
The reduced Enigma

Harold Thimbleby*
Gresham Professor of Geometry

Gresham College

Barnard’s Inn Hall

Holborn
LONDON, EC1N 2HH

Abstract

This article describes a simplified cryptographic machine, based closely on the World War II Enigma. This ‘reduced Enigma’ exposes some of the design flaws of the original Enigma in a new way. Had the Axis powers built a reduced Enigma, the outcome of the war might have been different.

A fully working reduced Enigma has been used very successfully in numerous public lectures, in school talks, and in university seminars. Hands-on demonstrations of the reduced Enigma dramatically brings alive ideas about design, codes, permutations and groups. As a working trapdoor function, the reduced Enigma also provides an unusually clear introduction to public key cryptography. This article provides background information, lecture suggestions, and details for building it.

Keywords

Education, Enigma, Public Understanding of Cryptography, “reduced Enigma”

Introduction

Cryptography is a fascinating subject. The paradoxical concept of “sharing secrets” has a natural appeal, and can be used as a motivation to discuss history, mathematics and computer science, or to help motivate many concepts such as key distribution, public key cryptography and digital signatures. This paper describes a simple cryptographic machine, closely based on the World War II Enigma: the machine has been used very successfully in lectures, both to public and school audiences, and to researchers. Design details for a simplified Engima are given, as well as relevant historical and technical context, particularly as highlighted through the simplified design. This paper, then, should be of equal interest to readers interested in cryptography and to lecturers who wish to communicate the ideas clearly, particularly with hands-on participation.

Any good lecture provides ideas that at different points draw the attention of different members of the audience. The Enigma provides an endless source of historical interest, mathematical interest, human factors interest, and so on. It is highly suitable for mixed audiences, typified by grandparents bringing along enthusiastic grandchildren! Likewise, but due to limitations of space rather than time, this paper, too, raises tantalising issues (e.g., Where do some of the numbers come from? What about different versions of the Enigma? What did people, on both sides, learn as the war progressed?) and numerous fascinating potential discursions (e.g., What did Alan Turing contribute? How do we do things better today? What about public keys?) that will stimulate the reader — or an audience — into unlimited further activity and reflection. Elsewhere we have discussed how to introduce the underlying cryptographic concepts to audiences of any age or skill, from school children to postgraduate specialists: see Bell et al., 2002.

However, the main point for the present that is conveyed, and that should be conveyed forcibly to all programmers and system developers, is that complex systems — particularly ones involving any interaction or human element — are hard to design to be effective and reliable under the pressures of real use, and one should first build simplified systems to fully understand the principles. In an hour’s typical lecture, the reduced Enigma can illustrate dramatic weaknesses in the real Enigma.

Mechanical devices are ideal for lectures. Unlike computer programs, you can see how they work, and using them allows participants to attempt more interesting activities than can be done purely manually. With cryptography, we have the added advantage that for an exciting and important period of history, the real devices in life-and-death use were mechanical too. Alfred Scherbius was one of many people in the early twentieth century to patent the basic idea of a mechanical or electromechanical code machine based on rotors. There were many designs and developments, but the most widely-known of these devices was the Enigma. The Enigma was used extensively by the Germans during the Second World War.

Original WWII Enigmas are now valuable antiques, and rebuilding an accurate Enigma is a complex job and one that anyway creates a code that is hard to explain in lectures. Yet in principle, an Enigma is ideal for explaining important concepts, such as key distribution problems, since it is easy enough to change keys and, of course, codes using any key work automatically.

What, then, is the simplest Enigma that can be made?

[image: image19..pict]
Figure 1. A German army Enigma in use. Here, pressing S lights up N. The three rotors are just visible under the cover at the top; the plug board is partly covered at the bottom.

[image: image2.jpg]

Figure 2. Close up of the three rotors. A row of lamps and some of the internal wiring is visible, as well as the switch connections. The rotors of this Army Enigma are set numerically, rather than by using letters. This would help ensure that settings were chosen randomly.

[image: image3.jpg]

Figure 3. Close up of the Enigma plugboard, showing 9 connections. Note that the plugs and sockets are symmetric and can be inserted incorrectly.

What is the simplest Enigma?

Scherbius’s Enigma had a 26 button keyboard (with no space button) and 26 corresponding light bulbs. Briefly, a plugboard and a set of rotors mess up the wiring, so that as buttons are pressed one of the 26 light bulbs come on in turn, but not in any obvious order. The plugboard settings and initial rotor settings represent the key, and another Enigma with the same settings (and internal construction) can decode the message. There were lots of versions of Enigmas; for example the pre-war commercial ones did not have a plugboard. During the war, the Enigma and the procedures for using were under continual development; although the Germans were aware of some of the weaknesses we shall describe, no Enigma consolidated the best features of the different versions into a single machine. Rather than consider all the complications and variations, what is the simplest Engima style machine that works?

One might think that the simplest Enigma would have two buttons, labelled in binary as 0 and 1. Its two light bulbs would also be labelled 0 and 1. When an operator types out a binary message, say, 01011001… the lights would perhaps code it as 11001010… This is clearly the simplest scheme inspired by the Enigma. Unfortunately, because of their design, an Engima with only two buttons would have a disastrous property: 0 would always code as 1, and 1 always code as 0 — hardly a code. The problem arises due to the Enigma’s wiring, but is usually explained more simply: no letter can code as itself. This property of the real Enigma was one of its main weaknesses. Had Scherbius made a reduced Enigma first, he would certainly have spotted the problem. Instead he went for 26 letters straight away,
 and hence disguised the flaw in a layer of complexity. He and other developers fell for the classic trap of making a complication illusoire. Just making codes more complex rarely makes them harder to solve.

We will see below that this problem of the Enigma design is not the only one that a reduced Enigma exposes.

Figure 4 shows an Enigma circuit taken from a German navy manual. It is easiest to follow the wiring from the battery connection + on the right of the diagram. Suppose the Y button is pressed. Current is connected (along the solid wire at the far left) up to the rotors. The three rotors make a ‘random’ connection through to the reflector, and then back, where the circuit continues in the dashed wire (emerging from the rotors at the top right). The return wire connects (in this case) to the Z button’s switch, where it is connected through to the Z lamp. All lamps have a common return to the ((negative) battery connection. So for these rotor positions, if Y is pressed Z lights; and if Z is pressed Y lights.

[image: image4.png]Unkebr- Drebbare Schlassetwalzen Eingangs-

Figure 4. Part of the Enigma circuit, from a German navy manual (from Kahn, 1996b). The diagram shows three rotors at the top, with a reflector on the far left and a contact wheel on the right. In the middle, connected to the – battery terminal, are two (of the 26) lights; at the bottom (connected to the + battery terminal) are two of the key switches.

In actual operation, when a button is pressed the rotors turn, and the particular connection of Y(Z and Z(Y might not be repeated for a very long time. Of course if Y and Z are the only buttons, whatever the rotors do in detail, ultimately they cannot connect them any other way than together: which, as we’ve seen is degenerate. The German navy manual shows a worthless Enigma!

In general the Enigma wiring ensures that no letter can code as itself. The button Y (for example) either connects to the + battery terminal or to the Y lamp. If the Y button is pressed, the Y lamp cannot come on. The same is true for all 26 letters.

This, the Engima’s major weakness that no letter can code as itself, facilitates code breaking. If a crib (a suspected word in the plaintext) is slid along a ciphertext, if no letters correspond anywhere, then the crib is a possible decrypt at that point. A good crib might be HEILXHITLER, not least because it was said often, but because it has a pattern of several Hs and Es and Is.

Exploiting this weakness, the British cryptanalysts at Bletchley Park, developing original Polish work, built a machine, the Bombe, that automatically looked for possible decodings. A Bombe would typically find several possible Enigma settings that could possibly code a message containing (say) HEILXHITLER, and a room full of Enigma operators would work through the possible settings systematically until the message was successfully decoded. Using a reduced Enigma helps explain this issue to an audience: it is possible to press one button repeatedly and easily see its corresponding lamp never lights up; on a real Enigma, with 26 lamps flashing, it is impractical to see that a particular lamp never lights.

Why does the Enigma have this property? The simple wiring of the Enigma ensures the code is reciprocal: if Y codes as Z, in the same setting, Z codes as Y. An Enigma set up with the rotas in the same position can be used either to code or decode, and this has practical advantages. In fact, the Enigma could have been designed to be reciprocal without this problem (see Appendix 5), but the problem was not noticed.

Since every letter on the Enigma is coded as another letter, it might seem possible to build a reduced Enigma with three buttons and three lights. Suppose the buttons are XYZ. There are then just two possible codes: {X(Y, Y(Z, Z(X} or {X(Z, Y(X, Z(Y}. But the Enigma was also designed to be reciprocal, so that with the same key settings it could be used to both code and decode messages. With three keys this is not possible. Suppose X codes as Y, then at the same setting Y should code to Z, not to X. Instead, the Enigma should code so that if X codes as Y, then Y codes as X. This reciprocal relation must be true for any pair of letters, and therefore an Enigma must have an even number of letters. The real Enigma had 26 buttons, and in consequence X was used to double up as a space. (There are reciprocal codes with three letters that do work, but which the Enigma wiring can’t handle: for instance {X(Y, Y(X, Z(Z} which doesn’t work because Z(Z codes one letter onto itself.)

The simplest Enigma must have 4 buttons and 4 lights.

The reduced Enigma

Figure 5 shows the reduced Enigma, which is built in a transparent box so its workings can be seen. Table 1 compares the construction of the reduced Enigma with a typical real Enigma. Table 2 examines the complexities of the reduced Enigma. The essential wiring exactly mirrors the real Enigma’s. (Appendix 4 gives the circuit diagrams.)

Instead of rotors, a uniselector is used: unused and second-hand uniselectors can be obtained fairly easily, whereas rotors are hard to make (although during the war they would have been easier to mass produce than wiring-up uniselectors). Uniselectors are electrically operated switches: sending an electrical pulse to their coil changes their connections. Although Enigma rotors changed their connections by mechanical rotation caused by the operator pressing buttons, uniselectors can be used to simulate them, just provided every button has an extra wire to control them. In fact, uniselectors were standard parts of early automatic telephone exchanges, and were also used at Bletchley Park in the “Tunny,” a simulator for the German Lorentz code machine.

The uniselector in the reduced Enigma can be seen working through the Enigma’s transparent cover, and it makes a very satisfying clunky sound as the reduced Enigma is used. The uniselector chosen gives a maximum key length of 50, and it can be wired arbitrarily over the whole length of the key (which rotors cannot be). The reduced Enigma was wired to accurately simulate two 4-way rotors over its first 16 positions, and the remaining 34 positions are random — though it would have been preferably if the uniselector had had a key length of 64 = 43, which would have allowed simulating three rotors correctly.

	Real Enigmas
	Reduced Enigma

	26 letters and lamps
	4 letters and lamps

	26 way plugboard, typically 6 plug cables
	4 way plugboard, 2 plug cables

	Switch and lamp wiring
	Identical switch and lamp wiring

	Adjustable rotor ring settings
	Rotors cannot be adjusted

	Mechanical rotor action
(The Scherbius patent has electromechanical action.)
	Electromechanical rotor simulation by uniselector

	Control for internal or external power supply, and for bright/dim lamps
	External power only

	Swiss K model has external lamp board on ~0.5m cable
	Plugable external lamp board on 6m ‘network’ cable

	12Kg, in wooden box
	2.6Kg, in transparent plastic box

	Exchangeable set of 8 rotors
	Fixed set of 1 or 2 simulated rotors
(and an optional key of length 50)

Table 1. Enigma and reduced Enigma construction compared.

Reduced Enigma controls

The knobs (bottom left of Figure 5) set the initial rotor positions; pressing the bottom red button resets the reduced Enigma to any of the possible 16 key settings.

The remaining control switch (at the bottom right of Figure 5) selects four choices of key length: both rotors locked (a key length of 1, which is useful for demonstration purposes), one rotor locked (a key length of 4), both rotate (a key length of 16), or — for fun rather than accurate simulation — all positions of the uniselector are used, giving, for this reduced Enigma, its maximum key length of 50. (The random wiring of the 34 extra positions was chosen to nearly balance the frequencies of each code.)

The reduced plugboard

The wires from the 4 buttons go to a plugboard, which works just like the Enigma’s, to mix up the wiring. A wire plugged between any two sockets swaps the original connections.

The real Enigma has 26 sockets, and hence up to 13 wires. For practical reasons usually only 6 pairs of plugboard connections were made, though the number used increased during the war. The real Enigma used two-pin plugs for the plugboard; the reduced Enigma uses standard jack plugs, which can only be inserted one way round.

Given there are 4 sockets on the reduced Enigma, one might think that there are 4!=24 ways of mixing up its four wires and that there should ‘obviously’ be 4! reflectors. Similar arguments have been made in the published literature for the real Enigma, where large numbers (26!≈1027) are reported unquestionably.

Drawing diagrams of 26 crossed wires is quite impractical, but the reduced Enigma is small enough for erroneous thinking to be made more obvious. Four sockets and two connector cables can only provide 3 permutations if both cables are always used; but if 0, 1 or 2 cables can used then 10 permutations can be achieved — but this is still less than half the 24 theoretically possible. The remaining 14 permutations require a different sort of cable: a single cable with three plugs can achieve 8 more permutations (all leaving one socket unchanged), and a single cable with four plugs can achieve the remaining 6 permutations (see Appendix 4). It is interesting that a single cable does better than two: it might also be easier to handle under the pressure or war (or a difficult lecture) — plugboard wiring mistakes whether or not the operator is under pressure would obviously render the Enigma less than useless. If, for the reduced Enigma, the three different types of connection cables are coloured differently then the codebook table (Appendix 2) can have another entry and all 4! permutations can be used.

The reduced reflector

Out of a hopeful 4! reflectors, by drawing or otherwise, it is easy to see that there are only 3 possible (see Table 2). Furthermore a ‘secure’ reduced Enigma should only support 2 of these 3 possibilities because two of the reflectors are rotations of each other. (The actual reduced Enigma has wiring for one only.)

Because the reflector connects and hence pairs letters together, the number of reflector wirings is equal to the number of reciprocal simple substitutions. An interesting observation may be made about the real Enigma: since the number of all codes, counting both reciprocal and non-reciprocal codes, is 26! and which is considerably larger (by a factor of ~1014 for n=26; see Table 2), it means that the design decision to make the Enigma reciprocal significantly reduced its security — a penalty presumably hoped to be offset against the operational convenience. For the reduced Enigma, requiring the reciprocal property reduces the number of codes by a factor of 8 — which is still a pretty severe tradeoff, since there are only 24(key length different possible substitution codes to start with.

The reduced rotors

In principle there are 4!=24 rotors. But most of the rotors don’t achieve anything useful. Many 4 wire rotors are obviously degenerate, a problem which isn’t at all obvious when they have 26 wires. For example, the trivial wiring that takes wire 1 to 1, 2(2, 3(3 and 4(4, does nothing different as it is rotated. Indeed, the rotor taking 1(2, 2(4, 3(1 and 4(3, and many other possible rotors do nothing as they are rotated. They are therefore quite useless. There are then two rotors (e.g., swap 1(2, swap 3(4) that have only two effectively different positions. This leaves only 4 rotors out of the 24 that do anything useful. Overall, instead of a possible 4! = 24 rotors, only 4 are non-degenerate.

A reduced Enigma with one rotor (carefully chosen from the 4 non-degenerate rotors) would have a key length of 4. One with two rotors should have a key length of 16. Some combinations of rotors give shorter key lengths.

A real Enigma has swappable rotors (to change the wiring) and the rotors rotate. With three rotors, there are 26(26(26 = 15,576 different rotor positions, and the rotors can be put in any order. Later in the war, the rotors were selected from a fixed set of eight, further increasing the number of permutations. The reduced Enigma has the rather more modest arrangement of two (non-degenerate) fixed rotors — the uniselector is wired to simulate the correct wiring and rotation of two rotors.

