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By taking a mobile phone as a worked example, we show how it and new interfaces can be simulated
and analysed. A new interface is shown to reduce the optimal key press costs of accessing the
phone's functionality, without losing usability benefits — this is a specific contribution to menu
design. However, the approach is not limited to mobile phones, nor just to menus; the techniques are
general and can be applied widely. A distinctive feature of the approach is that it is fully inspectable
and replicatable — this is a contribution to the field of HCI more generally.
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1 Introduction

The analysis of user interfaces has largely concentrated on issues of human performance, behaviour and cognition. In
comparison, device-oriented analyses of user interfaces are rare, which is strange because devices — unlike humans —
are precisely known. In the design process, devices themselves are the main areas where usability improvements can be
effected. This paper exhibits a range of user interface analyses from a device perspective. An actual device, in commer-
cial production, is used as a case study, and we exhibit a functionally equivalent user interface that requires a third
fewer keypresses to use than the original design on average, and whose worst case cost is just one sixth. The analyses
of both the original and alternative user interfaces are described in sufficient detail to be replicated by other usability
engineers.

1.1 Contributions to HCI

Sometimes papers in HCI describe ideas that are not replicable; often the systems described are inaccessible, obsolete
or proprietary, or the experimental details are not described in sufficient detail, or the methodology used allows vague-
ness. Unspecified craft knowledge is often required to use methods reliably. Although this paper is part of a larger
project, the work is fully replicable: all claims and results here can be reproduced. In any method, there is room for
mistakes and confusion, and often they can go unnoticed — or may be concealed, accidentally or even deliberately; the
approach here can be tested by the investigator or tested by others. Indeed, there are several ways to calculate all results
claimed, and this provides additional checks and safeguards — in contrast to more approximate or descriptive
approaches. As Richard Feynman put it, if there is something slightly wrong with our definitions or theories, then the
mathematical rigour will convert these into ridiculous conclusions (many of which can be spotted automatically), which
we will interpret and so correct. Indeed, automatic and other checks on the mathematics in this paper helped fix typos,
most of them of the sort that would easily have been missed in less formal approaches.

A companion paper is available on the World Wide Web, which provides all information behind the results reported
here. The method is straight-forwardly mathematical, which means there are many textbooks and other sources of
information about it. But, further, the mathematics is 'packaged' as a program, on the web site, and the benefits claimed
can be achieved without delving into the technical details. For example, all the diagrams and results shown in this paper
were calculated from a single specification of an interactive device (which is included as an appendix to this paper).



The techniques for analysis used here can be used with other device specifications, merely by changing the appendix, or
they can be developed for other purposes. 

To prove that our approach can handle real designs, we start from an analysis of an accurate model of the menu user
interface of the Nokia 5110 mobile phone. The general approach to design taken here could be used with any push
button device, and would be particularly easy to employ when working within a design process that specifies the
feature set of a device. (If we had worked with Nokia, of course we could have avoided reverse engineering the device's
user interface, since the user interface specification should have anyway been directly available.)

1.2 Background

Practically, the present paper is a continuation of research going back to Hyperdoc (Thimbleby, 1993), which was a
system for simulating and analysing user interfaces to simple push button devices. Hyperdoc was criticised for only
handling small devices (Dix et al, 1998), and it was also a platform-dependent tool — it ran in HyperCard on the Apple
Macintosh — and its inner workings were never published. In contrast the present approach is based in Mathematica
(Wolfram, 1996), which is platform-independent, and permits the entire approach, including all its details, to be
published. (Actually there is no need to use Mathematica  — Java, for example, could have been used instead; but
Mathematica happens to be much better documented than Java.)

Theoretically, the motivation behind this paper is expressed in (Thimbleby, 1994), and is also illustrated in approaches
such as Furnas (1997). Our approach is in contrast to that actually used by Nokia (Väänänen-Vainio-Mattila & Ruuska,
2000).

