up into the user’s workflow or subsequent tasks.
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As users of interactive systems, we have little idea how much our unnoticed
errors introduce inaccuracy or other problems. Our laboratory work [27] sug-
gests about 3.5% of numbers we enter (on conventional numeric keyboards) are
wrong and we do not notice that they are wrong. Consequently, designing interactive
systems to reduce the rate of unnoticed use errors is a worthwhile goal. Unfortu-
nately, the same human error problems — errors happen and remain uncorrected
because we are largely unaware of them — beset designers and manufacturers
too: they do not know some designs are defective and cause problems for users.
Finally, purchasers are unable to compare and choose more dependable or safer
equipment when it is available.

When we enter numbers into a system or piece of equipment, some numbers
will be wrong because we make typing slips or other errors. Numbers will remain
wrong if we do not notice they were wrong. We may use various techniques, such
as entering lists of numbers twice (e.g., checking totals are the same) or entering
checksums to help detect possible errors.

If we notice errors as we type in numbers, we typically use strategies like press-
ing CLEAR or DELETE keys to help to correct the errors.

Unfortunately, as this paper shows, common defects in system design can
leave corrected numbers still wrong. Additional unnoticed errors can occur dur-
ing the error correction process. If we do not notice the “corrected” numbers are
still wrong (perhaps wrong in different ways), the numbers will remain wrong
even though we think they are correct because we corrected them. To our knowl-
edge, this paper is the first to report and analyse this issue.

The problems we address in this paper can be found widespread in everyday
products that have been manufactured and used for years. Awareness of these
potentially critical problems is evidently very low. In this paper we show how to
address the problems and how to evaluate their impact. Further, we show that
the problems are avoidable, by better production processes and by more careful
purchasing of better products.

We are worried about the scale of preventable errors induced by poor system
design, and by the possibility that users and operators are being blamed for errors
that are not of their making. The problems are particularly worrying in areas such
as healthcare, where incorrect numbers may lead, for instance, to incorrect drug
doses and patient harm. In other areas, such as economics, finance and science,
unnoticed incorrect numbers may remain unnoticed and affect policy or mislead
further work.

Because the scale of this avoidable problem is so surprising, this paper includes
a review of the background on human error and the nature of number entry. Part 1
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of this paper explores the cultural context that has allowed poor design — the
absence of applied science — to become so common. Part 2 then presents our
methodology, and finally Part 3 provides discussion and conclusions drawing on
the results of our investigations.

1.1 Our previous work

The present paper develops our work reported in previous papers.
Most recently, in [42], we surveyed numeric user interfaces and showed that

many are poorly designed and implemented. We showed how to formalise in-
teraction using Hoare Triples, an approach that allows rigorous reasoning about
design correctness, with all the usual benefits of formal methods but applied to
user interface design. We have shown that formal methods can detect design er-
rors [22]. However, formal methods do not in themselves help make value judge-
ments about which designs are better — they help developers to more reliably
implement whatever they wish to implement. Therefore in this paper we show
how to measure and quantify design issues, using Monte Carlo methods. We will
present results from measuring the performance of several designs.

In [4], we showed that simulating a user by a stochastic process can estimate
the safety of numeric user interfaces, specifically by counting “out by ten” nu-
meric errors. We provided evidence to substantiate our claim that failings in user
interfaces are “ubiquitous.” We showed that modifying user interfaces to conform
with well known standards would make them safer.

In much earlier work, [43] we showed how a Markov process can be used to
evaluate the quality of user interfaces. This approach (which we did not then ap-
ply to numeric user interfaces) has the advantage that it avoids many assumptions
about usability — the Markov process “knows nothing” about design assump-
tions, and thus the technique is very powerful in identifying potential design is-
sues that may have been overlooked. Markov models are technically hard to use,
so in [37] we showed how Monte Carlo methods can perform comparable analy-
ses. (Using Markov models requires more mathematical skill; using Monte Carlo
methods is much simpler but requires more computer time.)

1.2 A new approach

We propose a Monte Carlo approach to help designers avoid user interface design
problems in the first place, as well as to help users (e.g., during procurement)
choose better designs.
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Because the approach uses Monte Carlo methods (which we describe in more
detail below), it can be applied to final implementations, and therefore can help
detect implementation bugs after systems have been completed: it is not just a
formal technique that is used in requirements or specification. In particular it can
help find design defects that were not anticipated during specification and which
otherwise might therefore remain in a system as “unknown unknowns.” Monte
Carlo methods are easy to understand and use, and have none of the daunting
problems of conventional formal methods, which can create other sources of de-
sign problems.

In areas like hospital procurement, when critical systems may be procured for
widespread use, basic Monte Carlo testing could provide large improvements at
the organisational scale. More broadly, by developing a clear way to measure
trade-offs this paper raises awareness of these ubiquitous design problems. We
also show how they are preventable.
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PART 1: THE CULTURAL CONTEXT

2 Human error

Errors are ubiquitous. Accidents happen because we do not notice errors soon
enough to manage or mitigate them — errors are frequently noticed only in hind-
sight, often after an inquiry into an accident. If an error can be noticed and re-
paired fast enough, it need not lead to harm, except as might be occasioned by any
delay in its repair. Unnoticed errors, then, lead to inaccuracy, and sometimes to
adverse or harmful consequences. In general, errors themselves are not the prob-
lem, but the unwanted consequences of unrepaired or unsuccessfully repaired
errors are.

In many contexts, systematic learning is instigated after noticed harm, for in-
stance by performing an after-action review (AAR) or Root Cause Analysis (RCA)
to explore the factors leading to the harm. The systematic exploration of causes
has to stop somewhere, typically stopping at a human operator (user, practitioner,
scientist, pilot, etc), concluding that “human error” is the root cause [15]. System
defects further encourage blaming the operator as the logs or records may mis-
represent the operator’s actions: if the design mismanages an error repair, the
mismanagement is recorded as if it is what the operator actually instructed the
system to do.

Finding out what went wrong can fuel a spiral of delay, litigation, secrecy and
denial. It is more productive to think about how to help ensure things go right
more often in the future [15]. To do so requires a different perspective: how
to change the system, and how to know whether and to what extent proposed
changes affect safety — fuelling a positive spiral of action, innovation, disclosure
and evidence-based improvement [19].

In science more generally there is low awareness of routine error and its conse-
quences, with more emphasis on fraud and incompetence. Nature’s editorial com-
ment [9] that “underlying these issues, often, is sloppiness, whether in the han-
dling of data, in their analysis, or in the inadequate keeping of laboratory notes.
As a result, the conclusions of such papers can seem misleadingly robust.” To this
list, the present paper adds misleading sloppiness in the design of the equipment
or systems the authors of these papers are relying on to do their research.

In most systems there are interrelated agents who manage or are affected by
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error (see table 1). Although these roles do not always divide neatly into different
individuals (for example, somebody may be injured by a system they designed
for their own use), there is a crucial difference between operator and designer.

Operators work under pressure to manage concurrent, real-time task demands,
and they are typically unable to walk away from their tasks to “time out” and re-
flect. They work under an unavoidable efficiency-thoroughness trade-off, ETTO
[14]: the more they accommodate to the demands of the tasks, the less they can
be thorough anticipating, detecting or managing error. On the contrary, design-
ers can and should be thorough designing systems that are resilient to error —
their tasks are not constrained by real-time or other situational issues (except for
arbitrary marketing or manufacturing deadlines, that arguably should not trump
design quality considerations). For example, the operator of an infusion pump
might be an anaesthetist with a patient dying right in front of them if they do
nothing; whereas the infusion pump manufacturer had years to refine the design
of the pump the anaesthetist is now operating. Designers should therefore tilt the
ETTO principle in favour of thoroughness for the benefit of operators. Unfortu-
nately, like operator errors, design errors occur because designers do not notice
them.