A uniselector can easily out-perform the number of permutations of a simple 4-way rotor, and it need have no degenerate connections. Indeed a contemporary uniselector could easily have out-performed a 26 way original Enigma rotor. But small rotors were more practical for actual use, and they would have been easier to wire up. A single 26 letter rotor has only 26 internal wires; in contrast a single 50 way uniselector has already, even for the reduced 4 button Enigma, 100 wires. To make the comparison clearer: the two 4 letter rotors it simulates would have required 8 wires, but just the 16 positions two 4 letter rotors can be in require 48 connections to simulate. Despite these unpromising comparisons, a pair or uniselectors could be wired together, and we would then be comparing 502=2,500 codes (for two uniselectors) or 503=125,000 codes (for three) against a conventional 26 way rotor’s improvement to 262=676 or 263=17,576.

Uniselectors are heavier and larger than rotors, and the standard uniselector used in the reduced Enigma requires additional wiring for key setting (to simulate electrically what for a rotor is purely mechanical). Rotors are mechanically easier, which is an important criterion for a device that is intended to be used in action. Building rotors and swapping them around in the field (as keys are changed) mean that a rotor is a lot more convenient than a uniselector.

Since Enigma rotors turn at progressively slower speeds, even for runs of 26 characters two rotors and the reflector are essentially stationary. This makes breaking the code easier, as Alan Turing realised. A set of uniselectors can be wired randomly over the full key length, and need not have this limitation. Thus a uniselector approach to wiring an Enigma would not have this weakness the Enigma had; in fact, the Japanese Purple (so-called by the US) code machine used coupled uniselectors instead of rotors. Appendix 5 shows how the weakness can be avoided with conventional rotors.

	Property
	Formula

n letters, upto p plugboard connections, r rotors, s rotors in use
	Value for reduced Enigma

	Number of rotor wirings
	n!
	24, but only 4 are non-degenerate, of which 2 are used on the reduced Enigma.

	Number of plugboard permutations, allowing anywhere between i=0 and p connections
	
[image: image5.wmf]
	10
compare with n=26 button Enigma’s 100391791500 for p=6 (eventually increased to 10)

	Number of reflector wirings
	
[image: image6.wmf]
(equals basic formula for plugboard with p=n/2)
	3, of which 2 are similar. The reduced Enigma has 1 fixed rotor.

	Rotor permutations
	
[image: image7.wmf] if s≤r
(with judicious choice of rotors)
	1 (the reduced Enigma’s 2 simulated rotors cannot be changed)

	Key length
	
[image: image8.wmf]
(with judicious choice of rotors)
	1, 4, 16 (simulating s=0, 1 or 2 rotors) and 50 (not simulating rotors)

Table 2.The basic formulae and actual values for the reduced Enigma. A good exercise is to work through these formulae for cases of 6 key Enigmas, through to 26 key Enigmas.

[image: image9.wmf]
Figure 5. The reduced Enigma in its transparent box. Two wires are shown connected in the plugboard at the top of the machine, connecting A-S and E-T. The central silver object is the uniselector, which simulates the Enigma’s rotors. In this photograph, 25 of its random connections can easily be seen, and the uniselector’s ‘rotor’ is at the sixth position. The knobs and button at the bottom are used to change the initial key settings, as explained in the text. The reduced Enigma is 16(24(12cm.

[image: image10.jpg]

Figure 6. Like the Swiss K Enigma, the reduced Eniigma has a remote lamp unit. Messages can be sent across a room to afford some privacy for the sender. The remote lamp unit can be used by people in the audience or videoed for projection (this allows the audience to see the code but not the plaintext).

Using the reduced Enigma

Each day the real Enigma’s settings would be changed according to a code book. This was a complex procedure, designed to ensure that secure messages could be exchanged but that the enemy would be unlikely to read many messages using the same settings. Essentially, the operator chose a ‘random’ one-off setting, which was encoded on the Enigma using the code book’s day setting. This brief code was then transmitted. The rotors were reset to the choice, and then the real message sent using that as the setting. In practice there were a number of other changes and code books used to further encrypt the message setting, and the details of the procedure changed throughout the war.

The code book for the reduced Enigma is much simpler than the real Enigma’s, but can be used to show some of the cillies — the likely human factors errors — operators would make under wartime conditions.

To code: Choose any two letters from AEST: this will be the message setting. Set the reduced Enigma to the day settings, taken from the table in Appendix 2, and reset the Enigma. Code the two message setting letters and transmit using the day settings. Now set the Enigma to the message setting, reset it, and code the message to be sent. (This scheme is considerably simpler than the one used on the real Enigma, but it captures the spirit without unnecessary complication.)

To decode: Set the Enigma to the day settings, taken from the table. Decode the first two letters to obtain the message setting. Set the Enigma to the message setting, and reset it. Now decode the rest of the message as it arrives.

Because the reduced Enigma has knobs to set it, an operator may be tempted not to change its settings between messages. The simplest choice of letters for another message setting, then, is to repeat the initial settings. In contrast, on a real Enigma the rotors (and hence their settings) change position on each key press: thus on a real Enigma the easiest choice of message settings is to use is the final rotor position, not the initial, of a message.

When a second message is coded using predictable message settings it is of course easier to decode, and strict operational procedures were in place to help avoid it occurring. Bletchley Park called such procedural errors JABJABs, presumably because an early occurrence was the rotors set on JAB ending one message and ‘reset’ to JAB to start the next message.

There are many other sorts of cillies. For instance, were a message to end with the rotors set at HIT, the operator might find it hard to resist choosing the next message setting to be LER. The Army Enigma shown in Figures 1–3 used numeric settings, so there would be less of a temptation to use words.

The reduced Enigma does not have adjustable rotor rings as the real Enigma did during the war, and therefore they cannot be set from the code book. Thus the Herivel Tip cannot be demonstrated on the reduced Enigma. (Herivel suggested that operators, having rotated and set the rings on the rotors, might position the rotors in the easiest way, as it were just dropping them in to the Enigma, to obtain the message setting with no further rotations.)

Typical use in a lecture

Depending on the size of the audience or lecture room, it can help enormously to use a video camera and projector, so that people can easily seem the demonstrations. Before introducing the reduced Enigma, show some slides of the real Enigma and explain the major features.

The reduced Enigma is then demonstrated with the key length set to 1. The uniselector does not rotate, and the wiring does not change. It is then easy to explain the basic principles: no letter is coded as itself, and, by going through a simple example, the reciprocal nature of the code.

We then show how the code changes (pseudo) randomly when the uniselector is switched on. At this stage, it is best to have a key length of 50. It is easy to demonstrate that pressing a button repeatedly makes the lights come on unpredictably, and that it would be impossible (at least from such a short demonstration) to work out from which light was coming on which button had been pressed.

The setting mechanism can be explained: setting the two knobs and pressing the reset button can be done several times to confirm that the coding is repeatable.

The monthly code table is simple enough to be explained, and it helps that the date of the lecture can be used to select the initial settings.

The reduced Enigma can be used more easily without the complication of the message settting, a topic which can be introduced when the audience recognises the weakness of repeating messages (many times during a day) using fixed initial settings.

A volunteer resets the Enigma to the day settings, and selects a word (shown on the overhead projector) taken from Appendix 3 — a list of words easily spelt with 4 letters. If the ‘network’ lamp box is used, another volunteer can write down the code directly. Otherwise two other volunteers are required: one to write down the code (and not reveal the word), who then acts as the ‘transmitter’ and takes the code over to the third volunteer.

A volunteer using the lamp board (on its 6m cable) can be far enough away not to see the other volunteer’s button pressing. Alternatively the external lamp board can be projected using a video camera so the entire audience can see the code. But to decode the message, the reduced Enigma has to be brought over to the decoding volunteer. (External buttons on the lamp board would have simplified things, but would have made explaining what is going on more complex and less believable.)

It is surprisingly difficult to write down the coded message from the flashing lights; often there are requests to start again, and the sender will forget to reset the Enigma… (There would typically be an Engima operator and an assistant.)

One persistent problem is that the volunteer coding often presses buttons almost as fast as they would as typing them — forgetting that the other volunteer needs time to write down the code message. Typically, there are many opportunities to point out that all errors occur in a relatively calm lecture setting, which one can emphasise is a lot easier than being in a submarine at war!

The third volunteer is given the reduced Enigma, and types in the code. It is fun to do this first without resetting the Enigma: decoding will go wrong. When the Enigma is correctly set to the day settings, it will correctly decode the message (because of its reciprocal property).

After or during the demonstrations — depending on audience participation — it is helpful to emphasise that the encoding and decoding Enigmas must be both the same and initialised to the same settings. This observation leads into the key distribution problem, a topic which can be picked up in following lectures.

During the war, as the Germans worried about weaknesses in the Enigma code, they introduced further complications (such as more rotors). Because some boats and submarines would be at sea when the Enigmas were upgraded, the Germans were forced to transmit messages both on the old and new systems. This duplicate transmission often allowed Bletchley Park to work out the new Enigma wirings, and hence almost immediately compromise the “more secure” codes.

Cribs are easy to explain, since there are only a limited number of words that the reduced Enigma can work with (see Appendix 3). If volunteers can be pressed into coding longer messages, then it is possible to try to decode using a crib; however, finding the key settings requires a more detailed knowledge of the reduced Enigma than can be conveyed in a single lecture. Perhaps one day somebody will design a reduced Bombe good enough to be used real-time in lectures.

Some audiences worry about sending numbers: how can this be done with a plain alphabetic keyboard? Obviously, numbers could be spelt out, or a number code could be used. The Swiss K, which has 26 alphabetic letters, also labels ten letters 1 to 9. (Curiously, the letter O is labelled 9.) During the war, many numbers would have been map grid references: to reduce the chances of these important numbers being decoded, a special code book was used, which was changed from time to time. Thus grid references were transmitted as (coded) alphabetic words, rather than as latitude and longitude.

Some audiences may suggest that the 4 buttons might be labelled 00, 01, 10 and 11. Now any letter or digit can be coded using, say, ASCII or the older 5 bit (Baudot) code. One might then develop the discussion to introduce prefix free codes and other coding schemes.

Finally, one can introduce the concept of message setting, and explain how it increases security (because now the day setting is only used for a two letter code, which has no intrinsic meaning). Discussing the rigours of real use of message settings nicely introduce further human factors issues. For example because of the difficulty of setting Enigmas (imagine being under war-time conditions in the field) it was common practice to repeat a letter such as AAA or BBB at the beginning of a transmission so that the recipients could check the machine’s day settings were correct.

More advanced topics

Lectures that go on to discuss public key cryptography will doubtlesss discuss trapdoor functions (see Bauer, 1997; or Singh, 2000, for a more popular account). One way to introduce these is to discuss the equivalent logic implementation of the reduced Enigma: decoding is then reduced to satisfiability. Satisfiability is NP hard, and a good example of a trapdoor function: given some variables and their values (e.g., in this case the binary representation of the message setting and the plaintext) one can very easily construct a particular Boolean formula that is true if and only if the variables have the given values. Decoding means finding the values of the variables from the formula, and this is much harder (though of course the reduced Enigma has some structure that might be exploited: even so, there is no fast way to decode in general).

In any lecture it is worth emphasising that the Enigma achieved its secrecy by trying to ensure that its physical construction was secure (specifically, trying to ensure it never fell into enemy hands): in contrast, we believe NP problems are hard because they are open to inspection. Of all the people who’ve tried, nobody has found any efficient solutions. The openness of abstract problems therefore paradoxically ensures their strength, quite the opposite of the physical Enigma situation. (There are problems harder than NP, but that’s for another lecture.)

The reduced Enigma does have one problem with this sort of explanation. Discussion of complexity (e.g., to claim that the Enigma represents a trapdoor function) can require distinguishing linear (e.g., coding), polynomial and exponential (e.g., decoding) problems. Now, the reduced Enigma has 4 buttons, which can be represented as two bits because 22=4. Confusingly, it’s also the case that 2+2=2(2=22=4. Unless care is taken, then, the audience won’t believe that decoding is seriously harder than encoding, because they can see — in this case — that the complexities of the linear and exponential problems are of the same order!

Simulating Enigmas by computer

Simpler than building a reduced Enigma is to use a computer program to simulate one. There are many programs available to do this, including Russell Schwager’s award-winning Java applet. A picture of an Enigma can be projected onto a screen, and the audience shown how the Enigma works.

There are at least four disadvantages to using a simulation. One needs to ensure the computer, software and projector all work happily together. This isn’t always as easy as it seems when lecture theatres have projectors with resolutions that one’s computer is not happy with. Secondly, the more realistic the simulation, the harder it is to understand exactly what is going on. Of course, a simulator might be reprogrammed to provide both a real Enigma and a reduced Enigma for comparison and discussion. Thirdly, one might not want to pass an expensive and delicate laptop around a lecture theatre so that people can use it easily. But, finally, the main disadvantage is that a computer simulation does not engage audiences. It is too complex and loses the principles for the details of successful computer interaction.
Conclusions

A real Enigma is a fascinating gadget, but is very complex. Even if one is available they are too valuable to use freely in lectures. A reduced Enigma — the simplest possible coding machine that faithfully works like a real Enigma — is a very successful lecturing aid, which allows hands-on use, and no special worries about damage. Its much simplified design allows the principles of the Enigma code to be explained much more easily. (Being able to lock the rotors and have short key lengths is also very helpful.)

Most lectures on cryptography cannot go very deeply into worked examples of coding, because of the time required. A working machine helps enormously, because it automates the tedium of coding and decoding. In practice, the reduced Enigma has been used to explain two important cryptology concepts, which are usually lost in the practical complexity of a real Enigma: the key distribution problem, to motivate the advantages of public key cryptography; secondly, the human factors weaknesses of the Enigma conventions (such as choosing message settings).

The design of the reduced Enigma puts some of the design flaws of the real Enigma in a new light, and makes them very obvious. In today’s computerised binary world, it is obvious that a code machine that cannot work in binary must have problems. Had Scherbius or one of the other early inventors built a reduced Enigma prototype, perhaps they would have noticed the fundamental problems. Instead, as time went by the Enigma concept was made increasingly complex — adding more rotors, adding a plugboard — without addressing its basic limitations. Even the plugboard has problems, again which are obvious with the reduced Enigma.

The basic limitations of the Enigma are very apparent in the reduced Enigma. Because its calculations are easier, the reduced Enigma shows that some of the standard claims of the complexity of the Enigma and of the difficulty of breaking its codes are over-stated. If the Axis powers had recognised some of the Enigma’s limitations they could have fixed them; the moral is that when designing systems, first design reduced ones to get the principles right. In various forms (e.g., get computer programs working correctly then optimise them), this is standard wisdom, but too often ignored!

For lecturers and teachers, the lesson is that building real things for ourselves, checking closely what people say by doing our own experiments — perhaps making our own mistakes too! — is the best way of really understanding and learning, and even of progressing a field. It is certainly the most enjoyable and best foundation for communicating a fascinating subject.

Further resources

Excellent written accounts of the Enigma are Simon Singh’s popular book The Code Book (2000), and David Kahn’s The Codebreakers (1996a) which is a standard reference. Mallman Showell’s Enigma U-Boats (2000) has numerous illustrations, both of the Enigma and of the submarine war. A recent book, which provides a more balanced view of both the Allies and Axis use of codes is Stephen Budiansky’s Battle of Wits (2000). A mathematician’s introduction to the field is Freidrich Bauer’s Decrypted Secrets (1997). A popular film Enigma based on a story by Robert Harris (1996) has been made, which uses the Enigma and Bletchley Park as the backdrop to a fictional detective story.

Any serious student of the Enigma and its history should visit Bletchley Park (see www.bletchleypark.org.uk) where many exhibits and resources are available. Tony Sale’s Codes and Ciphers in the Second World War web site at www.codesandciphers.org.uk provides a great variety of authoritative and extensive material, and is highly recommended.

References

Friedrich Bauer, Decrypted Secrets, Springer, 1997.

Tim Bell, Harold Thimbleby, Mike Fellows, Ian Witten, Neil Koblitz & Matthew Powell, “Explaining Cryptographic Systems to the General Public,” Journal of Computers & Education, 40(3):199–215, 2003.

Stephen Budiansky, Battle of Wits, Penguin Books, 2000.

Robert Harris, Enigma, Arrow Books, 1996.

David Kahn, The Codebreakers, Scribner, 1996a.

David Kahn, Seizing The Enigma, Arrow, 1996b.

Jak P. Mallman Showell, Enigma U-Boats, Ian Allan, 2000.

Russell Schwager, Java applet Enigma simulation, http://www.ugrad.cs.jhu.edu/~russell/classes/enigma/
Simon Singh, The Code Book, Fourth Estate, 2000.