We use Mathematica for the mathematical calculations — using good tools helps offset the additional cost of present-
ing results rigorously. Mathematica allows the user interfaces studied to be simulated, checked or have conventional
usability experiments run on them; Mathematica can also generate specifications of the user interface that can be used
by, say, Java or C programs, or even converted to hardware. Other advantages of Mathematica  for HCI work are
discussed elsewhere (Thimbleby, 1999), which further suggests how user manuals and other material can also be
handled.

Mathematica is a cross between a word processor, graphics program and a symbolic mathematics tool. Like a word
processor outliner, sections can be opened or closed to reveal different degrees of detail as needed. What is printed in
these proceedings is only part of what the paper actually contains. For example, the Mathematica instructions to draw
the figures are not needed for most readers of the printed paper, and are therefore concealed; however, the code is still
'inside' the original version of the paper. For example, in the full paper just before all Figures there is a piece of Mathe-
matica code that generated and either plotted or typeset the Figures. To guarantee accuracy, all versions of the paper
were generated automatically from a single master copy (though errors may have crept in during the printing process
for the conference proceedings, which was beyond our control). In short, this paper and its illustrations were not created
by a conventional error-prone 'cut and paste' approach.

2 The Nokia 5110 user interface

As a concrete case study, we will be concerned with the Nokia 5110 mobile handset's menu functions, though there are
a number of essential functions that are not in the menu (such as quick alert settings and keypad lock). There are 84
features accessible through the menu. A softkey, labelled '–,' called Navi by Nokia, selects menu items; keys fl and fi
move up and down within menus. The correction key C takes the user up one level of the menu hierarchy, whose
structure is illustrated in Figure 1. With reference to Figure 1, the function Service nos can be accessed from Standby by
pressing Navi [the phone now shows Phone book], then pressing Navi [shows Search], then pressing fi [shows Service
Nos] followed by a final press of Navi to access the function itself. All menu items have a numeric code (displayed on
the Nokia's LCD panel); for example, Service nos  can also be access by pressing Navi 1 2 (no final press of Navi is
required). 
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There are some complications, which we ignore in this paper — they are also ignored in Nokia's user manual. For
example, inconsistently, the C key does not work when shortcuts are being used, so Navi 2 C 1 is equivalent to Navi 2
1, not Navi 1. The Nokia 'completes' shortcuts, so that Navi 1 7 in fact selects Type of view, not Options (see Figure 1).
There is no fixed relation between shortcuts and the position of functions in the menu, since some functions may not be
supported (e.g., by particular phone operators): if Service nos  is not available, pressing fi would move from Search
directly to Add entry, but the shortcut for Add entry would still be Navi 1 3 (trying Navi 1 2 would get an error).

There is some ambiguity on what should be taken as a basic function, and what as an option within a function. For
example, Type of view  is treated by the User Manual as a function, but it has a submenu (Name list, Name number,
Large font). For our definitive list, see the specification of the Nokia in Appendix 3, which was used to generate all the
figures and graphs in the paper. It can easily be edited to do analyses based on any variations.

Phonebook -1

Search -1-1

Service nos -1-2

Add entry -1-3

Erase -1-4

Edit -1-5

Send entry -1-6

Options -1-7

Type of view -1-7-1

Memory status -1-7-2

Speed dials -1-8

Messages -2

Inbox -2-1

Outbox -2-2

Write messages -2-3

Messagesettings -2-4

Set1 -2-4-1

Message centre number -2-4-1-1

Messages sent as -2-4-1-2

Message validity -2-4-1-3
.............

Tones -9

Incoming call alert -9-1

Ringing tone -9-2

Ringing volume -9-3

Message alert tone -9-4

Keypad tones -9-5

Warning and game tones -9-6

Vibrating alert -9-7

Figure 1. Extracts from the Nokia 5110's menu structure.

Figure 2 shows the Nokia's Standby function at the top, and each horizontal row downwards is a group of functions that
each take an equal minimum number of key presses to access from Standby (ignoring the numeric shortcuts). Of the
188 circles, 84 circles are black: these indicate phone functions of actual use, as opposed to submenus that in them-
selves have no other purpose than structuring the user interface, such as Options.
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Because of the layout of Figure 2, Navi (which selects items from menus,whether submenus or functions) moves
downwards, and C (which corrects errors) goes upwards; the Up and Down keys do not move in a systematic direction
in this layout. Thus the Figure shows the minimum costs of accessing functions, rather than the menu hierarchy (as in
Figure 1).