Designers fail to notice errors for largely the same reasons as operators do,
namely loss of “situational awareness” [8]: design is hard enough already without
having to worry about unlikely operator error. Design errors remain as “latent
conditions” [29] that may induce operator error, fail to warn operators of error,
or exacerbate operator attempts to recover from error. Although formal methods
is increasingly used to improve the reliability of programs, it is only very rarely
applied to the user interface. The user interface “just provides numbers” and the
program handling those numbers may be correct, but the user interface has not
been formalised [42]. Designers need new methods to identify design errors and
to evaluate their impact — and to help design more reliable systems.

3 Motivating problems

The introduction provides context for our research. We are particularly motivated
by five observations together painting a tragic picture:

• Systems in widespread use have subtle design defects [4, 35–37, 45, 46]. We
give concrete examples throughout this paper.

• 90% of medical devices are released onto market without testing [51].
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Software-related recalls of medical devices are increasing [31].

• Preventable death in US hospitals is estimated to be approximately 440,000
per year [18] — scaled by UK:US population, that is some 87,000
preventable hospital deaths in the UK per year. Severe harm is estimated at
10–20 times higher. Unfortunately we do not know what proportion is
design-related, though user programming errors involving tasks such as
entering and modifying drug dose parameters in a single hospital infusion
pump model were estimated to contribute to 65–667 US deaths per
year [49].

• When patient harm occurs, the professionals involved are also harmed [52],
more so if attribution of blame is unjustified. This occur as investigators are
largely unaware whether (and, if so, how much) error is induced by poor
design of devices.

• There is very little applicable science in the area. There needs to be an
effective way to start to measure and scope the problem, in particular to
help drive informed improvement.

It might seem that our emphasis on medical user interfaces makes this paper
more specialised than it is. On the contrary, the user interface defects reviewed
here occur in every type of user interface, but especially for medical systems one
might have expected greater care to be exercised in their design and requirements,
since the consequences of failing to do so directly costs lives. There is no evidence
that medical systems are designed any better; indeed the routine confidentiality
surrounding medical system design ensures that rigorous evaluation (whether
needed for research or for informed device procurement) and public discussion on
quality are much harder than they need be. The confidentiality plus the variation
in design across brands tends to lock operators into using, or wanting to use,
specific types or makes of device: different, possibly even safer, user interfaces
will feel more awkward in hard-to-quantify ways.

For all these reasons we need to help designers and developers avoid or reduce
the problem and its impact, help procurers choose between designs in an informed
way, and help operators adopt strategies to reduce errors on the systems they have
to use — and help them identify, articulate problems, complain and resist having
to use defective systems. We have to help investigators and reporters understand
the central role of poor design in causing incidents: does such ignorance warrant
a newspaper headline calling a nurse “blundering” [2, 45]?
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4 Repairing error,
and problems of defective design

Skilled typing (how most computers systems are used) involves two nested men-
tal processes, an “outer” one involved with the intention to type, and an “in-
ner” one involved with the lower level actions to physically type [21]. The lower
level process can detect errors and repair them by, for instance, pressing a delete
key. Repair can be achieved by skilled typists without conscious awareness at the
higher level. Incorrect implementation of the delete key is therefore unlikely to be
noticed, which in turn may lead to further errors.

Delete keys for repairing errors are widespread. On many devices (typically
mobile devices, but also simulations of devices on PCs, such as “desktop” calcu-
lator applications), neither the decimal point nor the delete key work correctly in
a way that can be reliably learned by the lower level repair processes. On many
devices, additional decimal points are ignored, so deleting a second decimal point
misleadingly deletes all decimal points. On some devices, the delete key ignores
decimal points altogether and only deletes digits, so 1 2 • DEL 3 (which
the operator might think would be corrected to 123 ) becomes treated as 13 .

Repeatedly pressing or how long a key is held down may change its behaviour
(e.g., pressing ON twice or holding it for several seconds switches some devices
off): on such systems exact key press timings need to be recorded. Correctly log-
ging user interaction is particularly important on user interfaces with touch screen
technology where user input might be through gestures, or multiple contacts on
the screen. On many systems, then, logs purporting to record operator actions
are misleading, making it impossible to distinguish between operator errors and
repaired errors the system defectively corrects.

Some number entry design problems of the sort we are concerned with are
illustrated by the widely-available Apple iPhone calculator (checked on iOS ver-
sions 7.1.2 through 8.4, 2015) as follows.

• keying AC 1 • • DELETE 5 = gives 15 , ten times higher than
intended;1

• keying AC 1 ÷ 0 • + 2 × 5 = gives 10 , when it should

1Note: If there is no AC key shown on the keypad, pressing C will change it to be displayed
as AC . There is no DELETE key as such, but deleting on the iPhone is achieved by swiping a finger
left or right across the number display (if it was a number the user entered, rather than the result
of a calculation).
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be reported as an error the calculator detects (see table 4 for step-by-step
details);

• keying AC 5 ± DELETE gives -NaN , a nonsense result (NaN means
“not a number” and is the consequence of an internal design error that
should not have become visible to the user [12]); and

• if the user has already entered part of a number, say, 2.3 pressing • will
keyclick normally yet do nothing.

Such design defects are surprising, as Apple is widely recognised as the lead-
ing manufacturer of high quality, easy-to-use products. Calculators are not com-
plex, and in principle they can be rigorously engineered to be reliable.

The iPhone number entry shows at most one decimal point, which is unlike
most calculators which always show exactly one decimal point. On these calcula-
tors, pressing • never has any visual effect, even though many provide keyclick
feedback which normally implies the key did something.

Further number entry design errors in the iPhone and other manufacturers’
similar products have been noted elsewhere [34, 35, 45, 47].

5 Why do problems persist?

This paper exhibits a wide range of basic defects with the design of number entry
user interfaces, yet these are mature user interfaces that have been deployed very
widely and from respected manufacturers.

Neither manufacturers nor operators are noticing these basic problems nor try-
ing to fix them, even for when systems are used, as calculators routinely are, in
safety- and mission-critical applications. If nothing else, it is evident that depend-
ability (safety) and ease of use are different things, and when aiming for depend-
ability, ease of use is deceptive — if something looks and feels nice, it may not
help the operator be safe and effective

The question is begged, why do the problems persist?
A range of possible answers is presented in Appendix A. The answers show

how low awareness leads to persistent low awareness and then to inaction. Even
with best practice using formal methods, it is not possible to formalise design
principles of which one is unaware of.

Our previous work [39] studied a deeper problem: not only are the user inter-
faces for number entry defective, but the programming languages that implement
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them are defective too: many of the issues we discuss in this paper apply not
just to interactive user interfaces but to numbers in programs. Even motivated
programmers may have a huge job ahead of them if they wish to implement de-
pendable user interfaces.
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PART 2: TOWARDS SOLUTIONS

To start to address the problems raised above in Part 1, we propose a simple, rig-
orous process to reveal and quantify important variation in design — variation
that usually goes unnoticed, with the result that poor design choices are often
made. The approach introduced in this paper of quantifying aspects of user inter-
face quality (here, applied to numeric user interfaces) will help break some of the
deadlocks to progress.

Put briefly, human error occurs because we are unaware of facts that if they
had been properly considered would have changed what we did. Unfortunately,
the nature of human cognition ensures it is not possible to arbitrarily increase
awareness — to perform a task requires concentration, which leads to loss of “sit-
uational awareness” and inevitably there is a trade-off between performing a task
well and being aware of the wider environment [14]. While we might like to just
increase awareness, in practice it is not so straightforward.