Acknowledgements

Gresham College supported the development of the reduced Enigma, which was first used at a Gresham public lecture. Harold Thimbleby is a Royal Society-Wolfson Research Merit Award Holder. Tony Sale, Frank Carter and Simon Singh provided helpful information about Enigmas; this jourmal’s anonymous referees made extensive and insightful comments for which the author is grateful. Figures 1 to 3 are my photographs of Simon Singh’s Army Enigma. Figure 4 is taken from Kahn, 1996b.

Appendix 1: Programming problems

The reduced Enigma project required the solution of several problems, which in themselves generate interesting programming problems:

•
Which four different letters generate the most words? (I chose AEST, though AERT does more words but doesn’t make such good ones; see Appendix 3.)

•
Which rotors should be used, and what is the correct uniselector wiring to simulate the chosen two rotating rotors?

•
What is a best (most secure) random sequence that should be used on the 34 uniselector positions left that are not simulating the two rotors?

•
Finally, how would one build a Bombe simulator to attack the reduced Enigma?

Appendix 2: Settings from the reduced Enigma code book

Reduced Enigma Daily Key Settings: January 2002

	Date
	Plugboard
	Rotor settings

	1
	A–E, S–T
	E–E

	2
	A–E, S–T
	E–E

	3
	A–S, E–T
	S–T

	4
	A–S
	E–T

	5
	A–E
	S–E

	6
	S–T
	E–A

	7
	A–T
	S–T

	8
	A–E, S–T
	A–A

	9
	A–S, E–T
	S–T

	10
	NONE
	A–T

	11
	E–T
	A–S

	12
	A–T
	T–A

	13
	A–S, E–T
	A–S

	14
	A–S
	E–E

	15
	A–S, E–T
	S–S

	16
	A–E, S–T
	S–S

	17
	A–S, E–T
	A–A

	18
	E–S
	T–S

	19
	NONE
	A–T

	20
	S–T
	T–T

	21
	A–S
	T–T

	22
	E–T
	A–T

	23
	A–T
	S–E

	24
	A–S, E–T
	S–A

	25
	E–S
	T–E

	26
	E–S
	A–S

	27
	A–T, E–S
	E–E

	28
	A–T
	A–S

	29
	E–T
	T–S

	30
	A–T, E–S
	A–E

	31
	A–S
	E–S

The reduced Enigma plugboard settings are changed daily. The real Enigma plugboard was at first changed less often than daily, which was a security risk (though one that had to be weighed against the size and complexity of codebooks, and the practical difficulties of replugging). The plugboard connections were changed daily from the end of 1936; during WWII the plugboard settings were changed every 8 hours — a delicate balance of security against the risk of wiring the Enigma incorrectly and possibly having to retransmit messages, which would be a grave error.

Appendix 3: Reduced Enigma cribs (anagrams of AEST)

A

AS

ASS

ASSES

ASSESS

ASSESSEE

ASSET

ASSETS

AT

ATE

ATTEST

ATTESTS

EASE

EASES

EAST

EAT

EATS

ESS

ESTATE

ESTATES

ETA

SAT

SATE

SATES

SEA

SEAS

SEAT

SEATS

SE

SEE

SEES

SESTET

SET

SETA

SETAE

SETT

SETTS

SETS

SETTEE

SETTEES

STATE

STATES

STET

TA

TASS

TASTE

TASTES

TAT

TATA

TATTA

TE

TEA

TEAS

TEASE

TEASES

TEAT

TEATS

TEE

TEES

TESS

TESSA

TESSAS

TEST

TESTS

TESTA

TESTATE

TESTEE

TESTEES

TSETSE

Appendix 4: The reduced Enigma circuit

The reduced Enigma circuit uses components that could have been sourced during WWII, or even earlier. Two miniature modern relays are used, rather than the contemporary Post Office 3000 type relays. Coincidentally the modern relays used are telecom approved types, and are essentially PO3000 replacements. The relays are in transparent packages and are mounted inside the reduced Enigma so that their armature movement can be seen easily.

The wires are colour-coded to help in lectures: black is wiring that copies original Enigma functionality, red is original power, yellow is key length control, and green is rotor setting.

Some non-functional compromises to historical reality were made: instead of incandescent lamps, four bright LEDs are used; the three relay coils have silicon diode suppressors; a diode was used on the uniselector to save requiring a more costly switch for the key length circuit; and there is a final diode in the supply circuit to stop damage if a power supply is incorrectly connected. (Such silicon diodes were not available until the 1970s; suppressors were not used on the Enigma since there are no inductive loads.) For clarity we have not shown the suppressors in the circuits below.

Power supply

It was cheapest to provide a standard transformer/rectifier solution, though off-the shelf 24V 1A SMPS are available. An external power supply makes the reduced Enigma lighter, which is an advantage for handling in lectures.

Enigma buttons and lamps

The buttons, plugboard and lamps are wired exactly as on a real Enigma. A two pole push switch is used for each of the four buttons: one pole is the original Enigma wiring, one pole provides the stepping current for the uniselector.

[image: image11.wmf]
Figure 7. Power input to reduced Enigma; button and lamp wiring.

All switches are push buttons, sprung change-over industrial control panel type. The connections labelled + and – continue to other circuits below (providing power). The connections labelled A, E, S and T correspond to original Enigma wiring and are connected in a later circuit, shown below. The connection ‘Step’ provides a signal to step the uniselector when any button is pressed. The socket on the right is for the external lamp board.

A fuse is required because of the external lamp board socket and the possibility of external faults. A diode is provided to protect the relay suppressor diodes in case an incorrectly wired power supply is used. (A standard battery elimination socket is used, and they are not always connected the same way.)

Plugboard connectors

There are two pairs of plugboard connectors: they are wired (in pairs) to swap over the connections of the jack plugs.

[image: image12.wmf]]������³�¬���ÿ��ÿÿÿÿ���������¬���³�������¡�d��FH X��� �À���
�����³�¬�������"�³�¬���"������� �¾� �À�������p���+�������+�������p���+�+���+�+�+���+�p���*�������*�������Q���
�±�#�P�����²�$�p���������
�������
�p�����#���,���,���#�p���+�������+�������p���+�©���©�+�©���©�p���*�������*�������Q�����±�¡�P�����²�¢�p�����~�������~�����p�����¡���ª���ª���¡�p�F�����*���)�����������������$���(���,���9���K���j���r���x���{���|�*���p�F���+�-���,�+���.���0���4�	�9���B���O���a���s�����	���������������-���¡�À[�
gsave
/dstR[newpath clippath pathbbox]def newpath
grestore
dstR 0 get dstR 1 get translate
dstR 2 get dstR 0 get sub 1945 1773 sub div
dstR 3 get dstR 1 get sub 2213 2392 sub div scale
0 2213 2392 sub translate
%!PS-Adobe-2.0 EPSF-1.2

%%Title: Unknown
%%Creator: FreeHand 10.0
%%CreationDate: 3/3/02 8:06 PM
%%BoundingBox: 0 0 172 179
%%FHPathName:
%ALDOriginalFile:
%ALDBoundingBox: 0 0 172 179
%%FHPageNum:0
%%DocumentSuppliedResources: procset Altsys_header 4 0
%%ColorUsage: Color
%%DocumentProcessColors: Cyan Magenta Yellow Black
%%EndComments
%%BeginResource: procset Altsys_header 4 0
userdict begin /AltsysDict 300 dict def end
AltsysDict begin
/bdf{bind def}bind def
/xdf{exch def}bdf
/defed{where{pop true}{false}ifelse}bdf
/ndf{1 index where{pop pop pop}{dup xcheck{bind}if def}ifelse}bdf
/d{setdash}bdf
/h{closepath}bdf
/H{}bdf
/J{setlinecap}bdf
/j{setlinejoin}bdf
/M{setmiterlimit}bdf
/n{newpath}bdf
/N{newpath}bdf
/q{gsave}bdf
/Q{grestore}bdf
/w{setlinewidth}bdf
/Xic{matrix invertmatrix concat}bdf
/Xq{matrix currentmatrix mark}bdf
/XQ{cleartomark setmatrix}bdf
/sepdef{
dup where not
{
AltsysSepDict
}
if
3 1 roll exch put
}bdf
/st{settransfer}bdf
/colorimage defed /_rci xdf
/cntr 0 def
/readbinarystring{
/cntr 0 def
2 copy readstring
{
{
dup
(\034) search
{
length exch pop exch
dup length 0 ne
{
dup dup 0 get 32 sub 0 exch put
/cntr cntr 1 add def
}
{
pop 1 string dup
0 6 index read pop 32 sub put
}ifelse
3 copy
putinterval pop
1 add
1 index length 1 sub
1 index sub
dup 0 le {pop pop exit}if
getinterval
}
{
pop exit
} ifelse
} loop
}if
cntr 0 gt
{
pop 2 copy
dup length cntr sub cntr getinterval
readbinarystring
} if
pop exch pop
} bdf
/_NXLevel2 defed {
_NXLevel2 not {
/colorimage where {
userdict eq {
/_rci false def
} if
} if
} if
} if
/md defed{
md type /dicttype eq {
/colorimage where {
md eq {
/_rci false def
}if
}if
/settransfer where {
md eq {
/st systemdict /settransfer get def
}if
}if
}if
}if
/setstrokeadjust defed
{
true setstrokeadjust
/C{curveto}bdf
/L{lineto}bdf
/m{moveto}bdf
}
{
/dr{transform .25 sub round .25 add
exch .25 sub round .25 add exch itransform}bdf
/C{dr curveto}bdf
/L{dr lineto}bdf
/m{dr moveto}bdf
/setstrokeadjust{pop}bdf
}ifelse
/privrectpath {
4 -2 roll m
dtransform round exch round exch idtransform
2 copy 0 lt exch 0 lt xor
{dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto}
{exch dup 0 rlineto exch 0 exch rlineto neg 0 rlineto}
ifelse
closepath
}bdf
/rectclip{newpath privrectpath clip newpath}def
/rectfill{gsave newpath privrectpath fill grestore}def
/rectstroke{gsave newpath privrectpath stroke grestore}def
/_fonthacksave false def
/currentpacking defed
{
/_bfh {/_fonthacksave currentpacking def false setpacking} bdf
/_efh {_fonthacksave setpacking} bdf
}
{
/_bfh {} bdf
/_efh {} bdf
}ifelse
/packedarray{array astore readonly}ndf
/`
{
false setoverprint
/-save0- save def
5 index concat
pop
storerect left bottom width height rectclip
pop
/MMdict_count countdictstack def
/MMop_count count 1 sub def
userdict begin
/showpage {} def
0 setgray 0 setlinecap 1 setlinewidth
0 setlinejoin 10 setmiterlimit [] 0 setdash newpath
} bdf
/currentpacking defed{true setpacking}if
/min{2 copy gt{exch}if pop}bdf
/max{2 copy lt{exch}if pop}bdf
/xformfont { currentfont exch makefont setfont } bdf
/fhnumcolors 1
statusdict begin
/processcolors defed
{
pop processcolors
}
{
/deviceinfo defed {
deviceinfo /Colors known {
pop deviceinfo /Colors get
} if
} if
} ifelse
end
def
/printerRes
gsave
matrix defaultmatrix setmatrix
72 72 dtransform
abs exch abs
max
grestore
def
/graycalcs
[
{Angle Frequency}
{GrayAngle GrayFrequency}
{0 Width Height matrix defaultmatrix idtransform
dup mul exch dup mul add sqrt 72 exch div}
{0 GrayWidth GrayHeight matrix defaultmatrix idtransform
dup mul exch dup mul add sqrt 72 exch div}
] def
/calcgraysteps {
forcemaxsteps
{
maxsteps
}
{
/currenthalftone defed
{currenthalftone /dicttype eq}{false}ifelse
{
currenthalftone begin
HalftoneType 4 le
{graycalcs HalftoneType 1 sub get exec}
{
HalftoneType 5 eq
{
Default begin
{graycalcs HalftoneType 1 sub get exec}
end
}
{0 60}
ifelse
}
ifelse
end
}
{
currentscreen pop exch
}
ifelse
printerRes 300 max exch div exch
2 copy
sin mul round dup mul
3 1 roll
cos mul round dup mul
add 1 add
dup maxsteps gt {pop maxsteps} if
dup minsteps lt {pop minsteps} if
}
ifelse
} bdf
/nextrelease defed {
/languagelevel defed not {
/framebuffer defed {
0 40 string framebuffer 9 1 roll 8 {pop} repeat
dup 516 eq exch 520 eq or
{
/fhnumcolors 3 def
/currentscreen {60 0 {pop pop 1}}bdf
/calcgraysteps {maxsteps} bdf
}if
}if
}if
}if
fhnumcolors 1 ne {
/calcgraysteps {maxsteps} bdf
} if
/currentpagedevice defed {
currentpagedevice /PreRenderingEnhance known
{
currentpagedevice /PreRenderingEnhance get
{
/calcgraysteps
{
forcemaxsteps
{maxsteps}
{256 maxsteps min}
ifelse
} def
} if
} if
} if
/gradfrequency 144 def
printerRes 1000 lt {
/gradfrequency 72 def
} if
/adjnumsteps {
dup dtransform abs exch abs max
printerRes div
gradfrequency mul
round
5 max
min
}bdf
/goodsep {
spots exch get 4 get dup sepname eq exch (_vc_Registration) eq or
}bdf
/BeginGradation defed
{/bb{BeginGradation}bdf}
{/bb{}bdf}
ifelse
/EndGradation defed
{/eb{EndGradation}bdf}
{/eb{}bdf}
ifelse
/bottom -0 def
/delta -0 def
/frac -0 def
/height -0 def
/left -0 def
/numsteps1 -0 def
/radius -0 def
/right -0 def
/top -0 def
/width -0 def
/xt -0 def
/yt -0 def
/df currentflat def
/tempstr 1 string def
/clipflatness currentflat def
/inverted?
0 currenttransfer exec .5 ge def
/tc1 [0 0 0 1] def
/tc2 [0 0 0 1] def
/storerect{/top xdf /right xdf /bottom xdf /left xdf
/width right left sub def /height top bottom sub def}bdf
/concatprocs{
systemdict /packedarray known
{dup type /packedarraytype eq 2 index type /packedarraytype eq or}{false}ifelse
{
/proc2 exch cvlit def /proc1 exch cvlit def
proc1 aload pop proc2 aload pop
proc1 length proc2 length add packedarray cvx
}
{
/proc2 exch cvlit def /proc1 exch cvlit def
/newproc proc1 length proc2 length add array def
newproc 0 proc1 putinterval newproc proc1 length proc2 putinterval
newproc cvx
}ifelse
}bdf
/i{dup 0 eq
{pop df dup}
{dup} ifelse
/clipflatness xdf setflat
}bdf
version cvr 38.0 le
{/setrgbcolor{
currenttransfer exec 3 1 roll
currenttransfer exec 3 1 roll
currenttransfer exec 3 1 roll
setrgbcolor}bdf}if
/vms {/vmsv save def} bdf
/vmr {vmsv restore} bdf
/vmrs{vmsv restore /vmsv save def}bdf
/eomode{
{/filler /eofill load def /clipper /eoclip load def}
{/filler /fill load def /clipper /clip load def}
ifelse
}bdf
/normtaper{}bdf
/logtaper{9 mul 1 add log}bdf
/CD{
/NF exch def
{
exch dup
/FID ne 1 index/UniqueID ne and
{exch NF 3 1 roll put}
{pop pop}
ifelse
}forall
NF
}bdf
/MN{
1 index length
/Len exch def
dup length Len add
string dup
Len
4 -1 roll
putinterval
dup
0
4 -1 roll
putinterval
}bdf
/RC{4 -1 roll /ourvec xdf 256 string cvs(|______)anchorsearch
{1 index MN cvn/NewN exch def cvn
findfont dup maxlength dict CD dup/FontName NewN put dup
/Encoding ourvec put NewN exch definefont pop}{pop}ifelse}bdf
/RF{
dup
FontDirectory exch
known
{pop 3 -1 roll pop}
{RC}
ifelse
}bdf
/FF{dup 256 string cvs(|______)exch MN cvn dup FontDirectory exch known
{exch pop findfont 3 -1 roll pop}
{pop dup findfont dup maxlength dict CD dup dup
/Encoding exch /Encoding get 256 array copy 7 -1 roll
{3 -1 roll dup 4 -2 roll put}forall put definefont}
ifelse}bdf
/RCJ{4 -1 roll
/ourvec xdf
256 string cvs
(|______) anchorsearch
{pop
cvn
dup FDFJ
exch
1 index
eq
{
_bfh findfont _efh
dup
maxlength dict
CD
dup
/FontName
3 index
put
dup
/Encoding ourvec put
1 index
exch
definefont
pop
}
{exch pop}
ifelse
}
{pop}
ifelse
}bdf
/RFJ{
dup
FontDirectory exch
known
{pop 3 -1 roll pop}
{RCJ}
ifelse
}bdf
/hasfont
{
/resourcestatus where
{
pop
/Font resourcestatus
{
pop pop true
}
{
false
}
ifelse
}
{
dup FontDirectory exch known
{pop true}
{
256 string
cvs
(fonts/) exch MN
status
{pop pop pop pop true}
{false}
ifelse
}
ifelse
}
ifelse
}bdf
/FDFJ
{
dup
hasfont
not
{
pop
/Ryumin-Light-83pv-RKSJ-H
hasfont
{
/Ryumin-Light-83pv-RKSJ-H
}
{
/Courier
}
ifelse
}
if
}bdf
/FFJ{
_bfh
dup
256 string cvs
(|______)exch MN
cvn
dup
FontDirectory
exch known
{
exch
pop
findfont
3 -1 roll
pop
}
{
pop
FDFJ
dup findfont
dup maxlength dict
CD
dup dup
/Encoding exch
/Encoding get
256 array copy
7 -1 roll
{
3 -1 roll
dup
4 -2 roll
put
}forall
put
definefont
}
ifelse
_efh
}bdf
/GS {
dup
hasfont
{
findfont
exch makesetfont
exch
pop
ts
}
{
pop pop pop
ts
} ifelse
} bdf
/RCK{4 -1 roll
/ourvec xdf
256 string cvs
(|______) anchorsearch
{pop
cvn
dup FDFK
exch
1 index
eq
{
_bfh findfont _efh
dup
maxlength dict
CD
dup
/FontName
3 index
put
dup
/Encoding ourvec put
1 index
exch
definefont
pop
}
{exch pop}
ifelse
}
{pop}
ifelse
}bdf
/RFK{
dup
FontDirectory exch
known
{pop 3 -1 roll pop}
{RCK}
ifelse
}bdf
/hasfont
{
/resourcestatus where
{
pop
/Font resourcestatus
{
pop pop true
}
{
false
}
ifelse
}
{
dup FontDirectory exch known
{pop true}
{
256 string
cvs
(fonts/) exch MN
status
{pop pop pop pop true}
{false}
ifelse
}
ifelse
}
ifelse
}bdf
/FDFK
{
dup
hasfont
not
{
pop
/JCsm
hasfont
{
/JCsm
}
{
/Courier
}
ifelse
}
if
}bdf
/FFK{
_bfh
dup
256 string cvs
(|______)exch MN
cvn
dup
FontDirectory
exch known
{
exch
pop
findfont
3 -1 roll
pop
}
{
pop
FDFK
dup findfont
dup maxlength dict
CD
dup dup
/Encoding exch
/Encoding get
256 array copy
7 -1 roll
{
3 -1 roll
dup
4 -2 roll
put
}forall
put
definefont
}
ifelse
_efh
}bdf
/RCTC{4 -1 roll
/ourvec xdf
256 string cvs
(|______) anchorsearch
{pop
cvn
dup FDFTC
exch
1 index
eq
{
_bfh findfont _efh
dup
maxlength dict
CD
dup
/FontName
3 index
put
dup
/Encoding ourvec put
1 index
exch
definefont
pop
}
{exch pop}
ifelse
}
{pop}
ifelse
}bdf
/RFTC{
dup
FontDirectory exch
known
{pop 3 -1 roll pop}
{RCTC}
ifelse
}bdf
/FDFTC
{
dup
hasfont
not
{
pop
/DFMing-Lt-HK-BF
hasfont
{
/DFMing-Lt-HK-BF
}
{
/Courier
}
ifelse
}
if
}bdf
/FFTC{
_bfh
dup
256 string cvs
(|______)exch MN
cvn
dup
FontDirectory
exch known
{
exch
pop
findfont
3 -1 roll
pop
}
{
pop
FDFTC
dup findfont
dup maxlength dict
CD
dup dup
/Encoding exch
/Encoding get
256 array copy
7 -1 roll
{
3 -1 roll
dup
4 -2 roll
put
}forall
put
definefont
}
ifelse
_efh
}bdf
/fps{
currentflat
exch
dup 0 le{pop 1}if
{
dup setflat 3 index stopped
{1.3 mul dup 3 index gt{pop setflat pop pop stop}if}
{exit}
ifelse
}loop
pop setflat pop pop
}bdf
/fp{100 currentflat fps}bdf
/clipper{clip}bdf
/W{/clipper load 100 clipflatness dup setflat fps}bdf