Standby

1press

2presses

3presses

4presses

5presses

6presses

7presses

8presses

9presses

10presses

11presses

12presses

13presses

14presses

15presses

16presses

17presses

18presses

Figure 2. Visualising the cost of accessing Nokia menu functions.

Each arrow corresponds to a button press: pressing buttons takes the Nokia from one state to another. Since there are
188 states and four buttons, there are 752 arrows, but for clarity Figure 2 does not show arrows going from each of the
84 black circles back to Standby — otherwise the Figure gives an accurate idea of the complexity of the user interface
that is the subject of this paper. 

3 User interface simulation

The specification of the Nokia handset can be used to animate a complete working simulation of the user interface.
Interactively, a user can press buttons and the simulated display will show what the Nokia would have shown. Addition-
ally, the simulation can be instrumented so that it collects statistics on user behaviour.

The Mathematica code required to run the user interface simulation is simple and brief. After a few lines of support
code (see Appendix 4), the following two panels provide the interactive functionality of the user interface: clicking on
the buttons makes it work. Both panels are in fact Mathematica code. The complete keypad is about 20 lines of code,
including specifying the keytop fonts and sizes, plus the (largish) data structure — also Mathematica code — for the
300dpi graphics symbol on the 1 key.
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Figure 3. Interactive Mathematica simulation of a handset device.

4 User interface analysis

A single specification, for the Nokia 5110 menu functions, can be used to support a variety of analyses, as well as
provide the basis for generating novel user interfaces that provide the same functionality. 

Usability depends on many factors. The analyses, below, while not exhaustive of the sorts of mathematical questions
that can be raised, are based on key press costs. A keystroke model could be used to estimate time, but this would take
us beyond the space available for this paper; see Silfverberg et al., 2000 (whose formula gives 240ms per keystroke,
assuming skilled, continuous use of the index finger to press the menu keys). Another measure of usability is the
probability that a particular key is used: the Nokia 5110 design appears to have attempted to increase the frequency the
Navi key is used — it is a soft key, and reduces the number of other keys required. This creates the visual impression of
a simple user interface as well as reducing finger movement. Yet it also means that menu functions (such as the phone's
calculator) are inaccessible during phone calls, because in this mode the Navi key ends the phone call. Whether users
need, say, a calculator during a phone call and whether this need should override the keypad aesthetics is an empirical
question beyond the scope of mathematical analysis. Whatever we choose to analyse mathematically, design trade-offs
can be formulated, which then raise interesting insights and questions that suggest further empirical work…

4.1 Goal weights

From the Nokia specification we can work out the optimal key press sequences to activate any function. The expected
optimal number of presses is 8.83±3.29, meaning that if the Nokia is used optimally without error, then users will take
8.83 presses on average to activate menu functions with a standard deviation of 3.29. But of course, a real user will
access some commands infrequently — especially the ones that Nokia have made less accessible. For example, it takes
11 presses to change the phone's security settings, as against the Search function, which only requires 3 presses to
access. We would get a more realistic expectation of the number of presses if they were weighted by how likely each
function is required by a user.

We could use the simulated handset to obtain weights by getting users to run simulated tasks, but this would take a long
time (and many users), as well as begging the question where we could get appropriate distributions of tasks. No doubt
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Nokia has, over time, collected enough statistics of use to do this accurately. If we had such figures, we could use them.
Instead, for the purposes of this paper, it is sufficient to obtain a plausible probability distribution.

We will assume Nokia has arranged things so that more likely, more frequently used, functions take fewer key presses
to activate. The Zipf distribution (Zipf, 1949) meets the requirements and is easy to calculate; moreover, the Zipf
distribution occurs naturally in many contexts (e.g., it relates the length and frequency of English words) — the fre-
quency of an item is inversely proportional to its cost. Weighting presses by the Zipf probabilities, we obtain an
expected number of presses of 7.15±2.95. This number is of course less than the unweighted expectation because we
have chosen a probability distribution that makes large numbers less likely.