Instead, we prefer to think of error being dependent on “vulnerability.” If we
imagined awareness and vulnerability as simple probabilities, then

vulnerability = 1− awareness

However, the differences are more profound: focusing on awareness, the word
itself seems like it is the user’s or operator’s own problem to be more aware; while
focusing on vulnerability, it is more clearly the system’s responsibility to be less
vulnerable. This in turn implies the designer should be more aware — developing
systems that help reduce and manage vulnerability.

6 Safety metrics

We define vulnerability v as the conditional probability an operator does not at-
tempt to repair a keying error,

v = 1− Pr(repairs error | error)

Here “repairs error” means the operator attempts to repair the error in any normal
way; hence harm occurring when v = 0, when the operator always repairs errors,
are caused by design defects — repairing an error correctly may fail on some de-
vices. Monte Carlo experiments make it easy to simulate human behaviour with
any v and with any distribution of error probability.
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We define risk r conventionally as the expectation of harm. Various metrics
can be used depending on the task: counting “out by r” errors for quantities that
have to be within a tolerance factor r but do not need to be exact; counting over-
doses but ignoring under-doses; or measuring the expectation of the “out by”
ratio. A simple metric is clearest for this paper: we take harm to be 1 if the in-
tended number and the entered number are different, 0 if they are the same. This
is a proxy for harm for tasks like entering passwords, credit card IDs, patient IDs,
all of which have to be exact or will fail.

As vulnerability increases, for any reason, we would expect risk to increase
(other things being equal). We therefore introduce risk ratio, the ratio of risk to
vulnerability, r/v.

Ideally, risk ratio should be as low as possible. Figure 2 vividly illustrates
how risk ratio highlights two common but poorly performing designs, contrasting
them with more dependable alternatives.

As operators or training and procedures reduce or attempt to reduce vulnera-
bility it is important that risk ratio also decreases (and certainly does not increase)
— otherwise the improvements will be counter-productive, made so by defective
design.

It is possible to further refine these concepts, but this is unnecessary for our
purposes. Indeed, we suggest that having more complex definitions of vulnera-
bility or risk would tend to obscure some of the issues that remain obvious with
simple definitions.

7 Monte Carlo methods for numeric input

Performing experiments with human operators that last long enough to encounter
enough unnoticed errors to establish whether purported design failings are statis-
tically significant is very time-consuming to undertake, and is certainly exces-
sively time-consuming to perform repeatedly as a design is iteratively improved.

Instead, in this paper we run Monte Carlo experiments on user interfaces. The
Monte Carlo experiments simulate human typing, involving both error and error
repair.

Probabilistic methods have previously been used to find input that crashes
programs [24], but, apart from our own work [4,6], building on methods to assess
usability [37, 43, 46], they have not been used to assess safety or accuracy. The
present paper is the first to consider operator error correction and the behaviour
of delete and clear keys.
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Monte Carlo methods use a random process to explore a state space. To anal-
yse a user interface, the Monte Carlo process generates random key presses that
control the user interface exactly as a user operating it would.

To use Monte Carlo for analysing numeric user interfaces, we choose a random
number as the target n for the simulated user to enter. A standard algorithm con-
verts n to a sequence of keystrokes. This sequence of keystrokes is then modified
by random processes to simulate well-known forms of human error, such as digit
repetition. With a given probability, the simulated user will notice such errors
and correct them, e.g., by pressing the DELETE key. On completion of entering
the modified sequence of keystrokes, the number actually entered is compared to
the target value n.

Once a Monte Carlo experiment is set up, there is no overhead in performing
experiments — an advantage over the costs of conventional user studies: recruit-
ing participants, briefing them and collecting data. A typical Monte Carlo experi-
ment can run continuously much faster than the fastest human can achieve in their
best bursts of productivity. A Monte Carlo experiment is trivial to conduct, and
designers can rapidly compare many designs. Finally, Monte Carlo experiments
can be parameterised to study a range of behavioural patterns.

Ideally, delete keys should work adequately for repairing the majority of er-
rors, and if the higher level cognitive process notices an error, pressing a clear key
or following other strategies can be used to recover.

An operator can make a typing error by:

repetition of a key — repaired by pressing delete;

omission of a key — repaired by typing the missing key;

transposition of two keys — repaired by deleting two keys then retyping them
in the correct order;

substitution of one key for another — repaired by pressing delete, then
retyping the correct key; or by

insertion of another key — simply repaired by pressing delete.

These are typing errors, and do not cover the possibility that the operator is
mistakenly intending to type the wrong number, for instance following a reading
error or misunderstanding how numbers work [27].

For the Monte Carlo model in this paper we assume the errors occur indepen-
dently of each other and with equal probability 0.01 per keystroke, comparable to
empirical results in [27].
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We assume that once an error occurs and is noticed by the inner cognitive pro-
cess that the operator continues as if the repair succeeds. It makes little difference
whether the≤ 4 or so repair keystrokes are themselves subject to error; modelling
repair perfectly would require additional parameters (certainly, different repairs,
being of different lengths, would have different overall error rates), and hence
more ways of generating parameter-dependent results that might be misleading
if they were estimated incorrectly. When assessing safety, the fewer assumptions,
and the fewer interactions between them, the better.

7.1 Executable systems

A computer generates a Monte Carlo process and that controls the user interface.
Hence to use a Monte Carlo method an executable system is required. If we were
the developers of the systems we are analysing, this would be easy.

The approach is a black box approach, in that only a running (executable) ver-
sion of the user interface is required, perhaps through only an API. The exact
implementation (e.g., the program source code, which may contain intellectual
property) is not needed, though source code would be convenient for using the
technique to help improve the user interface.

In the present paper, however, we carefully reverse engineer commercially
available designs to obtain executable programs, one for each design we consider.
Reverse engineering would not be necessary with collaboration from manufactur-
ers or designers, but for number entry interfaces the task is not difficult.

We note that some number entry user interfaces are defective in complex and
subtle ways, and for them reverse engineering serves to help expose their design
problems [6].

7.2 Excluded issues

The Monte Carlo implementation used here assumes that the operator can key
an unlimited number of digits. Thus, in this paper we do not consider possible
length or value restrictions on numbers, for example that (as happens on some
real systems) no more than 3 digits are permitted or values no more than 999 are
permitted.

Real designs typically do have limits, and the limits themselves may induce se-
rious problems. Such limits will typically induce more error. One example of the
significance is where a bank customer lost $100,000, reported in [28], and there
are many other examples in common devices [40, 45]. An example, specifically
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affecting decimal points, is the Baxter Colleague infusion pump: when the oper-
ator keys a number larger than 99, the Colleague ignores the decimal point key,
hence 1 0 0 • 0 is treated as 1000 , ten times larger than the operator
intended [22, 23].

On all devices tested here, the delete key fails to work correctly when too many
digits have been entered by the operator — and the user is not warned, so iron-
ically correcting a known error (too many digits) creates another error (deleting
other digits).

Many user interfaces that are used to enter short numbers scroll digits, so the
number entered is made up of the most recent digits entered. This style of inter-
face is often used for PIN passwords (e.g., for burglar alarms), typically of 4 or so
digits — the approach allows the user to correct any error by simply re-entering
the 4 digits of their PIN (strictly, an error in a 4 digit PIN can be corrected by at
most 4 digits: if the user intends 1111 but enters 9 1 1 1 , this error can
be corrected by pressing 1 just once). This form of correction is not considered
in the present paper.

Many user interfaces have additional ways of correcting operator input. This
paper only considers deletion and starting again (cancel). Alternatives include the
use of arrow keys, insertion and overwrite modes, and more [32]. All of these fea-
tures could be evaluated using the methodology introduced in this paper, but the
number of design combinations grows exponentially and would unfortunately,
be unsuitable to present in a single paper. Note that as the number of error-
correcting features increases, the number of strategies available to correct error
also increases, and more empirical evidence is needed to inform how the operator
selects between those strategies [6].