userdict begin /BDFontDict 29 dict def end
BDFontDict begin
/bu{}def
/bn{}def
/setTxMode{av 70 ge{pop}if pop}def
/gm{m}def
/show{pop}def
/gr{pop}def
/fnt{pop pop pop}def
/fs{pop}def
/fz{pop}def
/lin{pop pop}def
/:M {pop pop} def
/sf {pop} def
/S {pop} def
/@b {pop pop pop pop pop pop pop pop} def
/_bdsave /save load def
/_bdrestore /restore load def
/save { dup /fontsave eq {null} {_bdsave} ifelse } def
/restore { dup null eq { pop } { _bdrestore } ifelse } def
/fontsave null def
end
/MacVec 256 array def
MacVec 0 /Helvetica findfont
/Encoding get 0 128 getinterval putinterval
MacVec 127 /DEL put MacVec 16#27 /quotesingle put MacVec 16#60 /grave put
/NUL/SOH/STX/ETX/EOT/ENQ/ACK/BEL/BS/HT/LF/VT/FF/CR/SO/SI
/DLE/DC1/DC2/DC3/DC4/NAK/SYN/ETB/CAN/EM/SUB/ESC/FS/GS/RS/US
MacVec 0 32 getinterval astore pop
/Adieresis/Aring/Ccedilla/Eacute/Ntilde/Odieresis/Udieresis/aacute
/agrave/acircumflex/adieresis/atilde/aring/ccedilla/eacute/egrave
/ecircumflex/edieresis/iacute/igrave/icircumflex/idieresis/ntilde/oacute
/ograve/ocircumflex/odieresis/otilde/uacute/ugrave/ucircumflex/udieresis
/dagger/degree/cent/sterling/section/bullet/paragraph/germandbls
/registered/copyright/trademark/acute/dieresis/notequal/AE/Oslash
/infinity/plusminus/lessequal/greaterequal/yen/mu/partialdiff/summation
/product/pi/integral/ordfeminine/ordmasculine/Omega/ae/oslash
/questiondown/exclamdown/logicalnot/radical/florin/approxequal/Delta/guillemotleft
/guillemotright/ellipsis/nbspace/Agrave/Atilde/Otilde/OE/oe
/endash/emdash/quotedblleft/quotedblright/quoteleft/quoteright/divide/lozenge
/ydieresis/Ydieresis/fraction/currency/guilsinglleft/guilsinglright/fi/fl
/daggerdbl/periodcentered/quotesinglbase/quotedblbase
/perthousand/Acircumflex/Ecircumflex/Aacute
/Edieresis/Egrave/Iacute/Icircumflex/Idieresis/Igrave/Oacute/Ocircumflex
/apple/Ograve/Uacute/Ucircumflex/Ugrave/dotlessi/circumflex/tilde
/macron/breve/dotaccent/ring/cedilla/hungarumlaut/ogonek/caron
MacVec 128 128 getinterval astore pop
/findheaderfont {
/Helvetica findfont
} def
end %. AltsysDict
%%EndResource
%%EndProlog

%%BeginSetup

AltsysDict begin
_bfh

_efh
end %. AltsysDict

%%EndSetup
AltsysDict begin

/onlyk4{false}ndf
/ccmyk{dup 5 -1 roll sub 0 max exch}ndf
/cmyk2gray{
4 -1 roll 0.3 mul 4 -1 roll 0.59 mul 4 -1 roll 0.11 mul
add add add 1 min neg 1 add
}bdf
/setcmykcolor{1 exch sub ccmyk ccmyk ccmyk pop setrgbcolor}ndf
/maxcolor {
max max max
} ndf
/maxspot {
pop
} ndf
/setcmykcoloroverprint{4{dup -1 eq{pop 0}if 4 1 roll}repeat setcmykcolor}ndf
/findcmykcustomcolor{5 packedarray}ndf
/setcustomcolor{exch aload pop pop 4{4 index mul 4 1 roll}repeat setcmykcolor pop}ndf
/setseparationgray{setgray}ndf
/setoverprint{pop}ndf
/currentoverprint false ndf
/cmykbufs2gray{
0 1 2 index length 1 sub
{
4 index 1 index get 0.3 mul
4 index 2 index get 0.59 mul
4 index 3 index get 0.11 mul
4 index 4 index get
add add add cvi 255 min
255 exch sub
2 index 3 1 roll put
}for
4 1 roll pop pop pop
}bdf
/colorimage{
pop pop
[
5 -1 roll/exec cvx
6 -1 roll/exec cvx
7 -1 roll/exec cvx
8 -1 roll/exec cvx
/cmykbufs2gray cvx
]cvx
image
}
%. version 47.1 on Linotronic of Postscript defines colorimage incorrectly (rgb model only)
version cvr 47.1 le
statusdict /product get (Lino) anchorsearch{pop pop true}{pop false}ifelse
and{userdict begin bdf end}{ndf}ifelse
fhnumcolors 1 ne {/yt save def} if
/customcolorimage{
aload pop
(_vc_Registration) eq
{
pop pop pop pop separationimage
}
{
/ik xdf /iy xdf /im xdf /ic xdf
ic im iy ik cmyk2gray /xt xdf
currenttransfer
{dup 1.0 exch sub xt mul add}concatprocs
st
image
}
ifelse
}ndf
fhnumcolors 1 ne {yt restore} if
fhnumcolors 3 ne {/yt save def} if
/customcolorimage{
aload pop
(_vc_Registration) eq
{
pop pop pop pop separationimage
}
{
/ik xdf /iy xdf /im xdf /ic xdf
1.0 dup ic ik add min sub
1.0 dup im ik add min sub
1.0 dup iy ik add min sub
/ic xdf /iy xdf /im xdf
currentcolortransfer
4 1 roll
{dup 1.0 exch sub ic mul add}concatprocs 4 1 roll
{dup 1.0 exch sub iy mul add}concatprocs 4 1 roll
{dup 1.0 exch sub im mul add}concatprocs 4 1 roll
setcolortransfer
{/dummy xdf dummy}concatprocs{dummy}{dummy}true 3 colorimage
}
ifelse
}ndf
fhnumcolors 3 ne {yt restore} if
fhnumcolors 4 ne {/yt save def} if
/customcolorimage{
aload pop
(_vc_Registration) eq
{
pop pop pop pop separationimage
}
{
/ik xdf /iy xdf /im xdf /ic xdf
currentcolortransfer
{1.0 exch sub ik mul ik sub 1 add}concatprocs 4 1 roll
{1.0 exch sub iy mul iy sub 1 add}concatprocs 4 1 roll
{1.0 exch sub im mul im sub 1 add}concatprocs 4 1 roll
{1.0 exch sub ic mul ic sub 1 add}concatprocs 4 1 roll
setcolortransfer
{/dummy xdf dummy}concatprocs{dummy}{dummy}{dummy}
true 4 colorimage
}
ifelse
}ndf
fhnumcolors 4 ne {yt restore} if
/separationimage{image}ndf
/spotascmyk false ndf
/newcmykcustomcolor{6 packedarray}ndf
/inkoverprint false ndf
/setinkoverprint{pop}ndf
/setspotcolor {
spots exch get
dup 4 get (_vc_Registration) eq
{pop 1 exch sub setseparationgray}
{0 5 getinterval exch setcustomcolor}
ifelse
}ndf
/currentcolortransfer{currenttransfer dup dup dup}ndf
/setcolortransfer{st pop pop pop}ndf
/fas{}ndf
/sas{}ndf
/fhsetspreadsize{pop}ndf
/filler{fill}bdf
/F{gsave {filler}fp grestore}bdf
/f{closepath F}bdf
/S{gsave {stroke}fp grestore}bdf
/s{closepath S}bdf
userdict /islevel2
systemdict /languagelevel known dup
{
pop systemdict /languagelevel get 2 ge
} if
put
islevel2 not
{
/currentcmykcolor
{
0 0 0 1 currentgray sub
} ndf
} if
/tc
{
gsave
setcmykcolor currentcmykcolor
grestore
} bind def
/testCMYKColorThrough
{
tc add add add 0 ne
} bind def
/fhiscomposite where not {
userdict /fhiscomposite
islevel2
{
gsave 1 1 1 1 setcmykcolor currentcmykcolor grestore
add add add 4 eq
}
{
1 0 0 0 testCMYKColorThrough
0 1 0 0 testCMYKColorThrough
0 0 1 0 testCMYKColorThrough
0 0 0 1 testCMYKColorThrough
and and and
} ifelse
put
}
{ pop }
ifelse
/bc4 [0 0 0 0] def
/_lfp4 {
1 pop
/yt xdf
/xt xdf
/ang xdf
storerect
/taperfcn xdf
/k2 xdf /y2 xdf /m2 xdf /c2 xdf
/k1 xdf /y1 xdf /m1 xdf /c1 xdf
c1 c2 sub abs
m1 m2 sub abs
y1 y2 sub abs
k1 k2 sub abs
maxcolor
calcgraysteps mul abs round
height abs adjnumsteps
dup 1 lt {pop 1} if
1 sub /numsteps1 xdf
currentflat mark
currentflat clipflatness
/delta top bottom sub numsteps1 1 add div def
/right right left sub def
/botsv top delta sub def
{
{
W
xt yt translate
ang rotate
xt neg yt neg translate
dup setflat
/bottom botsv def
0 1 numsteps1
{
numsteps1 dup 0 eq {pop pop 0.5} {div} ifelse
taperfcn /frac xdf
bc4 0 c2 c1 sub frac mul c1 add put
bc4 1 m2 m1 sub frac mul m1 add put
bc4 2 y2 y1 sub frac mul y1 add put
bc4 3 k2 k1 sub frac mul k1 add put
bc4 vc
1 index setflat
{
mark {newpath left bottom right delta rectfill}stopped
{cleartomark exch 1.3 mul dup setflat exch 2 copy gt{stop}if}
{cleartomark exit}ifelse
}loop
/bottom bottom delta sub def
}for
}
gsave stopped grestore
{exch pop 2 index exch 1.3 mul dup 100 gt{cleartomark setflat stop}if}
{exit}ifelse
}loop
cleartomark setflat
}bdf
/bcs [0 0] def
/_lfs4 {
/yt xdf
/xt xdf
/ang xdf
storerect
/taperfcn xdf
/tint2 xdf
/tint1 xdf
bcs exch 1 exch put
tint1 tint2 sub abs
bcs 1 get maxspot
calcgraysteps mul abs round
height abs adjnumsteps
dup 2 lt {pop 2} if
1 sub /numsteps1 xdf
currentflat mark
currentflat clipflatness
/delta top bottom sub numsteps1 1 add div def
/right right left sub def
/botsv top delta sub def
{
{
W
xt yt translate
ang rotate
xt neg yt neg translate
dup setflat
/bottom botsv def
0 1 numsteps1
{
numsteps1 div taperfcn /frac xdf
bcs 0
1.0 tint2 tint1 sub frac mul tint1 add sub
put bcs vc
1 index setflat
{
mark {newpath left bottom right delta rectfill}stopped
{cleartomark exch 1.3 mul dup setflat exch 2 copy gt{stop}if}
{cleartomark exit}ifelse
}loop
/bottom bottom delta sub def
}for
}
gsave stopped grestore
{exch pop 2 index exch 1.3 mul dup 100 gt{cleartomark setflat stop}if}
{exit}ifelse
}loop
cleartomark setflat
}bdf
/_rfs6 {
/tint2 xdf
/tint1 xdf
bcs exch 1 exch put
/inrad xdf
/radius xdf
/yt xdf
/xt xdf
tint1 tint2 sub abs
bcs 1 get maxspot
calcgraysteps mul abs round
radius inrad sub abs
adjnumsteps
dup 1 lt {pop 1} if
1 sub /numsteps1 xdf
radius inrad sub numsteps1 dup 0 eq {pop} {div} ifelse
2 div /halfstep xdf
currentflat mark
currentflat clipflatness
{
{
dup setflat
W
0 1 numsteps1
{
dup /radindex xdf
numsteps1 dup 0 eq {pop pop 0.5} {div} ifelse
/frac xdf
bcs 0
tint2 tint1 sub frac mul tint1 add
put bcs vc
1 index setflat
{
newpath mark
xt yt radius inrad sub 1 frac sub mul halfstep add inrad add 0 360
{ arc
radindex numsteps1 ne
inrad 0 gt or
{
xt yt
numsteps1 0 eq
{ inrad }
{
radindex 1 add numsteps1 div 1 exch sub
radius inrad sub mul halfstep add inrad add
}ifelse
dup xt add yt moveto
360 0 arcn
} if
fill
}stopped
{cleartomark exch 1.3 mul dup setflat exch 2 copy gt{stop}if}
{cleartomark exit}ifelse
}loop
}for
}
gsave stopped grestore
{exch pop 2 index exch 1.3 mul dup 100 gt{cleartomark setflat stop}if}
{exit}ifelse
}loop
cleartomark setflat
}bdf
/_rfp6 {
1 pop
/k2 xdf /y2 xdf /m2 xdf /c2 xdf
/k1 xdf /y1 xdf /m1 xdf /c1 xdf
/inrad xdf
/radius xdf
/yt xdf
/xt xdf
c1 c2 sub abs
m1 m2 sub abs
y1 y2 sub abs
k1 k2 sub abs
maxcolor
calcgraysteps mul abs round
radius inrad sub abs
adjnumsteps
dup 1 lt {pop 1} if
1 sub /numsteps1 xdf
radius inrad sub numsteps1 dup 0 eq {pop} {div} ifelse
2 div /halfstep xdf
currentflat mark
currentflat clipflatness
{
{
dup setflat
W
0 1 numsteps1
{
dup /radindex xdf
numsteps1 dup 0 eq {pop pop 0.5} {div} ifelse
/frac xdf
bc4 0 c2 c1 sub frac mul c1 add put
bc4 1 m2 m1 sub frac mul m1 add put
bc4 2 y2 y1 sub frac mul y1 add put
bc4 3 k2 k1 sub frac mul k1 add put
bc4 vc
1 index setflat
{
newpath mark
xt yt radius inrad sub 1 frac sub mul halfstep add inrad add 0 360
{ arc
radindex numsteps1 ne
inrad 0 gt or
{
xt yt
numsteps1 0 eq
{ inrad }
{
radindex 1 add numsteps1 div 1 exch sub
radius inrad sub mul halfstep add inrad add
}ifelse
dup xt add yt moveto
360 0 arcn
} if
fill
}stopped
{cleartomark exch 1.3 mul dup setflat exch 2 copy gt{stop}if}
{cleartomark exit}ifelse
}loop
}for
}
gsave stopped grestore
{exch pop 2 index exch 1.3 mul dup 100 gt{cleartomark setflat stop}if}
{exit}ifelse
}loop
cleartomark setflat
}bdf
/lfp4{_lfp4}ndf
/lfs4{_lfs4}ndf
/rfs6{_rfs6}ndf
/rfp6{_rfp6}ndf
/cvc [0 0 0 1] def
/vc{
AltsysDict /cvc 2 index put
aload length dup 4 eq
{pop dup -1 eq{pop setrgbcolor}{setcmykcolor}ifelse}
{6 eq {sethexcolor} {setspotcolor} ifelse }
ifelse
}bdf
0 setseparationgray
/imgr {1773 2213 1945 2392 } def
/bleed 0 def
/clpr {1773 2213 1945 2392 } def
/xs 1 def
/ys 1 def
/botx 0 def
/overlap 0 def
/wdist 18 def
0 2 mul fhsetspreadsize
0 0 ne {/df 0 def /clipflatness 0 def} if
/maxsteps 256 def
/forcemaxsteps false def
/minsteps 0 def