Figure 4 shows an extract from the phone's functions, ranks, costs and Zipf probabilities, ordered by rank. (With all
functions shown the probabilities would sum to 1.)

Functionname Rank Presses Probability
Search 1 3 0.0613

Incomingcallalert 2 4 0.0306

Inbox 2 4 0.0306

Speeddials 2 4 0.0306

Servicenos 2 4 0.0306

.... .... .... ....

Português 14 16 0.00438

Svenska 14 16 0.00438

Español 15 17 0.00408

Norsk 15 17 0.00408

Suomi 16 18 0.00383

Figure 4. Summary of functions, ranked by presses and Zipf probabilities.

Given the state probabilities, and other assumptions such as the probability of making errors and of pressing C, we
could work out button probabilities. Without known error rates, for this paper we take the probabilities of pressing
buttons to be equiprobable (i.e., 0.25).

The Nokia allows users to exit some functions returning to the previous position in the menu hierarchy, whereas others
enter different modes or return to standby. For example, the search function can be used to look up a phone number,
which is then dialled. At the end of the phone call, the phone is back in Standby, rather than returning to the phone book
part of the menu hierarchy. We will assume, for uniformity, that when the user has accessed a goal state, with probabil-
ity 1 on the next button press the device is returned to Standby. 

4.2 Cost of knowledge graphs

There are many ways to analyse a user interface from its specification. The cost of knowledge graph was introduced
and justified for usability analysis by Card et al. (1994) to visualise how easily a user can access the state space of a
system. The graph shows the number of goal states a user can access against the number of user actions, that is, the cost
of acquiring the knowledge available in each state. The cost of knowledge graph can be constructed from empirical
data, from cognitive analysis, or analytically, as we now do. Our approach is probabilistic and does not assume error-
free behaviour; the more realistic the probabilities used, the more realistic the evaluations that can be drawn from them.
Details of the mathematics are given in Appendix 1 — for practical purposes (e.g., use by designers, rather than HCI
researchers), what is important is the visualisation, rather than the way it is calculated; indeed, for anyone using this
paper in its full Mathematica form, all that is necessary is to invoke a function that has already been defined.

A cost of knowledge graph for the Nokia menu system is shown in Figure 5. The solid line shows an unweighted cost
of knowledge graph, but weighting (by the Zipf probabilities) gives a more realistic measure of knowledge — since the
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user is less interested in some functions than others, and the Zipf probabilities reflect this well. The dashed line shows
the weighted cost of knowledge graph.

100 200 300 400 500
Cost

0.05

0.1

0.15

0.2

0.25

Knowledge

Figure 5. Cost of knowledge graph for the Nokia 5110 function menu. Dashed line is Zipf weights;
solid line is uniform weights

The analysis could be refined. For example, we took the probability of pressing the C key as 0.25, which is possibly too
high. Nevertheless, the point demonstrated is that with data (whether empirical or estimated) useful insights can be
derived. Here we see, for instance, that in "average" use (i.e., as might occur in field studies) to achieve a coverage of
25% takes 455 button presses. (This figure does not translate linearly into a time, since the cost of knowledge assumes
the user acquires knowledge, and thus pauses in each new state.)

Furnas (1997) suggests the pair (maximal outdegree, diameter) is a good indicator of the usability of a device; the
original Nokia is (4, 19), compared to the Huffman tree alternative using the same keys discussed below, which is (4,
8). The digit key Huffman tree, also discussed below, is (11, 5) — showing that when more keys are used (here 10 digit
keys, 0–9, and one correction key, C) the worst distance between states (the diameter, 5) can be considerably reduced.
Other measures can be obtained from the specification. For example, to test whether every button works in every state
takes a minimum of 3914 presses, assuming error-free performance. Such a high number suggests that human testing is
inadequate. 

4.3 Alternative user interfaces

A mobile phone can be controlled with many sorts of user interface. In this paper, following Nokia, we restrict our-
selves to tree-structured interfaces. There are other alternatives, which can be much more effective — see: Marsden,
Thimbleby, Jones and Gillary (2000), and Thimbleby (1997) for examples.