Many user interfaces have more keys than are necessary for entering numbers,
as occurs with QWERTY keyboards. What should a user interface do when an op-
erator presses a key that is not numeric? If the interface ignores the key, then what
should the DELETE key do? If the number display is formatted to be more read-
able — e.g., following ISO standards, grouping digits in threes, or following NHS
guidelines (groups of 3 and 4, which is non-standard) thus apparently inserting
spaces or commas — what should the user interface do when the user keys the
separators? Under NHS guidance [25] it is mandatory to ignore the operator key-
ing separators and mandatory to display spaces between groups of digits, as if the
operator had entered them — which seems confusing, because if an operator keys
a space it is “ignored” yet one also appears in the display! The NHS standard fails
to say what happens when an operator presses space in the middle of a group of
digits: it is then unlikely to be wise to ignore it when it ought to trigger a warning.
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For the purposes of the present paper, all such design issues should be recognised
as raising serious questions that need addressing empirically before designing de-
pendable or safety critical systems. As such, evaluation of these choices is, in the
first instance, beyond the scope of this paper.

Good practice is to provide key press feedback, such as a click. On devices
where there is no feedback, the operator has no confirmation whether the key
press was processed. On the Baxter Colleague, pressing keys rapidly will lose
keystrokes, but there is no difference in key click feedback, because there is none
before or after keystrokes are lost. Worse, when the infusion pump is not infusing,
it beeps at intervals. If entering numbers in this mode, these beeps can coincide
with a lost keystroke, thus misleadingly confirming the key was processed when
in fact it was not. Our Monte Carlo models do not consider keystroke feedback.

This paper has only space to evaluate a few common designs; there are many
ways to implement number entry features idiosyncratically, and it is impossible
to compare all of them in this paper. One example will be sufficient to illustrate
some of the types of issue that may be encountered. On the Samsung Android
(version 2.3.3, 2014), pressing • gets displayed as 0. , that is, the Samsung in-
serts a leading zero the operator did not key. Hence (though Samsung could have
designed it differently) pressing • DEL does not result in nothing, but in the
digit zero. The difference between these results can be exposed by the operator
continuing after the correction: • DEL – 9 becomes -9 , but – 9 be-
comes 9 , even though the operator might consider the two key sequences to be
exactly equivalent.

There are no problems in principle in using the Monte Carlo method to evalu-
ate such designs, it is just impractical to cover so many design variants in a single
paper.

Finally, number entry is usually part of a larger task, such as entering figures
into a spreadsheet, in turn itself part of a larger task such as performing statistical
analysis of an experiment, or calculating radiation therapy doses, or completing
financial returns for taxation. For all such tasks, there are generally additional
methods (beyond the scope of the present paper) for checking and correcting data,
for instance by using double entry, plotting graphs to identify outliers or using
numbers with special properties, such as check-digits. How the operator validates
data can have a huge impact on the quality of results; for example, in data entry
experiments [3], visual checking resulted in thirty times more errors than double
entry.
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7.3 Experiments comparing 8 designs

We compare 4 common commercial designs (we abbreviate with the letters ABCN)
with 4 new designs (DEFG). It is important to emphasise that the functionality of
these designs are equivalent — on all designs, users can enter and correct num-
bers, and apart from infrequent cases (e.g., deleting decimal points) the designs
are indistinguishable. Few operators would be able to tell the designs apart yet,
as we shall show, their induced error rates are different.

The designs explore various features, as below. See table 2 for a concise sum-
mary of the designs, and Appendix C for a formal description of the designs.
(Short names are used in figures and tables to save space.)

Design A Many designs always display exactly one decimal point, even if the
operator has typed none or several. On such designs, the DELETE key only
deletes digits, probably because deleting decimals is problematic.

Design A short name: Broken delete & decimals.

Design B More sophisticated designs show a decimal point only if the operator
has in fact entered one, but they will still only show at most one decimal
point. The DELETE key deletes digits and the decimal point, but obviously
keying • • DELETE will not have the desired effect as the second
decimal point was never displayed.

Design B systems ignore a second or subsequent decimal point, although it
would also be consistent to move the decimal point to the far right of the
display. We do not consider this design variation in the present paper.

Design B short name: Fixed delete only.

Design C Correcting the design defects in designs A and B but with no other
features produces design C. Digits and decimal points are treated equally,
and the DELETE key deletes them both. Multiple decimal points can be
keyed, which implies an operator’s input may be invalid and rejected by
the design, thus forcing the operator to correct it.

Design C short name: Fixed delete & decimals.

Design D We know that key bounce is a serious design problem [16]. Design D
forces all repetitions, even in intended numbers like 100, to be entered
twice. Design D may cause occasional extra work for users, but it
effectively blocks errors from key bounce.
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Design D short name: Debounced.

Design E Designs E and F enforce Institute of Safe Medication Practices (ISMP)
recommendations [17].2 In both designs E and F, when a number fails the
ISMP test, the user must start again. Note that (in contrast to design D that
rejects repeated keys) all numeric values can be expressed as valid ISMP
numbers.

In design E, when a number fails the ISMP test, the operator must re-enter
it, possibly making further errors.

Design E short name: ISMP.

Design F Design F simulates optimal performance for design E. In effect, after
detecting a non-ISMP number, design F cues the operator to employ
higher-level processes to re-enter the number more carefully and hence
correctly: e.g., interrupting lower level cognitive processes so higher level
processes take thoughtful action [40].

Note how the Monte Carlo experiments need not explore how a human
operator would really interact: examples like design F show that
hypothetical user interaction can also be evaluated. Put another way,
design E is a real user interface design, and Design F provides the most
optimistic behaviour for that design for evaluation purposes.

Design F short name: Low bound ISMP.

Design G Design G enforces range checking, like a hard limit on a Dose Error
Reduction System [48], requiring entered numbers to be within an
illustrative factor of 5 of intended numbers.

Design G short name: Range check.

Design N Finally, it is interesting how well a design with no delete key might
perform. Hence, we consider design N, which has a CLEAR key but no
DELETE key (or the operator is trained not to use any delete key). We know
of no design that implements CLEAR defectively.

Design N short name: No delete (clear only).

2An ISMP number forbids “naked decimal points” such as .1 (potentially misread as 1) and
does not allow trailing zeros after a decimal point, as in 1.0 (potentially misread as 10). Additional
criteria used here that ISMP fail to state: the number must have at least one digit, at most one
decimal point, and must not start with 0 unless the next character is a decimal point.
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We could of course continue generating design combinations indefinitely, for
instance combining design N with ISMP checking. In our previous paper [4] we
evaluated designs with neither delete nor clear. Once a Monte Carlo test bed is set
up, performing such experiments and comparing design variations is easier than
describing them.

7.4 Number of Monte Carlo tests

We performed 108 Monte Carlo experiments per design (i.e., simulating keying in
108 numbers on each of the 8 user interface designs) measuring risk with vulner-
ability set at 100 different values, v = 0.001i, i ∈ {0..100}.
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PART 3: RESULTS AND DISCUSSION

8 Results

As expected, our experiments show risk increases with increasing vulnerability.
The relation for all designs is linear, though the intercepts for designs AB have
non-zero risk for zero vulnerability; this is strong evidence that these common
designs are defective.

All designs have linear regression coefficient of determination (correlations)
R2 ≥ 0.9906.

Figure 1 exhibits results graphically. Designs A and B are worse, and have
non-zero risk at zero vulnerability. Design N, with no delete, performs better
than devices with a defective delete; it performs marginally better than the correct
design C because at most one noticed error can occur per number. When designs
aid the operator detecting error (DEFG) risk is further reduced.

See figure 2 caption for a discussion of risk ratio results for the designs consid-
ered.