userdict begin /AGDOrigMtx matrix currentmatrix def end
vms
-1773 -2213 translate

/currentpacking defed{false setpacking}if
/spots[

1 0 0 0 (Process Cyan) false newcmykcustomcolor

0 1 0 0 (Process Magenta) false newcmykcustomcolor

0 0 1 0 (Process Yellow) false newcmykcustomcolor

0 0 0 1 (Process Black) false newcmykcustomcolor
]def
n
[] 0 d
3.863708 M
1 w
0 j
0 J
false setoverprint
0 i
false eomode
[0 0 0 1]vc
vms
1774.5 2348.054 m
1774.5 2248.554 L
1.5 w
3.863693 M
[0 0 0 1]vc
S
n
1817.0656 2347.7927 m
1817.0656 2248.2927 L
S
n
1796.0656 2348.7927 m
1796.0656 2237.054 L
S
n
1785.5 2225.554 m
1785.5 2231.6292 1790.4248 2236.554 1796.5 2236.554 C
1802.5752 2236.554 1807.5 2231.6292 1807.5 2225.554 C
1807.5 2219.4788 1802.5752 2214.554 1796.5 2214.554 C
1790.4248 2214.554 1785.5 2219.4788 1785.5 2225.554 C
[0.6941 0.5765 0.5765 0.949]vc
f
[0 0 0 1]vc
S
n
1774 2248.554 m
1783.5 2239.054 L
S
n
1817.5 2248.554 m
1809 2240.054 L
S
n
1900.8156 2348.054 m
1900.8156 2248.554 L
S
n
1943.3813 2347.7927 m
1943.3813 2248.2927 L
S
n
1922.3813 2348.7927 m
1922.3813 2237.054 L
S
n
1911.8156 2225.554 m
1911.8156 2231.6292 1916.7404 2236.554 1922.8156 2236.554 C
1928.8909 2236.554 1933.8156 2231.6292 1933.8156 2225.554 C
1933.8156 2219.4788 1928.8909 2214.554 1922.8156 2214.554 C
1916.7404 2214.554 1911.8156 2219.4788 1911.8156 2225.554 C
[0.6941 0.5765 0.5765 0.949]vc
f
[0 0 0 1]vc
S
n
1900.3156 2248.554 m
1909.8156 2239.054 L
S
n
1943.8156 2248.554 m
1935.3156 2240.054 L
S
n
1796.5 2350 m
1802.767 2375.2121 1794 2390 1849 2391 C
1904 2392 1895.4455 2374.8878 1901.5 2349.5 C
S
n
1816.8156 2347.2187 m
1823.1528 2372.8927 1815.8156 2387.2187 1870.8156 2388.2187 C
1925.8156 2389.2187 1916.1182 2371.349 1921.8156 2346.2187 C
S
n
vmr
vmr
end
%%Trailer
� �¿� �À�ÿ

Figure 8. Standard single plugboard connector.

The wiring of the unconventional sets of 3 and 4 plugs, mentioned in the text, is as shown below.

 [image: image13.wmf] [image: image14.wmf]a������¿�)���ÿ��ÿÿÿÿ���������)���¿�������¡�d��FH X��� �À���
�����¿�)�������"�¿�)���"������� �¾� �À�������p���7���›���7���›���p���8�+�›�+�8�+�›�+�p���7���¦���7���¦���Q�¨���¾�"�P�§���¿�#�p���›���¤�	�›���¤�	�p���›�#�£�+�›�+�£�#�p���7���›���7���›���p���8�©�›�©�8�©�›�©�p���7�”�¦�”�7�”�¦�”�Q�¨�‹�¾�¡�P�§�Š�¿�¢�p���›�~�¤�ˆ�›�~�¤�ˆ�p���›�¡�£�ª�›�ª�£�¡�p���7�û�›�û�7�û�›�û�p���8�&�›�&�8�&�›�&�p���7���¦���7���¦���Q�¨���¾���P�§���¿���p���›�û�¤���›�û�¤���p���›���£�&�›�&�£���p�F�����6���5���$�������������$���-�
�:���L�
�^���j���s���x���{�%�|�6���p�F���•�7�ü�7�•�%�—���™���œ���¡���ª�
�·���É���Û���ç���ð���õ���ø�$�ù�6�ü�p�F���+�8���8�+���,���0�
�8���F���Z���x��� ���ä���ù�	���������
�����6���¡�À^_
gsave
/dstR[newpath clippath pathbbox]def newpath
grestore
dstR 0 get dstR 1 get translate
dstR 2 get dstR 0 get sub 2065 1768 sub div
dstR 3 get dstR 1 get sub 1939 2130 sub div scale
0 1939 2130 sub translate
%!PS-Adobe-2.0 EPSF-1.2

%%Title: Unknown
%%Creator: FreeHand 10.0
%%CreationDate: 3/3/02 8:06 PM
%%BoundingBox: 0 0 297 191
%%FHPathName:
%ALDOriginalFile:
%ALDBoundingBox: 0 0 297 191
%%FHPageNum:0
%%DocumentSuppliedResources: procset Altsys_header 4 0
%%ColorUsage: Color
%%DocumentProcessColors: Cyan Magenta Yellow Black
%%EndComments
%%BeginResource: procset Altsys_header 4 0
userdict begin /AltsysDict 300 dict def end
AltsysDict begin
/bdf{bind def}bind def
/xdf{exch def}bdf
/defed{where{pop true}{false}ifelse}bdf
/ndf{1 index where{pop pop pop}{dup xcheck{bind}if def}ifelse}bdf
/d{setdash}bdf
/h{closepath}bdf
/H{}bdf
/J{setlinecap}bdf
/j{setlinejoin}bdf
/M{setmiterlimit}bdf
/n{newpath}bdf
/N{newpath}bdf
/q{gsave}bdf
/Q{grestore}bdf
/w{setlinewidth}bdf
/Xic{matrix invertmatrix concat}bdf
/Xq{matrix currentmatrix mark}bdf
/XQ{cleartomark setmatrix}bdf
/sepdef{
dup where not
{
AltsysSepDict
}
if
3 1 roll exch put
}bdf
/st{settransfer}bdf
/colorimage defed /_rci xdf
/cntr 0 def
/readbinarystring{
/cntr 0 def
2 copy readstring
{
{
dup
(\034) search
{
length exch pop exch
dup length 0 ne
{
dup dup 0 get 32 sub 0 exch put
/cntr cntr 1 add def
}
{
pop 1 string dup
0 6 index read pop 32 sub put
}ifelse
3 copy
putinterval pop
1 add
1 index length 1 sub
1 index sub
dup 0 le {pop pop exit}if
getinterval
}
{
pop exit
} ifelse
} loop
}if
cntr 0 gt
{
pop 2 copy
dup length cntr sub cntr getinterval
readbinarystring
} if
pop exch pop
} bdf
/_NXLevel2 defed {
_NXLevel2 not {
/colorimage where {
userdict eq {
/_rci false def
} if
} if
} if
} if
/md defed{
md type /dicttype eq {
/colorimage where {
md eq {
/_rci false def
}if
}if
/settransfer where {
md eq {
/st systemdict /settransfer get def
}if
}if
}if
}if
/setstrokeadjust defed
{
true setstrokeadjust
/C{curveto}bdf
/L{lineto}bdf
/m{moveto}bdf
}
{
/dr{transform .25 sub round .25 add
exch .25 sub round .25 add exch itransform}bdf
/C{dr curveto}bdf
/L{dr lineto}bdf
/m{dr moveto}bdf
/setstrokeadjust{pop}bdf
}ifelse
/privrectpath {
4 -2 roll m
dtransform round exch round exch idtransform
2 copy 0 lt exch 0 lt xor
{dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto}
{exch dup 0 rlineto exch 0 exch rlineto neg 0 rlineto}
ifelse
closepath
}bdf
/rectclip{newpath privrectpath clip newpath}def
/rectfill{gsave newpath privrectpath fill grestore}def
/rectstroke{gsave newpath privrectpath stroke grestore}def
/_fonthacksave false def
/currentpacking defed
{
/_bfh {/_fonthacksave currentpacking def false setpacking} bdf
/_efh {_fonthacksave setpacking} bdf
}
{
/_bfh {} bdf
/_efh {} bdf
}ifelse
/packedarray{array astore readonly}ndf
/`
{
false setoverprint
/-save0- save def
5 index concat
pop
storerect left bottom width height rectclip
pop
/MMdict_count countdictstack def
/MMop_count count 1 sub def
userdict begin
/showpage {} def
0 setgray 0 setlinecap 1 setlinewidth
0 setlinejoin 10 setmiterlimit [] 0 setdash newpath
} bdf
/currentpacking defed{true setpacking}if
/min{2 copy gt{exch}if pop}bdf
/max{2 copy lt{exch}if pop}bdf
/xformfont { currentfont exch makefont setfont } bdf
/fhnumcolors 1
statusdict begin
/processcolors defed
{
pop processcolors
}
{
/deviceinfo defed {
deviceinfo /Colors known {
pop deviceinfo /Colors get
} if
} if
} ifelse
end
def
/printerRes
gsave
matrix defaultmatrix setmatrix
72 72 dtransform
abs exch abs
max
grestore
def
/graycalcs
[
{Angle Frequency}
{GrayAngle GrayFrequency}
{0 Width Height matrix defaultmatrix idtransform
dup mul exch dup mul add sqrt 72 exch div}
{0 GrayWidth GrayHeight matrix defaultmatrix idtransform
dup mul exch dup mul add sqrt 72 exch div}
] def
/calcgraysteps {
forcemaxsteps
{
maxsteps
}
{
/currenthalftone defed
{currenthalftone /dicttype eq}{false}ifelse
{
currenthalftone begin
HalftoneType 4 le
{graycalcs HalftoneType 1 sub get exec}
{
HalftoneType 5 eq
{
Default begin
{graycalcs HalftoneType 1 sub get exec}
end
}
{0 60}
ifelse
}
ifelse
end
}
{
currentscreen pop exch
}
ifelse
printerRes 300 max exch div exch
2 copy
sin mul round dup mul
3 1 roll
cos mul round dup mul
add 1 add
dup maxsteps gt {pop maxsteps} if
dup minsteps lt {pop minsteps} if
}
ifelse
} bdf
/nextrelease defed {
/languagelevel defed not {
/framebuffer defed {
0 40 string framebuffer 9 1 roll 8 {pop} repeat
dup 516 eq exch 520 eq or
{
/fhnumcolors 3 def
/currentscreen {60 0 {pop pop 1}}bdf
/calcgraysteps {maxsteps} bdf
}if
}if
}if
}if
fhnumcolors 1 ne {
/calcgraysteps {maxsteps} bdf
} if
/currentpagedevice defed {
currentpagedevice /PreRenderingEnhance known
{
currentpagedevice /PreRenderingEnhance get
{
/calcgraysteps
{
forcemaxsteps
{maxsteps}
{256 maxsteps min}
ifelse
} def
} if
} if
} if
/gradfrequency 144 def
printerRes 1000 lt {
/gradfrequency 72 def
} if
/adjnumsteps {
dup dtransform abs exch abs max
printerRes div
gradfrequency mul
round
5 max
min
}bdf
/goodsep {
spots exch get 4 get dup sepname eq exch (_vc_Registration) eq or
}bdf
/BeginGradation defed
{/bb{BeginGradation}bdf}
{/bb{}bdf}
ifelse
/EndGradation defed
{/eb{EndGradation}bdf}
{/eb{}bdf}
ifelse
/bottom -0 def
/delta -0 def
/frac -0 def
/height -0 def
/left -0 def
/numsteps1 -0 def
/radius -0 def
/right -0 def
/top -0 def
/width -0 def
/xt -0 def
/yt -0 def
/df currentflat def
/tempstr 1 string def
/clipflatness currentflat def
/inverted?
0 currenttransfer exec .5 ge def
/tc1 [0 0 0 1] def
/tc2 [0 0 0 1] def
/storerect{/top xdf /right xdf /bottom xdf /left xdf
/width right left sub def /height top bottom sub def}bdf
/concatprocs{
systemdict /packedarray known
{dup type /packedarraytype eq 2 index type /packedarraytype eq or}{false}ifelse
{
/proc2 exch cvlit def /proc1 exch cvlit def
proc1 aload pop proc2 aload pop
proc1 length proc2 length add packedarray cvx
}
{
/proc2 exch cvlit def /proc1 exch cvlit def
/newproc proc1 length proc2 length add array def
newproc 0 proc1 putinterval newproc proc1 length proc2 putinterval
newproc cvx
}ifelse
}bdf
/i{dup 0 eq
{pop df dup}
{dup} ifelse
/clipflatness xdf setflat
}bdf
version cvr 38.0 le
{/setrgbcolor{
currenttransfer exec 3 1 roll
currenttransfer exec 3 1 roll
currenttransfer exec 3 1 roll
setrgbcolor}bdf}if
/vms {/vmsv save def} bdf
/vmr {vmsv restore} bdf
/vmrs{vmsv restore /vmsv save def}bdf
/eomode{
{/filler /eofill load def /clipper /eoclip load def}
{/filler /fill load def /clipper /clip load def}
ifelse
}bdf
/normtaper{}bdf
/logtaper{9 mul 1 add log}bdf
/CD{
/NF exch def
{
exch dup
/FID ne 1 index/UniqueID ne and
{exch NF 3 1 roll put}
{pop pop}
ifelse
}forall
NF
}bdf
/MN{
1 index length
/Len exch def
dup length Len add
string dup
Len
4 -1 roll
putinterval
dup
0
4 -1 roll
putinterval
}bdf
/RC{4 -1 roll /ourvec xdf 256 string cvs(|______)anchorsearch
{1 index MN cvn/NewN exch def cvn
findfont dup maxlength dict CD dup/FontName NewN put dup
/Encoding ourvec put NewN exch definefont pop}{pop}ifelse}bdf
/RF{
dup
FontDirectory exch
known
{pop 3 -1 roll pop}
{RC}
ifelse
}bdf
/FF{dup 256 string cvs(|______)exch MN cvn dup FontDirectory exch known
{exch pop findfont 3 -1 roll pop}
{pop dup findfont dup maxlength dict CD dup dup
/Encoding exch /Encoding get 256 array copy 7 -1 roll
{3 -1 roll dup 4 -2 roll put}forall put definefont}
ifelse}bdf
/RCJ{4 -1 roll
/ourvec xdf
256 string cvs
(|______) anchorsearch
{pop
cvn
dup FDFJ
exch
1 index
eq
{
_bfh findfont _efh
dup
maxlength dict
CD
dup
/FontName
3 index
put
dup
/Encoding ourvec put
1 index
exch
definefont
pop
}
{exch pop}
ifelse
}
{pop}
ifelse
}bdf
/RFJ{
dup
FontDirectory exch
known
{pop 3 -1 roll pop}
{RCJ}
ifelse
}bdf
/hasfont
{
/resourcestatus where
{
pop
/Font resourcestatus
{
pop pop true
}
{
false
}
ifelse
}
{
dup FontDirectory exch known
{pop true}
{
256 string
cvs
(fonts/) exch MN
status
{pop pop pop pop true}
{false}
ifelse
}
ifelse
}
ifelse
}bdf
/FDFJ
{
dup
hasfont
not
{
pop
/Ryumin-Light-83pv-RKSJ-H
hasfont
{
/Ryumin-Light-83pv-RKSJ-H
}
{
/Courier
}
ifelse
}
if
}bdf
/FFJ{
_bfh
dup
256 string cvs
(|______)exch MN
cvn
dup
FontDirectory
exch known
{
exch
pop
findfont
3 -1 roll
pop
}
{
pop
FDFJ
dup findfont
dup maxlength dict
CD
dup dup
/Encoding exch
/Encoding get
256 array copy
7 -1 roll
{
3 -1 roll
dup
4 -2 roll
put
}forall
put
definefont
}
ifelse
_efh
}bdf
/GS {
dup
hasfont
{
findfont
exch makesetfont
exch
pop
ts
}
{
pop pop pop
ts
} ifelse
} bdf
/RCK{4 -1 roll
/ourvec xdf
256 string cvs
(|______) anchorsearch
{pop
cvn
dup FDFK
exch
1 index
eq
{
_bfh findfont _efh
dup
maxlength dict
CD
dup
/FontName
3 index
put
dup
/Encoding ourvec put
1 index
exch
definefont
pop
}
{exch pop}
ifelse
}
{pop}
ifelse
}bdf
/RFK{
dup
FontDirectory exch
known
{pop 3 -1 roll pop}
{RCK}
ifelse
}bdf
/hasfont
{
/resourcestatus where
{
pop
/Font resourcestatus
{
pop pop true
}
{
false
}
ifelse
}
{
dup FontDirectory exch known
{pop true}
{
256 string
cvs
(fonts/) exch MN
status
{pop pop pop pop true}
{false}
ifelse
}
ifelse
}
ifelse
}bdf
/FDFK
{
dup
hasfont
not
{
pop
/JCsm
hasfont
{
/JCsm
}
{
/Courier
}
ifelse
}
if
}bdf
/FFK{
_bfh
dup
256 string cvs
(|______)exch MN
cvn
dup
FontDirectory
exch known
{
exch
pop
findfont
3 -1 roll
pop
}
{
pop
FDFK
dup findfont
dup maxlength dict
CD
dup dup
/Encoding exch
/Encoding get
256 array copy
7 -1 roll
{
3 -1 roll
dup
4 -2 roll
put
}forall
put
definefont
}
ifelse
_efh
}bdf
/RCTC{4 -1 roll
/ourvec xdf
256 string cvs
(|______) anchorsearch
{pop
cvn
dup FDFTC
exch
1 index
eq
{
_bfh findfont _efh
dup
maxlength dict
CD
dup
/FontName
3 index
put
dup
/Encoding ourvec put
1 index
exch
definefont
pop
}
{exch pop}
ifelse
}
{pop}
ifelse
}bdf
/RFTC{
dup
FontDirectory exch
known
{pop 3 -1 roll pop}
{RCTC}
ifelse
}bdf
/FDFTC
{
dup
hasfont
not
{
pop
/DFMing-Lt-HK-BF
hasfont
{
/DFMing-Lt-HK-BF
}
{
/Courier
}
ifelse
}
if
}bdf
/FFTC{
_bfh
dup
256 string cvs
(|______)exch MN
cvn
dup
FontDirectory
exch known
{
exch
pop
findfont
3 -1 roll
pop
}
{
pop
FDFTC
dup findfont
dup maxlength dict
CD
dup dup
/Encoding exch
/Encoding get
256 array copy
7 -1 roll
{
3 -1 roll
dup
4 -2 roll
put
}forall
put
definefont
}
ifelse
_efh
}bdf
/fps{
currentflat
exch
dup 0 le{pop 1}if
{
dup setflat 3 index stopped
{1.3 mul dup 3 index gt{pop setflat pop pop stop}if}
{exit}
ifelse
}loop
pop setflat pop pop
}bdf
/fp{100 currentflat fps}bdf
/clipper{clip}bdf
/W{/clipper load 100 clipflatness dup setflat fps}bdf