The Nokia uses four keys to select from 84 functions. If reducing the number of keystrokes was a design goal, then a
Huffman tree (Huffman, 1952) is the most efficient way, in terms of keystrokes, to do this. From the original list of
functions, we can construct a Huffman tree, using three keys (for navigation) and one key, retaining the C key, for
correcting errors. Under these assumptions, we achieve an expected optimal number of presses of 4.04±0.53 (or
4.18±0.52 unweighted). See Figure 6 for comparison with the ranking of Nokia functions (Figure 4).
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Functionname Rank Presses Probability
Search 1 3 0.0243

Inbox 1 3 0.0243

Incomingcallalert 1 3 0.0243

Speeddials 1 3 0.0243

Servicenos 1 3 0.0243

.... .... .... ....

Norsk 3 5 0.0081

Español 3 5 0.0081

Suomi 3 5 0.0081

Figure 6. Summary of Huffman costs and probabilities.

The entries in the Huffman table are in the same overall order as the original Nokia table; this is a consequence of
building the Huffman interface on the Zipf probabilities, which were in turn inversely proportional to the ranks of the
functions in the original design.

100 200 300 400 500
Cost

0.1

0.2

0.3

0.4

0.5

Knowledge

Figure 7. Cost of knowledge graph for the Huffman tree interface (the dashed line is Zipf weights;
the solid line is uniform weights). For comparison, the lower grey region represents the range of

data from the original Nokia as shown in Figure 5. 

Figure 7 (note the different vertical scales compared to Figure 5) shows the cost of knowledge graph for the Huffman
tree interface is considerably better (in terms of speed of access to the device's functions) than the original design; for
example it achieves 25% coverage after 168 presses (compared to 455 presses for the original Nokia). Even so, the
model over-estimates the costs because of the assumption of pressing the C key with probability 0.25.

A Huffman tree organises functions according to their probability, which would be convenient for a highly skilled user,
but might seem arbitrary to a conventional user. There are two obvious improvements: first, the probabilities could be
determined from the actual user's operation of the handset — the user interface would then adapt to be optimal for the
user's own patterns of behaviour; secondly, the navigation keys could be left as they are (i.e., with a more-or-less topic-
organised structure) and the numeric keys could be used for rapid access, providing shortcut codes.
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In fact, the Nokia already uses numeric keys for faster access; some numeric codes are shown in Figure 1. Although the
Nokia allocation of numeric codes corresponds to the menu structure, since the menu structure itself is of no interest to
users, the codes are effectively arbitrary — for example, even if a user knows Navi 2 4 1, they are not likely to be able
to work out what Navi 2 4 2 is! If we use ten numeric keys and the C key instead of just three navigation keys (i.e.,
creating a Huffman tree with fan-out of 10), we can access functions with 2.98±0.26 (3.01±0.24 unweighted) key
presses. Note that using the digit keys means that a menu key is required (otherwise the digits pressed would just dial a
phone number), compared to using the dedicated keys, where any of them can be pressed immediately without ambigu-
ity. This adds 1 to the costs, which is included in the figures. In comparison, the original Nokia shortcuts have expected
optimum presses of 3.39±0.92 (3.64±0.92 unweighted).
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We can use unallocated fast codes from the Nokia design (for example, Navi 1 7 1 is already allocated, but Navi 1 6 1
is not allocated) and achieve an expected number of presses of 3.09±0.45 (3.29±0.48 unweighted) — which is margin-
ally faster than Nokia's shortcuts. Since these codes are all different from Nokia's, we could have both schemes avail-
able at the same time (if we wanted to), so each function would have two codes, Nokia's original and the faster, unallo-
cated codes. Since the codes are different, there is no confusion: either could be used. Since the user presumably doesn't
care what the shortcut codes are, they could use Nokia's shortcuts if these are better, or the unallocated codes if these
are better. This is having the best of both worlds, and unsurprisingly it works out even faster — at 2.69±0.46 (or
2.87±0.34 unweighted).