9 Discussion

The analysis showed that two designs, A and B, are clearly not suitable for safety
critical contexts. The analysis also shows that improvements can be achieved by
addressing the faults A and B illustrate with the refinements of the other designs.

In all cases, simple tests could be readily employed on seeing a system that
would provide a diagnostic test of which design the device was. In particular,
anyone procuring interactive systems or devices could determine an A or B design
within seconds of the device being switched on and tested. Hopefully, they would
reject such designs equally quickly. (Tables 2 and 3 give concrete examples, and
Appendix C give design rules that will help distinguish one design from another.)

The best performing Monte Carlo models assume the design provides feed-
back to the operator to influence their behaviour to manage errors. This was an as-
sumption behind designs F and G. Error warning messages are often transient in
nature and can easily be missed by operators. Our eye tracking experiments [27]
show operators devote more and longer eye fixations on the keyboard than on the
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display, so therefore warnings in the display, particularly transient information,
are likely to be missed.

The Monte Carlo experiments show that error should be detected, and if it is,
further risk can be reduced. However, the system detecting error and the opera-
tor realising error has been detected and taking action are different things. Errors
have to be clearly announced to the operator, and this typically means latching
them so that they are still visible when the operator looks for a result follow-
ing their actions. On a calculator, the natural place is the number display, where
calculators conventionally report answers. On other devices, other locations (or
sounds or physical feedback, like vibration) may be used. But if the operator does
not know an uncorrected error has occurred, they are induced to continue and the
consequences of the error will escalate rather than be mitigated.

9.1 Recommendations

Our results show that poor user interface designs perform much worse for num-
ber entry than better-designed user interfaces. Unfortunately, until performance
figures are published, it is very hard to know what is preferable when choosing
between manufacturer’s products.

1. Monte Carlo methods are easy to use and reveal design flaws in user
interfaces very effectively. In number entry user interfaces, evaluation can
be easily quantified. Monte Carlo methods can be used to rank user
interface designs for safety.

2. The safest general-purpose number entry system is design E, and other
designs show that more context (e.g., design G) can further increase safety.
If the ISMP number syntax is felt to be intrusive for the application
(although it imposes no numeric limitations) then design C may be
preferred.

3. In the absence of evidence of correct design and implementation, prefer
systems (like design N) with no delete key.

4. Train operators to use CLEAR (or equivalent) instead of DELETE . Human
Factors specialists may be used to help seek ways to help teams be more
resilient when using defective systems that are already in use.

5. Use our specifications of the various designs (Appendix C and the
examples in tables 2 and 3) to try to establish which design is being
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considered. Our results may then give an estimate of the relative
performance of the designs being considered. Our analysis and results
suggest that designs A and B are misleading and unsafe.

6. The question may arise, “The new designs are better, but are they better
enough?” An investment in evaluation at the design stage, as suggested in
this paper, can provide improvements to user interfaces, which however
small, will benefit users indefinitely into the future. Some of those benefits
may include avoiding catastrophes, which will amply repay the marginally
increased effort for the designers. See the note on technical debt in
Appendix A.

9.2 Little need to measure vulnerability empirically

Since none of the best fit lines intersect, the best designs are best regardless of vul-
nerability. For practical purposes the ranking of design quality is independent of
vulnerability.

This result is important because the empirical evaluation of user interfaces is
very time consuming, can only be performed after a design has been created, and
is very difficult to design to cover enough errors to be statistically significant (op-
erator error rates are typically very low). Moreover, it is unreliable to generalise
laboratory experiments to provide estimates for the real world situations where
the systems will be used.

One might wish to estimate vulnerability to estimate the improvement that
can be achieved by replacing one design by another. However, using Monte Carlo
methods to develop and evaluate design variations can help inform A/B tests,
which will be more reliable to perform than experiments to measure vulnerability
directly.

10 Conclusions

We have shown that number entry systems, and hence user interfaces more gen-
erally, are a rich source of scientific investigation — we would argue comparable
to biological species or archæological artefacts, say. Unlike conventional objects
of science, however, number entry systems do not stand apart from the observer,
and indeed the nature of human error makes studying number entry problematic
and fascinating, since it occurs in design, in use, and in observation. While the
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development of number notations has been refined over centuries [7,11], the new
field of “interactive numbers” has yet to be developed [38].

Errors cannot be avoided; to err is human. However, many design errors can
be eliminated, and operators should always be warned (or pre-warned) appro-
priately if the nature of the error cannot be correctly handled and repaired, for
example, if there is a limit (such as the maximum number of keystrokes) the oper-
ator has exceeded.

It was an insight in the 1940s to argue that focusing on operator error was in-
adequate [8]. The whole system fails to appropriately manage errors: the operator
is no more the cause of any error than the design. Indeed, design error is ubiq-
uitous — it is astonishing that designs with non-zero risk for zero vulnerability
persist in the market. This paper will help designers, system selectors (procurers
or consumers), and users be more critical, particularly about number entry tasks.

Design error is hard to notice because designers lose situational awareness
and because operators take designs for granted, assuming technology is good,
and newer technology is better. In fact, there is considerable variation in design
quality, even for equally new designs. This paper showed that identifying and
fixing design error can have a more strategic impact than training operators to be
more vigilant, whether in standard operating procedures or human factors more
generally. Given that normal error-free operator behaviour cannot distinguish
between the designs, little training if any is required to take advantage of the
possible improvements.
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A Why do design problems persist?

Section 5 refers to this Appendix.

1. What this paper calls defects may be dimissed as trivial. The word “trivial”
is equivocal (trivial = easy to ignore; trivial = easy to fix).

2. Users can be blamed — and blame themselves — for error. Error-inducing
design can create additional income. Some common ATMs (cash machines)
display 0•00 and as digits are keyed, the number scrolls in from the right
— so the first two digits, say 1 2 , appear as a fraction (in this case,
0•12 ) and to get an amount the ATM can dispense, the operator must

finish with two consecutive zeros. This unnecessary design complexity is
“fail safe” in that an ATM will not dispense coins, but if the user wanted
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$500 they might only get $5, and perhaps pay a fee to get it, and another fee
to get the $495!

3. Technical debt [1] describes the savings made by developers which users
pay off in the future. The cost savings at development time mean
developers often discount user interface design issues, especially ones
thought “trivial” and which have little impact on short-term business; the
ATM example, above, is a concrete case of actual debt affecting users
effectively paying off the consequences of saved effort during development.

4. Many think “reading a number is program anyone can write; it is a few
lines of code and will obviously work.” Neither rigorous testing nor formal
development seems necessary for such a seemingly simple problem.

5. Uncorrected errors in user interfaces occur because we do not notice them.
If we do not notice them, then it is likely that related bugs in user interfaces
are not noticed either. This is a vicious circle: error handling in user
interfaces is very poor.

6. Confirmation bias is the tendency of people to confirm their beliefs, to
prefer to check things they think are right. We rarely notice our errors (if we
noticed them, we would not make errors), so we tend to notice our
successes and ignore our errors and the design errors that create them.

7. Error is very hard to research,3 and has little presence in the user interface
design literature. For example, the classic book on the science is Card,
Moran and Newell [5] which specifically excludes human error; it is
concerned only with skilled, error-free human performance. Norman [26] is
one of the very few papers mapping the psychology of error into practical
design advice.

8. Most of the user interface design literature ignores the programmer, and
thus programmers build user interfaces but have negligible awareness of
human factors. Landauer [20] is a classic book promoting user centred
design, yet its model of development is user centred design then “just” tell

3Ethical problems arise with studying actual errors, so simulation is often used. Error rates are
very low, so stress and other experimental manipulations — subterfuges — are used to increase
error rates. Validity of laboratory experiments are hard to assure or generalise to real life. Errors
are often studied in psychological terms, not generating knowledge that can reliably applied to
design (e.g., an MRI scan reveals parts of the brain, not parts of the design). Et cetera.
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the programmer what to do. A notable exception to the trend is
Thimbleby [37].