userdict begin /BDFontDict 29 dict def end
BDFontDict begin
/bu{}def
/bn{}def
/setTxMode{av 70 ge{pop}if pop}def
/gm{m}def
/show{pop}def
/gr{pop}def
/fnt{pop pop pop}def
/fs{pop}def
/fz{pop}def
/lin{pop pop}def
/:M {pop pop} def
/sf {pop} def
/S {pop} def
/@b {pop pop pop pop pop pop pop pop} def
/_bdsave /save load def
/_bdrestore /restore load def
/save { dup /fontsave eq {null} {_bdsave} ifelse } def
/restore { dup null eq { pop } { _bdrestore } ifelse } def
/fontsave null def
end
/MacVec 256 array def
MacVec 0 /Helvetica findfont
/Encoding get 0 128 getinterval putinterval
MacVec 127 /DEL put MacVec 16#27 /quotesingle put MacVec 16#60 /grave put
/NUL/SOH/STX/ETX/EOT/ENQ/ACK/BEL/BS/HT/LF/VT/FF/CR/SO/SI
/DLE/DC1/DC2/DC3/DC4/NAK/SYN/ETB/CAN/EM/SUB/ESC/FS/GS/RS/US
MacVec 0 32 getinterval astore pop
/Adieresis/Aring/Ccedilla/Eacute/Ntilde/Odieresis/Udieresis/aacute
/agrave/acircumflex/adieresis/atilde/aring/ccedilla/eacute/egrave
/ecircumflex/edieresis/iacute/igrave/icircumflex/idieresis/ntilde/oacute
/ograve/ocircumflex/odieresis/otilde/uacute/ugrave/ucircumflex/udieresis
/dagger/degree/cent/sterling/section/bullet/paragraph/germandbls
/registered/copyright/trademark/acute/dieresis/notequal/AE/Oslash
/infinity/plusminus/lessequal/greaterequal/yen/mu/partialdiff/summation
/product/pi/integral/ordfeminine/ordmasculine/Omega/ae/oslash
/questiondown/exclamdown/logicalnot/radical/florin/approxequal/Delta/guillemotleft
/guillemotright/ellipsis/nbspace/Agrave/Atilde/Otilde/OE/oe
/endash/emdash/quotedblleft/quotedblright/quoteleft/quoteright/divide/lozenge
/ydieresis/Ydieresis/fraction/currency/guilsinglleft/guilsinglright/fi/fl
/daggerdbl/periodcentered/quotesinglbase/quotedblbase
/perthousand/Acircumflex/Ecircumflex/Aacute
/Edieresis/Egrave/Iacute/Icircumflex/Idieresis/Igrave/Oacute/Ocircumflex
/apple/Ograve/Uacute/Ucircumflex/Ugrave/dotlessi/circumflex/tilde
/macron/breve/dotaccent/ring/cedilla/hungarumlaut/ogonek/caron
MacVec 128 128 getinterval astore pop
/findheaderfont {
/Helvetica findfont
} def
end %. AltsysDict
%%EndResource
%%EndProlog