Device Min Max Weighted Unweighted
Nokianavigablemenu 3 18 7.15 ± 2.95 8.83 ± 3.29

Huffman, 3keys 3 5 4.04 ± 0.53 4.18 ± 0.52

Nokiadigitshortcuts 2 5 3.39 ± 0.92 3.64 ± 0.92

Unallocatedcodes 2 4 3.09 ± 0.45 3.29 ± 0.48

Huffman, 10digitkeys 2 4 2.98 ± 0.26 3.01 ± 0.24
Shortestcodes 2 3 2.69 ± 0.46 2.87 ± 0.34

Figure 8. Summary of expected optimal costs of accessing all goals.

With reference to Figure 8, there appear to be two errors. The shortest codes have a maximum length shorter than either
the Nokia shortcuts or the Unallocated codes, yet it is based on both of them. The explanation is that the Unallocated
codes do not take advantage of any of the Nokia's short codes, so some are quite long; the Shortest codes approach
makes use of the short Nokia codes, and then has spare short codes of length 3 to replace the longer Nokia codes of
length 4 and 5. The second apparent error is that the maximum length of the shortest codes is 3, but the maximum
length of the Huffman codes is 4. Yet Huffman codes are theoretically shortest — so something must have gone wrong.
The explanation is that Huffman codes are unambiguous (they are prefix free), but the Nokia itself is not. For example,
if a user presses Navi 1 7 2 they get Memory status, but if they press Navi 1 7, they get Options (which then autocom-
pletes to Name number, which has shortcut Navi 1 7 1 2, not Navi 1 7 1 1 as might be expected), even though this is a
prefix of Navi 1 7 2. To avoid this apparent ambiguity, the Nokia effectively has an extra user action, , when the user
delays (if there is no delay, the user can use other keys; for example, Navi 1 7 fi is the same as Navi 1 7 2). Thus Type
of view really has shortcut Navi 1 7 , which is not a prefix of Navi 1 7 2. Thus the shortest codes cost is based on
having, effectively, 12 keys (10 digits, , plus C) as compared to the Huffman tree that makes do with 11 keys (10
digits plus C). Since the shortest codes are making use of more keys, the maximum length of a shortcut can legitimately
be less than the maximum length of the Huffman code.

The shortest codes scheme has advantages — it preserves Nokia's original structure for the menu shortcut codes, and
permits faster access where possible — and is better than the Hamming code approach, which has no advantages other
than reducing key press counts. It is a design worth considering further and evaluating empirically. Figure 9 shows
what the new codes look like, compared with the original Nokia codes (compare with Figure 1). For example, to access
Message validity, the user can press either Navi 2 4 1 3, as specified by Nokia, or they can press Navi 2 7, saving two
presses.The alternative menu codes in Figure 9 have been allocated so that shorter codes are allocated to higher Zipf
probability functions.
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Phonebook -1

Search -1-1 0
Service nos -1-2 4
Add entry -1-3

Erase -1-4

Edit -1-5

Send entry -1-6

Options -1-7

Type of view -1-7-1 0 0
Memory status -1-7-2 0 3

Speed dials -1-8 3
Messages -2

Inbox -2-1 2
Outbox -2-2

Write messages -2-3

Messagesettings -2-4

Set1 -2-4-1

Message centre number -2-4-1-1 1 7
Messages sent as -2-4-1-2 2 8
Message validity -2-4-1-3 2 7

.............

Tones -9

Incoming call alert -9-1 1
Ringing tone -9-2 6
Ringing volume -9-3

Message alert tone -9-4

Keypad tones -9-5

Warning and game tones -9-6

Vibrating alert -9-7 5

Figure 9. Extract from "shortest codes" menu. Both shortcuts can be used; shorter ones are in bold.
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5 Conclusions

Despite being around for many years, and having had many opportunities for improvement, consumer electronics, such
as video recorders and fax machines, are notorious for having poor user interfaces. Certainly it takes skill to perform
usability evaluations well, and unfortunately the time pressures of manufacturing often mean usability considerations
come too late to have any significant impact. Even if usability studies are done, in the time available, they are unable to
cover entire designs — instead, practical evaluation concentrates on usability disasters or marketing features. Conven-
tional usability engineering is relatively ineffective, whether because it is not used, or because it is used but is ineffec-
tive. The sorts of evaluations presented in this paper can be done automatically, by tools that are in any case required to
specify and build working products. The paper showed that evaluations done in this way can raise and help explore
interesting design issues.