9. Rigorously developed systems must be traceable back to clear
requirements. Number entry is typically a requirement in itself that is not
decomposed into further requirements; the details of individual key presses
is considered trivial and not formalised. A case in point, the ISMP
requirements for safe number formats has critical oversights this paper
identifies (see footnote on page 19).

10. While there are many programmers, only a very low proportion can
program well. Appendix B exhibits a publicly available proposed world
wide web standard for parsing numbers, and as the Appendix points out, it
accepts (without reporting errors) invalid numbers like 1.2.3 and 2E3.2
(presumably 2× 103.2 but actually parsed as 2× 103, since the parser
terminates prematurely at the unexpected decimal point).

It is invidious to select examples, but we chose the example exhibited in
Appendix B because the world wide web has one of the largest user bases
of any system, and therefore the advantages of good requirements and
specification are obvious (the number specification was also made public,
which was an necessary criterion for review in the present paper).

11. Serious, high-profile problems, like the 22 year-old ShellShock bug in bash
(disclosed in 2014) share similar problems: ShellShock exploits bash’s
incorrect parsing of trailing strings, a problem identical to one of the
number parser problems exhibited in Appendix B. In other words, bad
programming is common; the design defects reported in this paper share
themes with other widespread bugs.

12. While poor security practices are taken seriously, poor quality user
interfaces are dismissed. Thus Fu [13] reports on a security weakness
caused by a buffer overflow problem — bad hackers may exploit this
weakness, so it needs fixing; yet the same buffer overflow problem in a user
interface [28] is ignored — why would good operators want to exploit
bugs [41]?!

13. There is effectively no professional regulation controlling practice in the
software industry. Anybody can program anything.
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14. Nobody provides assuredly better systems. The state of the art in
computing (particularly consumer devices) is driven by excitement, not by
dependability.

15. When errors do occur that cause harm, often the operator is blamed.
Indeed, when devices have regulatory approval, it is almost inevitable that
operators are blamed because (in some jurisdictions) regulatory approval
implies the design is fit for purpose, and therefore any faults in use must be
due to the operator.

16. Software warranties typically argue that the developers are not responsible
for any problems experienced in the use of the system [33]. If nobody takes
responsibility for software quality and denies liability for defects, why
would manufacturers invest in unnecessary quality that does not improve
sales? Some warranties argue “by using this software the operator agrees
. . . ” and may also include caveats such as “the operator must exercise their
own judgement to interpret results” — which begs the question why
anybody would want to use critical systems that cannot be relied upon!

17. Procurement is generally driven by cost not safety, and in any case, safety
for many systems is not quantifiable.

18. Because software quality is poor and it is not easy to measure quality,
regulators are in the impossible bind that, on the one hand, the market does
not demand higher quality, and on the other that if higher quality was a
regulatory requirement many products the market finds valuable would
have to be phased out. An overwhelming “regulatory burden” that appears
to offer negligible benefit to manufacturers is not going to be pursued.

19. Until the present paper, there are no effective tools or processes for finding
and quantifying user interface design problems, particularly problems that
have been overlooked in requirements.

B W3C floating point numbers

Section 10 refers to this Appendix.
The following code was copied from the World Wide Web Consortium’s A

vocabulary and associated APIs for HTML and XHTML W3C Working Draft [50]. This
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code is notable because it is presented by a leading organisation with a world-
wide impact, but what is presented as a computer program is — we argue —
in fact a list of vague English instructions, with misleading sophistication and
pedantry.

It is hard to read and hard to reason about. It is notable for not using assertions
or other standard features for helping assure quality, let alone giving the require-
ments it should implement. It is not presented with unit tests. Clearer approaches
have been suggested elsewhere [44].

This W3C specification fails completely to define how an operator interacts
with numbers — and thus raises many design issues it fails to discuss, such as
what happens when an operator keys a number that is “too long” and perhaps is
truncated so displaying a misleading number. Appendix C (based on the notation
developed in [42]), which defines the designs tested in this paper, illustrates how
simply interaction can be specified.

The original code is presented, followed by a non-exhaustive but representa-
tive list of more specific criticisms relevant to the concerns of the present paper.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let value have the value 1.

4. Let divisor have the value 1.

5. Let exponent have the value 1.

6. Skip whitespace.

7. If position is past the end of input, return an error.

8. If the character indicated by position is a U+002D HYPHEN-MINUS character (–):

(a) Change value and divisor to –1.

(b) Advance position to the next character.

(c) If position is past the end of input, return an error.

9. If the character indicated by position is not one of U+0030 DIGIT ZERO (0) to
U+0039 DIGIT NINE (9), then return an error.

10. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039
DIGIT NINE (9), and interpret the resulting sequence as a base-ten integer.
Multiply value by that integer.
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11. If position is past the end of input, jump to the step labeled conversion.

12. If the character indicated by position is a U+002E FULL STOP (.), run these
substeps:

(a) Advance position to the next character.

(b) If position is past the end of input, or if the character indicated by position is
not one of U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), then jump to
the step labeled conversion.

(c) Fraction loop: Multiply divisor by ten.

(d) Add the value of the character indicated by position, interpreted as a base-ten
digit (0..9) and divided by divisor, to value.

(e) Advance position to the next character.

(f) If position is past the end of input, then jump to the step labeled conversion.

(g) If the character indicated by position is one of U+0030 DIGIT ZERO (0) to
U+0039 DIGIT NINE (9), jump back to the step labeled fraction loop in these
substeps.

13. If the character indicated by position is a U+0065 LATIN SMALL LETTER E
character (e) or a U+0045 LATIN CAPITAL LETTER E character (E), run these
substeps:

(a) Advance position to the next character.

(b) If position is past the end of input, then jump to the step labeled conversion.

(c) If the character indicated by position is a U+002D HYPHEN-MINUS character
(–):

i. Change exponent to –1.
ii. Advance position to the next character.
iii. If position is past the end of input, then jump to the step labeled

conversion.

Otherwise, if the character indicated by position is a U+002B PLUS SIGN
character (+):

(a) Advance position to the next character.

(b) If position is past the end of input, then jump to the step labeled conversion.

(c) If the character indicated by position is not one of U+0030 DIGIT ZERO (0) to
U+0039 DIGIT NINE (9), then jump to the step labeled conversion.
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(d) Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to
U+0039 DIGIT NINE (9), and interpret the resulting sequence as a base-ten
integer. Multiply exponent by that integer.

(e) Multiply value by ten raised to the exponentth [sic] power.

14. Conversion: Let S be the set of finite IEEE 754 single-precision floating point
values except −0, but with two special values added: 2128 and −2128.

15. Let rounded-value be the number in S that is closest to value, selecting the number
with an even significand if there are two equally close values. (The two special
values 2128 and −2128 are considered to have even significands for this purpose.)

16. If rounded-value is 2128 or −2128, return an error.

17. Return rounded-value.

Comments on the W3C algorithm:

1. The W3C algorithm permits number entries such as 2E3.2, 1.2.3 and so
forth, without reporting an error. A key problem is that the step labelled
“conversion” does not check that string parsing has been completed, and
therefore unexpected characters beyond the “end” of the number are
ignored. Numerous misleading examples can be imagined, such as 1+1,
2E–4 and so on, as well as culturally plausible errors such as 1,2 (intending
1.2) which is read as 1.

2. The conversion assumes IEEE 754 single precision floating point binary
format, which covers 2−126 to 2127, and supposes that the arithmetic
conversion is exact, then rounds to the set S or the overflow values. It is
unfortunate that the “return an error” does not distinguish between a
syntax error and a well-formed number that happens to have numeric
overflow. Since the binary format allows 7.22 decimal digits with an
exponent at most 38.23, reading a decimal number (as here) would be better
handled using the IEEE 745 decimal floating point standard.