%%BeginSetup

AltsysDict begin
_bfh

_efh
end %. AltsysDict

%%EndSetup
AltsysDict begin

/onlyk4{false}ndf
/ccmyk{dup 5 -1 roll sub 0 max exch}ndf
/cmyk2gray{
4 -1 roll 0.3 mul 4 -1 roll 0.59 mul 4 -1 roll 0.11 mul
add add add 1 min neg 1 add
}bdf
/setcmykcolor{1 exch sub ccmyk ccmyk ccmyk pop setrgbcolor}ndf
/maxcolor {
max max max
} ndf
/maxspot {
pop
} ndf
/setcmykcoloroverprint{4{dup -1 eq{pop 0}if 4 1 roll}repeat setcmykcolor}ndf
/findcmykcustomcolor{5 packedarray}ndf
/setcustomcolor{exch aload pop pop 4{4 index mul 4 1 roll}repeat setcmykcolor pop}ndf
/setseparationgray{setgray}ndf
/setoverprint{pop}ndf
/currentoverprint false ndf
/cmykbufs2gray{
0 1 2 index length 1 sub
{
4 index 1 index get 0.3 mul
4 index 2 index get 0.59 mul
4 index 3 index get 0.11 mul
4 index 4 index get
add add add cvi 255 min
255 exch sub
2 index 3 1 roll put
}for
4 1 roll pop pop pop
}bdf
/colorimage{
pop pop
[
5 -1 roll/exec cvx
6 -1 roll/exec cvx
7 -1 roll/exec cvx
8 -1 roll/exec cvx
/cmykbufs2gray cvx
]cvx
image
}
%. version 47.1 on Linotronic of Postscript defines colorimage incorrectly (rgb model only)
version cvr 47.1 le
statusdict /product get (Lino) anchorsearch{pop pop true}{pop false}ifelse
and{userdict begin bdf end}{ndf}ifelse
fhnumcolors 1 ne {/yt save def} if
/customcolorimage{
aload pop
(_vc_Registration) eq
{
pop pop pop pop separationimage
}
{
/ik xdf /iy xdf /im xdf /ic xdf
ic im iy ik cmyk2gray /xt xdf
currenttransfer
{dup 1.0 exch sub xt mul add}concatprocs
st
image
}
ifelse
}ndf
fhnumcolors 1 ne {yt restore} if
fhnumcolors 3 ne {/yt save def} if
/customcolorimage{
aload pop
(_vc_Registration) eq
{
pop pop pop pop separationimage
}
{
/ik xdf /iy xdf /im xdf /ic xdf
1.0 dup ic ik add min sub
1.0 dup im ik add min sub
1.0 dup iy ik add min sub
/ic xdf /iy xdf /im xdf
currentcolortransfer
4 1 roll
{dup 1.0 exch sub ic mul add}concatprocs 4 1 roll
{dup 1.0 exch sub iy mul add}concatprocs 4 1 roll
{dup 1.0 exch sub im mul add}concatprocs 4 1 roll
setcolortransfer
{/dummy xdf dummy}concatprocs{dummy}{dummy}true 3 colorimage
}
ifelse
}ndf
fhnumcolors 3 ne {yt restore} if
fhnumcolors 4 ne {/yt save def} if
/customcolorimage{
aload pop
(_vc_Registration) eq
{
pop pop pop pop separationimage
}
{
/ik xdf /iy xdf /im xdf /ic xdf
currentcolortransfer
{1.0 exch sub ik mul ik sub 1 add}concatprocs 4 1 roll
{1.0 exch sub iy mul iy sub 1 add}concatprocs 4 1 roll
{1.0 exch sub im mul im sub 1 add}concatprocs 4 1 roll
{1.0 exch sub ic mul ic sub 1 add}concatprocs 4 1 roll
setcolortransfer
{/dummy xdf dummy}concatprocs{dummy}{dummy}{dummy}
true 4 colorimage
}
ifelse
}ndf
fhnumcolors 4 ne {yt restore} if
/separationimage{image}ndf
/spotascmyk false ndf
/newcmykcustomcolor{6 packedarray}ndf
/inkoverprint false ndf
/setinkoverprint{pop}ndf
/setspotcolor {
spots exch get
dup 4 get (_vc_Registration) eq
{pop 1 exch sub setseparationgray}
{0 5 getinterval exch setcustomcolor}
ifelse
}ndf
/currentcolortransfer{currenttransfer dup dup dup}ndf
/setcolortransfer{st pop pop pop}ndf
/fas{}ndf
/sas{}ndf
/fhsetspreadsize{pop}ndf
/filler{fill}bdf
/F{gsave {filler}fp grestore}bdf
/f{closepath F}bdf
/S{gsave {stroke}fp grestore}bdf
/s{closepath S}bdf
userdict /islevel2
systemdict /languagelevel known dup
{
pop systemdict /languagelevel get 2 ge
} if
put
islevel2 not
{
/currentcmykcolor
{
0 0 0 1 currentgray sub
} ndf
} if
/tc
{
gsave
setcmykcolor currentcmykcolor
grestore
} bind def
/testCMYKColorThrough
{
tc add add add 0 ne
} bind def
/fhiscomposite where not {
userdict /fhiscomposite
islevel2
{
gsave 1 1 1 1 setcmykcolor currentcmykcolor grestore
add add add 4 eq
}
{
1 0 0 0 testCMYKColorThrough
0 1 0 0 testCMYKColorThrough
0 0 1 0 testCMYKColorThrough
0 0 0 1 testCMYKColorThrough
and and and
} ifelse
put
}
{ pop }
ifelse
/bc4 [0 0 0 0] def
/_lfp4 {
1 pop
/yt xdf
/xt xdf
/ang xdf
storerect
/taperfcn xdf
/k2 xdf /y2 xdf /m2 xdf /c2 xdf
/k1 xdf /y1 xdf /m1 xdf /c1 xdf
c1 c2 sub abs
m1 m2 sub abs
y1 y2 sub abs
k1 k2 sub abs
maxcolor
calcgraysteps mul abs round
height abs adjnumsteps
dup 1 lt {pop 1} if
1 sub /numsteps1 xdf
currentflat mark
currentflat clipflatness
/delta top bottom sub numsteps1 1 add div def
/right right left sub def
/botsv top delta sub def
{
{
W
xt yt translate
ang rotate
xt neg yt neg translate
dup setflat
/bottom botsv def
0 1 numsteps1
{
numsteps1 dup 0 eq {pop pop 0.5} {div} ifelse
taperfcn /frac xdf
bc4 0 c2 c1 sub frac mul c1 add put
bc4 1 m2 m1 sub frac mul m1 add put
bc4 2 y2 y1 sub frac mul y1 add put
bc4 3 k2 k1 sub frac mul k1 add put
bc4 vc
1 index setflat
{
mark {newpath left bottom right delta rectfill}stopped
{cleartomark exch 1.3 mul dup setflat exch 2 copy gt{stop}if}
{cleartomark exit}ifelse
}loop
/bottom bottom delta sub def
}for
}
gsave stopped grestore
{exch pop 2 index exch 1.3 mul dup 100 gt{cleartomark setflat stop}if}
{exit}ifelse
}loop
cleartomark setflat
}bdf
/bcs [0 0] def
/_lfs4 {
/yt xdf
/xt xdf
/ang xdf
storerect
/taperfcn xdf
/tint2 xdf
/tint1 xdf
bcs exch 1 exch put
tint1 tint2 sub abs
bcs 1 get maxspot
calcgraysteps mul abs round
height abs adjnumsteps
dup 2 lt {pop 2} if
1 sub /numsteps1 xdf
currentflat mark
currentflat clipflatness
/delta top bottom sub numsteps1 1 add div def
/right right left sub def
/botsv top delta sub def
{
{
W
xt yt translate
ang rotate
xt neg yt neg translate
dup setflat
/bottom botsv def
0 1 numsteps1
{
numsteps1 div taperfcn /frac xdf
bcs 0
1.0 tint2 tint1 sub frac mul tint1 add sub
put bcs vc
1 index setflat
{
mark {newpath left bottom right delta rectfill}stopped
{cleartomark exch 1.3 mul dup setflat exch 2 copy gt{stop}if}
{cleartomark exit}ifelse
}loop
/bottom bottom delta sub def
}for
}
gsave stopped grestore
{exch pop 2 index exch 1.3 mul dup 100 gt{cleartomark setflat stop}if}
{exit}ifelse
}loop
cleartomark setflat
}bdf
/_rfs6 {
/tint2 xdf
/tint1 xdf
bcs exch 1 exch put
/inrad xdf
/radius xdf
/yt xdf
/xt xdf
tint1 tint2 sub abs
bcs 1 get maxspot
calcgraysteps mul abs round
radius inrad sub abs
adjnumsteps
dup 1 lt {pop 1} if
1 sub /numsteps1 xdf
radius inrad sub numsteps1 dup 0 eq {pop} {div} ifelse
2 div /halfstep xdf
currentflat mark
currentflat clipflatness
{
{
dup setflat
W
0 1 numsteps1
{
dup /radindex xdf
numsteps1 dup 0 eq {pop pop 0.5} {div} ifelse
/frac xdf
bcs 0
tint2 tint1 sub frac mul tint1 add
put bcs vc
1 index setflat
{
newpath mark
xt yt radius inrad sub 1 frac sub mul halfstep add inrad add 0 360
{ arc
radindex numsteps1 ne
inrad 0 gt or
{
xt yt
numsteps1 0 eq
{ inrad }
{
radindex 1 add numsteps1 div 1 exch sub
radius inrad sub mul halfstep add inrad add
}ifelse
dup xt add yt moveto
360 0 arcn
} if
fill
}stopped
{cleartomark exch 1.3 mul dup setflat exch 2 copy gt{stop}if}
{cleartomark exit}ifelse
}loop
}for
}
gsave stopped grestore
{exch pop 2 index exch 1.3 mul dup 100 gt{cleartomark setflat stop}if}
{exit}ifelse
}loop
cleartomark setflat
}bdf
/_rfp6 {
1 pop
/k2 xdf /y2 xdf /m2 xdf /c2 xdf
/k1 xdf /y1 xdf /m1 xdf /c1 xdf
/inrad xdf
/radius xdf
/yt xdf
/xt xdf
c1 c2 sub abs
m1 m2 sub abs
y1 y2 sub abs
k1 k2 sub abs
maxcolor
calcgraysteps mul abs round
radius inrad sub abs
adjnumsteps
dup 1 lt {pop 1} if
1 sub /numsteps1 xdf
radius inrad sub numsteps1 dup 0 eq {pop} {div} ifelse
2 div /halfstep xdf
currentflat mark
currentflat clipflatness
{
{
dup setflat
W
0 1 numsteps1
{
dup /radindex xdf
numsteps1 dup 0 eq {pop pop 0.5} {div} ifelse
/frac xdf
bc4 0 c2 c1 sub frac mul c1 add put
bc4 1 m2 m1 sub frac mul m1 add put
bc4 2 y2 y1 sub frac mul y1 add put
bc4 3 k2 k1 sub frac mul k1 add put
bc4 vc
1 index setflat
{
newpath mark
xt yt radius inrad sub 1 frac sub mul halfstep add inrad add 0 360
{ arc
radindex numsteps1 ne
inrad 0 gt or
{
xt yt
numsteps1 0 eq
{ inrad }
{
radindex 1 add numsteps1 div 1 exch sub
radius inrad sub mul halfstep add inrad add
}ifelse
dup xt add yt moveto
360 0 arcn
} if
fill
}stopped
{cleartomark exch 1.3 mul dup setflat exch 2 copy gt{stop}if}
{cleartomark exit}ifelse
}loop
}for
}
gsave stopped grestore
{exch pop 2 index exch 1.3 mul dup 100 gt{cleartomark setflat stop}if}
{exit}ifelse
}loop
cleartomark setflat
}bdf
/lfp4{_lfp4}ndf
/lfs4{_lfs4}ndf
/rfs6{_rfs6}ndf
/rfp6{_rfp6}ndf
/cvc [0 0 0 1] def
/vc{
AltsysDict /cvc 2 index put
aload length dup 4 eq
{pop dup -1 eq{pop setrgbcolor}{setcmykcolor}ifelse}
{6 eq {sethexcolor} {setspotcolor} ifelse }
ifelse
}bdf
0 setseparationgray
/imgr {1768 1939 2065 2130 } def
/bleed 0 def
/clpr {1768 1939 2065 2130 } def
/xs 1 def
/ys 1 def
/botx 0 def
/overlap 0 def
/wdist 18 def
0 2 mul fhsetspreadsize
0 0 ne {/df 0 def /clipflatness 0 def} if
/maxsteps 256 def
/forcemaxsteps false def
/minsteps 0 def

userdict begin /AGDOrigMtx matrix currentmatrix def end
vms
-1768 -1939 translate

/currentpacking defed{false setpacking}if
/spots[

1 0 0 0 (Process Cyan) false newcmykcustomcolor

0 1 0 0 (Process Magenta) false newcmykcustomcolor

0 0 1 0 (Process Yellow) false newcmykcustomcolor

0 0 0 1 (Process Black) false newcmykcustomcolor
]def
n
[] 0 d
3.863708 M
1 w
0 j
0 J
false setoverprint
0 i
false eomode
[0 0 0 1]vc
vms
1769.3289 2073.6194 m
1769.3289 1974.1194 L
1.5 w
3.863693 M
[0 0 0 1]vc
S
n
1811.8946 2073.3581 m
1811.8946 1973.8581 L
S
n
1790.8946 2074.3581 m
1790.8946 1962.6194 L
S
n
1780.3289 1951.1194 m
1780.3289 1957.1946 1785.2537 1962.1194 1791.3289 1962.1194 C
1797.4041 1962.1194 1802.3289 1957.1946 1802.3289 1951.1194 C
1802.3289 1945.0441 1797.4041 1940.1194 1791.3289 1940.1194 C
1785.2537 1940.1194 1780.3289 1945.0441 1780.3289 1951.1194 C
[0.6941 0.5765 0.5765 0.949]vc
f
[0 0 0 1]vc
S
n
1768.8289 1974.1194 m
1778.3289 1964.6194 L
S
n
1812.3289 1974.1194 m
1803.8289 1965.6194 L
S
n
1895.6446 2073.6194 m
1895.6446 1974.1194 L
S
n
1938.2102 2073.3581 m
1938.2102 1973.8581 L
S
n
1917.2102 2074.3581 m
1917.2102 1962.6194 L
S
n
1906.6446 1951.1194 m
1906.6446 1957.1946 1911.5694 1962.1194 1917.6446 1962.1194 C
1923.7198 1962.1194 1928.6446 1957.1946 1928.6446 1951.1194 C
1928.6446 1945.0441 1923.7198 1940.1194 1917.6446 1940.1194 C
1911.5694 1940.1194 1906.6446 1945.0441 1906.6446 1951.1194 C
[0.6941 0.5765 0.5765 0.949]vc
f
[0 0 0 1]vc
S
n
1895.1446 1974.1194 m
1904.6446 1964.6194 L
S
n
1938.6446 1974.1194 m
1930.1446 1965.6194 L
S
n
2020.4867 2073.6194 m
2020.4867 1974.1194 L
S
n
2063.0524 2073.3581 m
2063.0524 1973.8581 L
S
n
2042.0524 2074.3581 m
2042.0524 1962.6194 L
S
n
2031.4867 1951.1194 m
2031.4867 1957.1946 2036.4115 1962.1194 2042.4867 1962.1194 C
2048.5619 1962.1194 2053.4867 1957.1946 2053.4867 1951.1194 C
2053.4867 1945.0441 2048.5619 1940.1194 2042.4867 1940.1194 C
2036.4115 1940.1194 2031.4867 1945.0441 2031.4867 1951.1194 C
[0.6941 0.5765 0.5765 0.949]vc
f
[0 0 0 1]vc
S
n
2019.9867 1974.1194 m
2029.4867 1964.6194 L
S
n
2063.4867 1974.1194 m
2054.9867 1965.6194 L
S
n
vmrs
1790.8156 2075.7187 m
1797.1528 2101.3927 1789.8156 2115.7187 1844.8156 2116.7187 C
1899.8156 2117.7187 1890.1182 2099.849 1895.8156 2074.7187 C
1.5 w
3.863693 M
[0 0 0 1]vc
S
n
1918 2074 m
1922.5774 2099.9137 1914.8156 2116.2187 1969.8156 2117.2187 C
2024.8156 2118.2187 2015.7328 2100.4823 2020.8156 2075.2187 C
S
n
1812 2073 m
1812.4056 2114.7447 1807.5002 2127.47 1928.5 2128.5 C
2049.4998 2129.53 2042 2114 2041.5941 2075.2253 C
S
n
vmr
vmr
end
%%Trailer
�� �¿� �À�ÿ

Figure 9. Non-standard four and three plug connector wirings.

Note that a 3 plug cable can be simulated by the 4 plug cable by connecting a shorted socket over any one of its plugs, so the remaining 3 are then wired as the 3 plug cable. A reduced Enigma could be built with 6 sockets, four normal and 2 shorted: using 1 or 2 shorted sockets reduce the 4 plug cable to exactly a 3 or 2 plug cable. (In the limit, using 3 shorted sockets would reduce a 4 plug cable to a null plug.)
External lamp board

The external lamp board simply copies the reduced Enigma’s main lights. If one was really serious, it could go to a 4 way mains light controller.

A technical solution is possible to avoid the rapid keying problems mentioned in the text: monostables could drive the lamps, so they stay on a minimum time to make them easier to read.

[image: image1.jpg](R o

weR Tz oo
’ A s 0roma
Prxcyvsfn

PPEEOD DO @,
CRCRORCR-XCY
ECRCRORCRCRONG

Figure 10. Remote lamp board. The resistor is required if lamps are LEDs.

Since the lamp board (in our model) is in an opaque box, the circuitry necessary to achieve this can be completely hidden. In fact, LEDs are used: note that the resistor should be rated to support the current of two LEDs simultaneously (which happens when two buttons are pressed on the Enigma).

Our lamp board has the lamps mounted in a row, exactly matching the layout on the reduced Enigma itself. For some audiences, this design could be used to introduce the standard ergonomic issue of compatibility (cf. the usual incompatible arrangements of a row of four knobs and a square of cooker rings on a cooker).

It might be helpful to provide external buttons as well as lamps, though this requires an extra multi-pole switch to select internal/external button control.

Rotor simulation

The rotor circuit is deceptive: it looks asymmetric, because it seems to treat the wire A differently. In fact, each position of the uniselector shorts two ‘random’ pairs of the AEST wires. (The wiring shown is not the actual wiring used: the uniselector’s 150 terminals needed for the rotor simulation were wired from a program-generated table.)

The uniselector is easier to wire up than it looks. A single wire (e.g., A in the diagram below) can be trace through all uniselector contacts, then the remaining pair can be shorted in whatever way is convenient to connect.

[image: image15.wmf]
Figure 11. Uniselector rotor wiring (schematic).

Initial key setting

[image: image16.wmf]Figure 12. Initial key setting circuit.

SW1 and SW2 are used to set the initial setting of the rotors: they are turned to one of 16 positions (4 each) then the reset button (SW4) is pressed. Note that SW4 is a sprung change-over push button; the other switches (SW1, SW2, SW3) are standard rotary switches.

SW2 sets the key length to be in the range 1–4, 4–8, 9–12 or 13–16. SW3 sets key length; SW3a overrides SW2 when the key length is set to 4, to stop the initial position being set beyond 4 — otherwise the uniselector would hunt when it is reset.

Since the uniselector steps on being switched off, the uniselector will make one further step. It is always ‘out by one,’ but this doesn’t matter since the uniselector is wired with the ‘correct positions’ one out to compensate. However to ensure the uniselector resets correctly if the initial settings happen to be selected as one beyond the current position (which relay A ‘thinks’ it is already in), relay A is disconnected on pressing the reset switch (SW4). This ensures the uniselector always starts stepping on a reset, and therefore always ensures it consistently oversteps by 1. (The other, NO, connection of SW4 is shown in the next circuit.)

Key length and reset

[image: image17..pict]Relay B latches the reset button (SW4), and is released when relay A is switched on (and hence normally open contacts NOA open) by the uniselector being in the correct position, as determined by SW1 and SW2. Note that pressing SW4 also disconnects relay A, so guarantees the normally closed relay A contacts are indeed closed.

Figure 13. Enigma reset and setting key length circuit. (NC: normally closed; NO: normally open.)

When the reset button is pressed, relay B latches. The normally closed relay B contacts (NCB) in series with the Step signal ensure that the uniselector hunting after a reset is not stopped by someone pressing one of the main Enigma buttons.

If desired, the diode in this circuit could be avoided by using a 4 pole 4 way switch for SW3 instead of a (readily available) 3 pole 4 way switch.

Appendix 5: Improved wiring for the original Enigma?

The real Enigma ensured that codes were reciprocal by using a reflector. A weakness of the Enigma was that the reflector wiring also ensured that no letter could be coded as itself. The reason for this weakness was explained in the text of the article; here we show that had the weakness been recognised by the Enigma designers it could easily have been avoided.

In the original circuit, the problem is not just the reflector but also that each button is a two way switch that either selects a battery connection or a lamp connection: therefore if a button is pressed, its lamp cannot light. The following circuit (simplified to two buttons) shows how an improved Enigma might have been wired to avoid this limitation. The buttons are one way switches and connect through the rotor permutations to the lamps. With this scheme, there is clearly no intrinsic restriction that button X cannot light lamp X, etc. Now, however, the box labelled Rotors, which works like the original Enigma rotors, now must provide a reciprocal permutation directly.