More generally, the paper showed that a user interface can be specified and analysed in a paper. The work reported here
is replicatable, and can be checked and developed easily. As it happened, the paper exploited Mathematica; very
worthwhile further work would be to embed the appropriate Mathematica-like features inside design tools.
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Appendix 1: The cost of knowledge graph

We are concerned with probability distributions of state occupancy. A vector v represents the probability of the device
being in each state; we derived one such vector above, using Zipf probabilities. With a stochastic transition matrix P, if
the distribution is v, one button press later it is vP. (A stochastic transition matrix is a transition matrix, where each
transition is a probability. Each row sums to 1; the sum of the leading diagonal represents the probability of the device
doing nothing in each state.)

If v0  is the distribution at press zero (typically 1 in standby and zero in all other states) then vn= v0Pn  is the distribution
at press n. The probability of being in any state at any press, Pr(in state i at press p) = vp HiL. The probability the device
is not in state i at press p is 1–Pr(in state i at press p). Thus the probability it was never in state i over presses 0 to t is
the product of these probabilities with p ranging over 0 to t. The probability is was sometime in state i is therefore 1
minus that:

1 - ‰
p=0

t

H1 -Pr Hin  state  i  at  press  pLL

The expected number of states visited to press t is the sum of these probabilities considered over all states. Since we
are, more specifically, interested in the proportion of states visited to press t, the following formula is used for plotting
the cost of knowledge function:

knowledge HtL = „
iŒStates

wi  
i

k
jjjjjj1 - ‰

p=0

t

H1 -Pr Hin  state  i  at  press  pLL
y

{
zzzzzz

In this paper we take the state weights w  to be the Zipf probabilities, or for 'unweighted' graphs weights from {0,
1/|Goals|} depending on whether the state is a goal state. Since the weights sum to 1, the measure of knowledge ranges
over 0 to 1. 

Appendix 2: Utility functions

This Appendix forms the common Mathematica code that creto create all the data structures (e.g., the transition matri-
ces) from the basic definitions, which are given in Appendix 3. (It has to be placed before the definitions of the various
devices.) To save space for the printed paper, all the code has been hidden.
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Appendix 3: Device specifications

Nokia 5110

It is easiest to specify the Nokia 5110 by writing out a definition that is as close a match to the Nokia's user manual as
possible. We then write a Mathematica function to convert this 'human readable' specification into a complete device
specification.
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readable@nokiaD ^=
menu@"standby", 8menu@"phone book", 8"search", "service nos", "add entry", "erase", "edit",

"send entry", menu@"options", 8"type of view", "memory status"<D, "speed dials"<D,
menu@"messages", 8"inbox", "outbox", "write messages", menu@"message settings",

8menu@"set 1", 8"message centre number", "messages sent as", "message validity"<D,
menu@"common", 8"delivery reports", "reply via same centre"<D<D,

"info service", "voice mailbox number"<D, menu@"call register",
8"missed calls", "received calls", "dialled numbers", "erase recent calls",
menu@"show call duration", 8"last call duration", "all calls' duration",
"received calls' duration", "dialled calls' duration", "clear timers"<D,

menu@"show call costs", 8"last call cost", "all calls' cost", "clear counters"<D,
menu@"call costs settings", 8"call costs' limit", "show costs in"<D<D, menu@"settings",

8menu@"call settings", 8"automatic redial", "speed dialling", "call waiting options",
"own number sending", "automatic answer"<D, menu@"phone settings",

8menu@"language", 8"Automatic", "Engish", "Deutsch", "Français", "Nederlands",
"Italiano", "Dansk", "Svenska", "Norsk", "Suomi", "Español", "Português",
"<Russian>", "Eesti", "Latviesu", "Lietuviu", "<Arabic>", "<Hebrew>"<D,