3. The IEEE standard caters for returning NaN (not a number [12]) as well as
±∞, which may be offer better ways of handling overflow than by the W3C
indiscriminate “error.” However, a common problem in programming is
detecting an error in the “wrong” place, and merely ignoring the error
elsewhere; ideally the W3C standard should discuss error handling, and
the parsing of numbers should support or be consistent with that approach.
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4. The W3C algorithm attempts to detect overflow, in the sense of parsing a
number outside of the IEEE single precision range, but the approach taken
is flawed, as it assumes the calculation itself does not overflow. The
algorithm permits any integer exponent without detecting overflow;
parsing the likes of 1E1000000. . . can overflow many implementations.

5. The bound checking uses −2128 < n < 2128; yet these bounds have little
significance to users — the algorithm is in base 10 not base 2! Had the valid
range been ±1038 (1038 is the largest power of 10 no more than 2128) the code
would have been much easier to implement correctly, since the bound can
be checked by simply counting (decimal) digits.

6. While the algorithm discusses overflow, it fails to detect or manage display
overflow — for example, if a user keys more digits than fit in a display box,
the result is a misleading overflow, but is not detected by this code.

7. In the context of the present paper, it is interesting that this proposed code
does not specify any error correction (what would a CANCEL or DELETE

key do?) as this is left entirely to the browser (or the user’s operating
system), for which there are no standards.

C Design specifications

Section 7.3 and Appendix B refers to this Appendix.
Numeric user interfaces can be considered implemented with a string buffer,

to which the user’s keystrokes are normally appended. Hence the “last” digit or
character in the buffer is the rightmost character.

The delete key normally deletes the last key in the buffer. We can specify the
behaviour of the buffer by preconditions and a postcondition that applies if the
precondition was true. If no precondition is true, nothing happens. Note that
some actions (e.g., press delete) may have several rules, depending on the con-
tents of the buffer, and (as design D shows when pressing a digit) multiple rules
may all apply in a single case. We use the declarative notation from [42] but we
use English to describe the conditions intuitively without introducing further for-
malism.

Rules are written in the following form, numbered for convenient reference:
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(R.1) action

precondition
:::::::::::::::::::::::::::::::::::::::::::

postcondition

When an action occurs and the precondition is fulfilled, the postcondition is
achieved (in some way by software that we do not need to discuss here). The same
action may need several rules, so preconditions cover different eventualities. For
example,

(R.2) Press delete

buffer contains more than one digit
:::::::::::::::::::::::::::::::::::::::::::

last digit is deleted

(R.3) Press delete

buffer contains exactly one digit
:::::::::::::::::::::::::::::::::::::::::::

buffer is 0

. . . is a pair of rules specifying that the delete key deletes the last digit, but
because the buffer (for this design) is not allowed to have no digits, when the the
buffer only contains one digit, it is not “deleted” but made to be zero. As a special
case, if the buffer was zero, then it will still be zero after pressing delete. (These
simple illustrative rules say nothing about behaviour with decimals.)

Conditions may refer to “full buffer,” which means the number of digits in the
buffer is the maximum permitted by the device, perhaps 8 characters. In many
designs showing a decimal does not affect the buffer limit, since each character
in the buffer has an optional decimal point — which is a design decision that of
course makes it impractical to display more than one adjacent decimal point. Our
definitions below ignore the user keying additional digits when the buffer is full;
arguably better designs would alert the user and “lock up” until CLEAR is pressed
to clear the display (this paper did not evaluate the effect of buffer overflow).

We note that the two defective designs (A and B) have longer descriptions
than the other designs. This suggests that designs A and B were not specified
declaratively but, for instance, as side-effects of running an imperative program,
so the special cases our notation makes explicit were probably never considered
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by programmers. It is also noteworthy that the specification of W3C number input
in Appendix B is imperative in exactly this way — it is very hard to infer the rules
the program implements just by reading the program, even when helped by the
comments.

Design A — Broken delete & decimals

Design A occurs in many systems and devices such as the Casio HR-150TEC,
Hewlett Packard EasyCalc 100, etc. The display always shows exactly one dec-
imal point.

(A.1) Initially, or Press clear

(no condition)
:::::::::::::::::::::::::::::::::::::::::::

buffer is 0.

(A.2) Press digit

buffer not full
:::::::::::::::::::::::::::::::::::::::::::

digit appended to buffer

(A.3) Press decimal

(no condition)
:::::::::::::::::::::::::::::::::::::::::::

decimal moved to end of buffer

(A.4) Press delete

more than one digit and last character is
a digit

:::::::::::::::::::::::::::::::::::::::::::

deleted last digit
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(A.5) Press delete

there is more than one digit and last char-
acter is a decimal

:::::::::::::::::::::::::::::::::::::::::::

delete the digit before the decimal

(A.6) Press delete

there is exactly one digit in the buffer
:::::::::::::::::::::::::::::::::::::::::::

change the buffer to 0.

Examples: Delete key ignores decimal points, and the design ignores multiple
decimal points. Thus pressing 1 • • 2 and 1 • 2 • are both equiv-
alent to 1•2 ; 1 2 • • DEL 3 is equivalent to 13 ; and pressing 1 •
• DEL 2 is equivalent to 0•2 .

Design B — Fixed delete only

Design B occurs in many devices, such as the Samsung Android, Apple iPhone,
etc. Delete key works correctly, but the design ignores multiple decimal points.
The display can show zero or one decimal points.

(B.1) Initially, or Press clear

(no condition)
:::::::::::::::::::::::::::::::::::::::::::

buffer is 0

(B.2) Press digit

buffer not full
:::::::::::::::::::::::::::::::::::::::::::

digit appended to buffer
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(B.3) Press decimal

decimal in buffer
:::::::::::::::::::::::::::::::::::::::::::

(nothing happens)

(B.4) Press decimal

decimal not in buffer
:::::::::::::::::::::::::::::::::::::::::::

decimal put at end of buffer

(B.5) Press delete

buffer has exactly one character (a digit)
:::::::::::::::::::::::::::::::::::::::::::

buffer is 0

(B.6) Press delete

buffer has more than one character (digit
or decimal)

:::::::::::::::::::::::::::::::::::::::::::

deleted last character

Examples: pressing 1 • • 2 is equivalent to 1•2 (as in design A),
but pressing 1 • • DEL 2 is equivalent to 12 (60 times higher than in
Design A).

Design C — Fixed delete & decimals

Nominally correct design, exemplified by the Casio fx-85GT and many familiar
keyboard-based applications on PCs, such as Microsoft Word. The display can
show zero, one or multiple decimal points.
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(C.1) Initially, or Press clear

(no condition)
:::::::::::::::::::::::::::::::::::::::::::

buffer is 0

(C.2) Press digit or decimal

buffer not full
:::::::::::::::::::::::::::::::::::::::::::

digit or decimal appended to buffer

(C.3) Press delete

buffer has exactly one character (a digit)
:::::::::::::::::::::::::::::::::::::::::::

buffer is 0

(C.4) Press delete

buffer has more than one character (digit
or decimal)

:::::::::::::::::::::::::::::::::::::::::::

deleted last character

Design D — Debounced

Correct design, which also intercepts key bounce. A number entered with a repe-
tition is blocked, and the operator has to re-enter it.

Design D is design C, but with this rule added:

(D.1) Press digit or decimal

no warning since last cleared display and
this keypress is the same as last character
in buffer

:::::::::::::::::::::::::::::::::::::::::::

user warned, buffer is 0

and this rule replacing C.2:
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(D.2) Press digit or decimal

buffer not full and there has been a warn-
ing since last cleared display

:::::::::::::::::::::::::::::::::::::::::::

digit or decimal appended to buffer

Since pressing enough DELETE keys is equivalent to pressing CLEAR , then
“since last cleared display” in the rules above more precisely means “since the
display was last 0 .”

Design E — ISMP

Correct design, which also checks ISMP recommendations. Invalid numbers are
intercepted and the operator retypes them, possibly making further errors.

Similar to design D, except the added rules are from ISMP. Rather than re-
jecting repetition, ISMP rejects numbers with a leading zero if the number greater
than 1; no leading zero if number less than 1; trailing zeros after a decimal; deci-
mal if no digits after it; a trailing zero after a decimal; more than one decimal.

Design F — Low bound ISMP

Correct design, which, like design E, enforces ISMP recommendations but ensures
the number after an operator error, that the number is then correctly entered. De-
sign F therefore gives a lower bound on the effectiveness of the ISMP intervention
— it behaves as if number entry is perfect (after detecting an operator error).

Design G — Range check

Like design C, except that the condition is that a number entered more than 5× n
or less that n/5 is barred the first time it occurs.

Design G is a nominally correct design, which also enforces value to be within
a factor of 5 of the intended number. Although 5 is an arbitrary choice, chosen for
this paper, in a typical dose error reduction system, a fixed range is set depending
on the intended therapy — effectively, selecting the drug sets the range, whereas
in this paper the range is set as a proportion of the intended number.

A dose error reduction system will also have “soft” and “hard” limits. Design
G has “soft” limits — a warning occurs, and the user can then re-enter the number.
A hard limit, in contrast, cannot be over-ridden.
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Design N — No delete (clear only)

Like design C, but without any delete key. When the operator notices errors they
must be corrected by clearing and starting over. Like design C, and unlike designs
DEFG, N does not detect any errors.
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Blunt end Regulator The organisation that specifies high-level design rules
and procedures (such as ISO 9241, ISO 19471, etc).

Designer The person or persons who design, create or program
the system. Designers are typically remote, as in man-
ufacturers or their sub-contractors. In this paper we
are particularly concerned with designers of interac-
tive systems.

System The environment in which the operator works. The
system includes the devices as well as the standard
operating procedures, training, and other people. (The
present paper is particularly concerned with the hu-
man interface of automated parts of the system.)

Procurer People who choose designed (manufactured, pro-
grammed) products and assemble them into local sys-
tems.

Manager
Supervisor

People who are responsible for and devise rules within
which operators work. Managers typically set require-
ments for designers.

Team In resilient organisations [30], the operator is seen as
working within an effective team; other people help the
operator avoid, monitor and mitigate error.

Operator The person “at the sharp end” who is normally (but
not always appropriately) considered responsible for
outcomes.

Sharp end Device The part of the system that physically causes the in-
cident; for example, the operator may have pressed a
button on the device, but the device actually caused
the harm.

Victim The person or persons immediately suffering from the
consequences of unmanaged or inadequately man-
aged error.

Second
victim

Operators or others who suffer indirectly, for instance
from depression or inappropriate line management re-
sponse [52].

Table 1: Terminology used in this paper. The table makes clear that the designer
has responsibility both at the blunt end and at the sharp end. (In a sense, the
regulators, procurers and managers are all designers, since they specify or choose
from a set of designs, which itself is a design activity.)
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Design Brief description

A Delete key ignores decimal points, and the design ignores multiple
decimal points. Thus 1 • • 2 and 1 • 2 • are both
equivalent to 1•2 ; 1 2 • • DEL 3 is equivalent to 13 ;
and 1 • • DEL 2 is equivalent to 0•2 . Design A occurs in
many systems and devices such as the Casio HR-150TEC, Hewlett
Packard EasyCalc 100, etc.

B Delete key works correctly, but the design ignores multiple decimal
points. Thus 1 • • 2 is equivalent to 1•2 (as in design A),
but 1 • • DEL 2 is equivalent to 12 (60 times higher than in
design A). Design B occurs in many devices, such as the Samsung
Android, Apple iPhone, etc.

C Correct design, exemplified by the Casio fx-85GT and many familiar
keyboard-based applications on PCs, such as Microsoft Word.

D Correct design, which also intercepts key bounce. A number entered
with a repetition is blocked, and the operator has to re-enter it.

E Correct design, which also checks ISMP recommendations. Invalid
numbers are intercepted and the operator retypes them, possibly
making further errors.

F Correct design, which also enforces ISMP recommendations and en-
sures the number is correctly entered.

G Correct design, which also enforces value to be within a factor of 5 of
the intended number.

N No delete key. Noticed errors corrected by clearing and starting over.
— (We know of no design that implements delete incorrectly but which

implements decimal point correctly.)

Table 2: Summary of designs. ABCN are common, commercial designs; DEFG are
proposals. Some unusual defective designs [36] are not considered here. Table 3
illustrates the designs on example keystroke errors and recoveries. Appendix C
provides specifications of the designs, sufficient for them to be implemented.
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User’s Final outcomes by design
intention Keystrokes, error and repair A B CDEF

0 1 DEL 0 0 0

1 1 2 DEL 1 1 1

1 1 • DEL 0 1 1

1 1 • • DEL 0 1 1.

1 1 • 2 DEL 1. 1. 1.

12 1 2 • DEL 1 12 12

12 1 2 • • DEL 1 12 12.

12 1 2 • 3 DEL 12. 12. 12.

1.2 1 • • DEL 2 2 12 1.2

12.34 1 2 • • DEL 3 4 134 1234 12.34

Table 3: Delete key behaviour. Astonishingly, many numerical user interfaces
always show a decimal point even if one has not been keyed (regardless of the
delete key). For clarity, the righthand column only shows a decimal point if it has
been keyed and not deleted. It matters: if the display always shows a decimal
point, if the next keystroke is a 0, it unpredictably leaves the number unchanged or
multiplies it by 10. (This table was generated automatically by the Monte Carlo
simulation program: hence what it describes is what was evaluated.)
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N No delete (clear only)

Figure 1: Risk against vulnerability for different designs (see figure 2). Risk in-
creasing with vulnerability is expected (lower lines/gradients are safer), but dif-
ferent designs perform differently. Defective designs AB have potentially unac-
ceptable risk even for “perfect” (v = 0) operation; the alternate designs prove
such risk is avoidable. The grey region covers designs that additionally cue the
operator to manage error; all are safer than conventional designs.
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Figure 2: Risk ratio, the ratio of risk divided by vulnerability; compare visualisa-
tion with figure 1, which is the same data. The distinctively defective designs A
and B stand out. They counter-productively make risk ratio increasingly worse
as the operator tries to reduce vulnerability: that is, however vigilant the opera-
tor (reducing their vulnerability, even to zero) the design defects ensure there is
still residual risk (so the risk ratio goes to infinity). Put another way, even a per-
fect operator might be blamed for the problems these poor designs themselves are
creating.
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Keystrokes Display as it updates

AC 0

AC 1 1

AC 1 ÷ 1

AC 1 ÷ 0 0

AC 1 ÷ 0 • 0.

AC 1 ÷ 0 • + Error

AC 1 ÷ 0 • + 2 2

AC 1 ÷ 0 • + 2 × 2

AC 1 ÷ 0 • + 2 × 5 5

AC 1 ÷ 0 • + 2 × 5 = 10

Table 4: Detecting error on the Apple iPhone calculator. We illustrate the prob-
lem with division by zero in the example where the operator intends to calculate
1 ÷ 0.7 + 2 × 5 but omits the 7 in error. Division by zero is detected, and Error
is displayed, but the operator continues, and finally reaches a display that ap-
pears to show that 10 is the correct answer to the calculation (the correct answer is
11.4285714 to the precision of the iPhone). A more dependable calculator would
display Error continuously until AC is pressed or the operator otherwise indi-
cates they have recognised the error.
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