"cell info display", "welcome note", "network selection", "lights"<D,
menu@"security settings", 8"PIN code request", "fixed dialling", "closed user group",
"phone security", "change access codes"<D, "restore factory settings"<D,

menu@"call divert", 8"divert all calls without ringing", "divert when busy",
"divert when not answered",
"divert when phone off or no coverage", "cancel all diverts"<D,

menu@"games", 8"memory", "snake", "logic"<D, "calculator",
menu@"clock", 8"alarm clock", "clock settings"<D,
menu@"tones", 8"incoming call alert", "ringing tone", "ringing volume",
"message alert tone", "keypad tones", "warning and game tones", "vibrating alert"<D<D;

This readable tree structure is converted into a list of transitions using the following code. In this example, the button
probabilities are set equal at 0.25, but other values can easily be used. The code also gives a name to the specification,
as was used, for instance, in Figure 8.

convert@nokiaD :=
Module@8auxconvert, p = 8<, goals = 8<, transition<, transition@from_, button_, prob_, to_D :=
AppendTo@p, 8menuname@fromD, button, prob, menuname@toD<D;
auxconvert@menu@name_, items_DD := Module@8i<, transition@name, "Navi", 0.25, itemsP1TD;
For@i = 1, i £ Lengthûitems, i++, transition@itemsPiT, "Down", 0.25,
itemsPIf@i == Lengthûitems, 1, i + 1DTD; transition@itemsPiT, "Up", 0.25,
itemsPIf@i == 1, Lengthûitems, i - 1DTD; transition@itemsPiT, "C", 0.25, nameD;
If@HeadûitemsPiT === menu, auxconvert@itemsPiTD,
AppendTo@goals, accessedûmenuname@itemsPiTDD;
transition@itemsPiT, "Navi", 0.25, LastûgoalsD;
Map@transition@Lastûgoals, #, 0.25, "standby"D &, 8"C", "Navi", "Up", "Down"<D

D
D

D;
auxconvert@readable@nokiaDD;
symbolicGoals@nokiaD ^= goals;
startState@nokiaD ^= "standby";
Map@transition@"standby", #, 0.25, "standby"D &, 8"C", "Up", "Down"<D;
symbolicTransitions@nokiaD ^= p;
initialise@nokia, "Nokia navigable menu"D;

D;
convert@nokiaD;

The final line of code converts the symbolic specification into all the forms required by the body of the paper. It also
performs various internal checks (e.g., that probabilities add to 1). 

Other device specifications

The Huffman tree, the Nokia shortcuts and the other device specifications are built automatically from the Nokia
specification (as defined in the previous section). The definitions are omitted in the printed version of this paper. 
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Appendix 4: User interface code

The user interface code is simple enough to be given in its entirety, even in the printed version of the paper. A function
is defined to operate the LCD display panel, which itself is just a Mathematica paragraph defined with a grey back-
ground and black text, to simulate the Nokia's LCD appearance. 

lcd@stateno_D := Module@8nb = InputNotebook@D<,
NotebookFind@ nb, "LCD", All, CellTagsD; SelectionMove@nb, All, CellContentsD; NotebookWrite@
nb, GridBox@88StyleBox@capitalise@FromStateNo@nokia, statenoD ê. accessed@s_D ¶ "Do " <> sDD<,

8StyleBox@" "D<,
8StyleBox@If@stateno ä startState@nokiaD, "Menu", "Select"DD<<DD

D;

There is some special-case code to say when the user activates a function, to capitalise the first letter of state names,
and to display the Navi button's prompt as "Menu" or "Select" depending on whether the handset is in the start state,
Standby.

The press function, executed when the user presses any button, relies on a function nextState that takes the device

(whatever it is) from one state to the next, depending on which button is pressed. 

press@key_D := nextState@stateNumber, keyD

The rules for the nextState function are generated from the handset's specification.

numericTransitions@nokiaD ê.
8from_, button_, prob_, to_< ¶ HnextState@from, buttonD := lcd@stateNumber = toDL;

It would be trivial to modify press so that button presses (and timings if required) were recorded for analysis. Finally

it is necessary to initialise the state to the start state, and display the appropriate text for that state in the LCD panel:

lcd@stateNumber = ToStateNo@nokia, startState@nokiaDDD
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