[image: image18..pict]z´�����õ�5���ÿ��ÿÿÿÿ���������5���õ�������¡�d��FH X��� �À� �À���
�����õ�5�,�����Palatino����������
���.����ÿ����õ�5�õ�5�(u0u0�a�"ƒ�ƒ���� �À�������"�õ�5���"������� �¾� �À�������p���I�L�I�ç�I�ç�I�L��ÿÿÿÿÿÿ�Q�<�è�X�����������P�;�ç�Y���p���?�ë�R���?�ë�R���p���?�ë�S���?���S�ë�p���s�L�s�é�s�é�s�L�p���W�*�e�F�e�*�W�F�P�p�G�w�N�P�T�G�[�N�p���,�*�:�F�:�*�,�F�P�F�G�M�N�P�*�G�1�N�p���;���;�*�;�*�;���p���e���e�*�e�*�e���p���;���×���;���×���p���×���×�v�×���×�v�p���º�v�ó�v�º�v�ó�v�1�É�‚�æ�ˆ�q���æ�‚�é�ˆ�æ�ˆ�é�ˆ�é�‚�æ�‚�q���Æ�‚�É�ˆ�É�ˆ�Æ�ˆ�Æ�‚�É�‚�p���º�’�ó�’�º�’�ó�’�1�É�Ÿ�æ�¥�q���æ�Ÿ�é�¥�æ�¥�é�¥�é�Ÿ�æ�Ÿ�q���Æ�Ÿ�É�¥�É�¥�Æ�¥�Æ�Ÿ�É�Ÿ�p���×�¡�×�.�×�¡�×�.�p���I�.�×�.�×�.�I�.�p���I���I�.�I�.�I���p���s���s�.�s���s�.��ÿÿÿÿÿÿ�Q�f�è�‚�����������P�e�ç�ƒ���p���j�ë�}���j�ë�}���p���i�ë�}���i���}�ë�Q�b���j�
�P�a���k���Q�q�+�y�3�P�p�*�z�4��ÿÿÿÿÿÿ�1���i�Ÿ�¾���������0���h� �¿�
�€���ø�|z€M@�(���w�Rotors��p�����„�ž�„���„�ž�„�p�����¡�ž�¡���¡�ž�¡�p���I�h�s�„�I�h�s�„�p���I�h�s�„�s�h�I�„�p���I�„�s�¡�I�„�s�¡�p���I�„�s�¡�s�„�I�¡�p���I�¡�s�½�I�¡�s�½�p���I�¡�s�½�s�¡�I�½�¡�Àv‘
gsave
/dstR[newpath clippath pathbbox]def newpath
grestore
dstR 0 get dstR 1 get translate
dstR 2 get dstR 0 get sub 2052 1743 sub div
dstR 3 get dstR 1 get sub 1838 2083 sub div scale
0 1838 2083 sub translate
%!PS-Adobe-2.0 EPSF-1.2

%%Title: Unknown
%%Creator: FreeHand 10.0
%%CreationDate: 8/21/02 10:56 AM
%%BoundingBox: 0 0 309 245
%%FHPathName:
%ALDOriginalFile:
%ALDBoundingBox: 0 0 309 245
%%FHPageNum:0
%%DocumentSuppliedResources: procset Altsys_header 4 0
%%ColorUsage: Color
%%DocumentProcessColors: Cyan Magenta Yellow Black
%%DocumentNeededResources: font Palatino-Italic
%%DocumentFonts: Palatino-Italic
%%DocumentNeededFonts: Palatino-Italic
%%EndComments
%%BeginResource: procset Altsys_header 4 0
userdict begin /AltsysDict 300 dict def end
AltsysDict begin
/bdf{bind def}bind def
/xdf{exch def}bdf
/defed{where{pop true}{false}ifelse}bdf
/ndf{1 index where{pop pop pop}{dup xcheck{bind}if def}ifelse}bdf
/d{setdash}bdf
/h{closepath}bdf
/H{}bdf
/J{setlinecap}bdf
/j{setlinejoin}bdf
/M{setmiterlimit}bdf
/n{newpath}bdf
/N{newpath}bdf
/q{gsave}bdf
/Q{grestore}bdf
/w{setlinewidth}bdf
/Xic{matrix invertmatrix concat}bdf
/Xq{matrix currentmatrix mark}bdf
/XQ{cleartomark setmatrix}bdf
/sepdef{
dup where not
{
AltsysSepDict
}
if
3 1 roll exch put
}bdf
/st{settransfer}bdf
/colorimage defed /_rci xdf
/cntr 0 def
/readbinarystring{
/cntr 0 def
2 copy readstring
{
{
dup
(\034) search
{
length exch pop exch
dup length 0 ne
{
dup dup 0 get 32 sub 0 exch put
/cntr cntr 1 add def
}
{
pop 1 string dup
0 6 index read pop 32 sub put
}ifelse
3 copy
putinterval pop
1 add
1 index length 1 sub
1 index sub
dup 0 le {pop pop exit}if
getinterval
}
{
pop exit
} ifelse
} loop
}if
cntr 0 gt
{
pop 2 copy
dup length cntr sub cntr getinterval
readbinarystring
} if
pop exch pop
} bdf
/_NXLevel2 defed {
_NXLevel2 not {
/colorimage where {
userdict eq {
/_rci false def
} if
} if
} if
} if
/md defed{
md type /dicttype eq {
/colorimage where {
md eq {
/_rci false def
}if
}if
/settransfer where {
md eq {
/st systemdict /settransfer get def
}if
}if
}if
}if
/setstrokeadjust defed
{
true setstrokeadjust
/C{curveto}bdf
/L{lineto}bdf
/m{moveto}bdf
}
{
/dr{transform .25 sub round .25 add
exch .25 sub round .25 add exch itransform}bdf
/C{dr curveto}bdf
/L{dr lineto}bdf
/m{dr moveto}bdf
/setstrokeadjust{pop}bdf
}ifelse
/privrectpath {
4 -2 roll m
dtransform round exch round exch idtransform
2 copy 0 lt exch 0 lt xor
{dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto}
{exch dup 0 rlineto exch 0 exch rlineto neg 0 rlineto}
ifelse
closepath
}bdf
/rectclip{newpath privrectpath clip newpath}def
/rectfill{gsave newpath privrectpath fill grestore}def
/rectstroke{gsave newpath privrectpath stroke grestore}def
/_fonthacksave false def
/currentpacking defed
{
/_bfh {/_fonthacksave currentpacking def false setpacking} bdf
/_efh {_fonthacksave setpacking} bdf
}
{
/_bfh {} bdf
/_efh {} bdf
}ifelse
/packedarray{array astore readonly}ndf
/`
{
false setoverprint
/-save0- save def
5 index concat
pop
storerect left bottom width height rectclip
pop
/MMdict_count countdictstack def
/MMop_count count 1 sub def
userdict begin
/showpage {} def
0 setgray 0 setlinecap 1 setlinewidth
0 setlinejoin 10 setmiterlimit [] 0 setdash newpath
} bdf
/currentpacking defed{true setpacking}if
/min{2 copy gt{exch}if pop}bdf
/max{2 copy lt{exch}if pop}bdf
/xformfont { currentfont exch makefont setfont } bdf
/fhnumcolors 1
statusdict begin
/processcolors defed
{
pop processcolors
}
{
/deviceinfo defed {
deviceinfo /Colors known {
pop deviceinfo /Colors get
} if
} if
} ifelse
end
def
/printerRes
gsave
matrix defaultmatrix setmatrix
72 72 dtransform
abs exch abs
max
grestore
def
/graycalcs
[
{Angle Frequency}
{GrayAngle GrayFrequency}
{0 Width Height matrix defaultmatrix idtransform
dup mul exch dup mul add sqrt 72 exch div}
{0 GrayWidth GrayHeight matrix defaultmatrix idtransform
dup mul exch dup mul add sqrt 72 exch div}
] def
/calcgraysteps {
forcemaxsteps
{
maxsteps
}
{
/currenthalftone defed
{currenthalftone /dicttype eq}{false}ifelse
{
currenthalftone begin
HalftoneType 4 le
{graycalcs HalftoneType 1 sub get exec}
{
HalftoneType 5 eq
{
Default begin
{graycalcs HalftoneType 1 sub get exec}
end
}
{0 60}
ifelse
}
ifelse
end
}
{
currentscreen pop exch
}
ifelse
printerRes 300 max exch div exch
2 copy
sin mul round dup mul
3 1 roll
cos mul round dup mul
add 1 add
dup maxsteps gt {pop maxsteps} if
dup minsteps lt {pop minsteps} if
}
ifelse
} bdf
/nextrelease defed {
/languagelevel defed not {
/framebuffer defed {
0 40 string framebuffer 9 1 roll 8 {pop} repeat
dup 516 eq exch 520 eq or
{
/fhnumcolors 3 def
/currentscreen {60 0 {pop pop 1}}bdf
/calcgraysteps {maxsteps} bdf
}if
}if
}if
}if
fhnumcolors 1 ne {
/calcgraysteps {maxsteps} bdf
} if
/currentpagedevice defed {
currentpagedevice /PreRenderingEnhance known
{
currentpagedevice /PreRenderingEnhance get
{
/calcgraysteps
{
forcemaxsteps
{maxsteps}
{256 maxsteps min}
ifelse
} def
} if
} if
} if
/gradfrequency 144 def
printerRes 1000 lt {
/gradfrequency 72 def
} if
/adjnumsteps {
dup dtransform abs exch abs max
printerRes div
gradfrequency mul
round
5 max
min
}bdf
/goodsep {
spots exch get 4 get dup sepname eq exch (_vc_Registration) eq or
}bdf
/BeginGradation defed
{/bb{BeginGradation}bdf}
{/bb{}bdf}
ifelse
/EndGradation defed
{/eb{EndGradation}bdf}
{/eb{}bdf}
ifelse
/bottom -0 def
/delta -0 def
/frac -0 def
/height -0 def
/left -0 def
/numsteps1 -0 def
/radius -0 def
/right -0 def
/top -0 def
/width -0 def
/xt -0 def
/yt -0 def
/df currentflat def
/tempstr 1 string def
/clipflatness currentflat def
/inverted?
0 currenttransfer exec .5 ge def
/tc1 [0 0 0 1] def
/tc2 [0 0 0 1] def
/storerect{/top xdf /right xdf /bottom xdf /left xdf
/width right left sub def /height top bottom sub def}bdf
/concatprocs{
systemdict /packedarray known
{dup type /packedarraytype eq 2 index type /packedarraytype eq or}{false}ifelse
{
/proc2 exch cvlit def /proc1 exch cvlit def
proc1 aload pop proc2 aload pop
proc1 length proc2 length add packedarray cvx
}
{
/proc2 exch cvlit def /proc1 exch cvlit def
/newproc proc1 length proc2 length add array def
newproc 0 proc1 putinterval newproc proc1 length proc2 putinterval
newproc cvx
}ifelse
}bdf
/i{dup 0 eq
{pop df dup}
{dup} ifelse
/clipflatness xdf setflat
}bdf
version cvr 38.0 le
{/setrgbcolor{
currenttransfer exec 3 1 roll
currenttransfer exec 3 1 roll
currenttransfer exec 3 1 roll
setrgbcolor}bdf}if
/vms {/vmsv save def} bdf
/vmr {vmsv restore} bdf
/vmrs{vmsv restore /vmsv save def}bdf
/eomode{
{/filler /eofill load def /clipper /eoclip load def}
{/filler /fill load def /clipper /clip load def}
ifelse
}bdf
/normtaper{}bdf
/logtaper{9 mul 1 add log}bdf
/CD{
/NF exch def
{
exch dup
/FID ne 1 index/UniqueID ne and
{exch NF 3 1 roll put}
{pop pop}
ifelse
}forall
NF
}bdf
/MN{
1 index length
/Len exch def
dup length Len add
string dup
Len
4 -1 roll
putinterval
dup
0
4 -1 roll
putinterval
}bdf
/RC{4 -1 roll /ourvec xdf 256 string cvs(|______)anchorsearch
{1 index MN cvn/NewN exch def cvn
findfont dup maxlength dict CD dup/FontName NewN put dup
/Encoding ourvec put NewN exch definefont pop}{pop}ifelse}bdf
/RF{
dup
FontDirectory exch
known
{pop 3 -1 roll pop}
{RC}
ifelse
}bdf
/FF{dup 256 string cvs(|______)exch MN cvn dup FontDirectory exch known
{exch pop findfont 3 -1 roll pop}
{pop dup findfont dup maxlength dict CD dup dup
/Encoding exch /Encoding get 256 array copy 7 -1 roll
{3 -1 roll dup 4 -2 roll put}forall put definefont}
ifelse}bdf
/RCJ{4 -1 roll
/ourvec xdf
256 string cvs
(|______) anchorsearch
{pop
cvn
dup FDFJ
exch
1 index
eq
{
_bfh findfont _efh
dup
maxlength dict
CD
dup
/FontName
3 index
put
dup
/Encoding ourvec put
1 index
exch
definefont
pop
}
{exch pop}
ifelse
}
{pop}
ifelse
}bdf
/RFJ{
dup
FontDirectory exch
known
{pop 3 -1 roll pop}
{RCJ}
ifelse
}bdf
/hasfont
{
/resourcestatus where
{
pop
/Font resourcestatus
{
pop pop true
}
{
false
}
ifelse
}
{
dup FontDirectory exch known
{pop true}
{
256 string
cvs
(fonts/) exch MN
status
{pop pop pop pop true}
{false}
ifelse
}
ifelse
}
ifelse
}bdf
/FDFJ
{
dup
hasfont
not
{
pop
/Ryumin-Light-83pv-RKSJ-H
hasfont
{
/Ryumin-Light-83pv-RKSJ-H
}
{
/Courier
}
ifelse
}
if
}bdf
/FFJ{
_bfh
dup
256 string cvs
(|______)exch MN
cvn
dup
FontDirectory
exch known
{
exch
pop
findfont
3 -1 roll
pop
}
{
pop
FDFJ
dup findfont
dup maxlength dict
CD
dup dup
/Encoding exch
/Encoding get
256 array copy
7 -1 roll
{
3 -1 roll
dup
4 -2 roll
put
}forall
put
definefont
}
ifelse
_efh
}bdf
/GS {
dup
hasfont
{
findfont
exch makesetfont
exch
pop
ts
}
{
pop pop pop
ts
} ifelse
} bdf
/RCK{4 -1 roll
/ourvec xdf
256 string cvs
(|______) anchorsearch
{pop
cvn
dup FDFK
exch
1 index
eq
{
_bfh findfont _efh
dup
maxlength dict
CD
dup
/FontName
3 index
put
dup
/Encoding ourvec put
1 index
exch
definefont
pop
}
{exch pop}
ifelse
}
{pop}
ifelse
}bdf
/RFK{
dup
FontDirectory exch
known
{pop 3 -1 roll pop}
{RCK}
ifelse
}bdf
/hasfont
{
/resourcestatus where
{
pop
/Font resourcestatus
{
pop pop true
}
{
false
}
ifelse
}
{
dup FontDirectory exch known
{pop true}
{
256 string
cvs
(fonts/) exch MN
status
{pop pop pop pop true}
{false}
ifelse
}
ifelse
}
ifelse
}bdf
/FDFK
{
dup
hasfont
not
{
pop
/JCsm
hasfont
{
/JCsm
}
{
/Courier
}
ifelse
}
if
}bdf
/FFK{
_bfh
dup
256 string cvs
(|______)exch MN
cvn
dup
FontDirectory
exch known
{
exch
pop
findfont
3 -1 roll
pop
}
{
pop
FDFK
dup findfont
dup maxlength dict
CD
dup dup
/Encoding exch
/Encoding get
256 array copy
7 -1 roll
{
3 -1 roll
dup
4 -2 roll
put
}forall
put
definefont
}
ifelse
_efh
}bdf
/RCTC{4 -1 roll
/ourvec xdf
256 string cvs
(|______) anchorsearch
{pop
cvn
dup FDFTC
exch
1 index
eq
{
_bfh findfont _efh
dup
maxlength dict
CD
dup
/FontName
3 index
put
dup
/Encoding ourvec put
1 index
exch
definefont
pop
}
{exch pop}
ifelse
}
{pop}
ifelse
}bdf
/RFTC{
dup
FontDirectory exch
known
{pop 3 -1 roll pop}
{RCTC}
ifelse
}bdf
/FDFTC
{
dup
hasfont
not
{
pop
/DFMing-Lt-HK-BF
hasfont
{
/DFMing-Lt-HK-BF
}
{
/Courier
}
ifelse
}
if
}bdf
/FFTC{
_bfh
dup
256 string cvs
(|______)exch MN
cvn
dup
FontDirectory
exch known
{
exch
pop
findfont
3 -1 roll
pop
}
{
pop
FDFTC
dup findfont
dup maxlength dict
CD
dup dup
/Encoding exch
/Encoding get
256 array copy
7 -1 roll
{
3 -1 roll
dup
4 -2 roll
put
}forall
put
definefont
}
ifelse
_efh
}bdf
/fps{
currentflat
exch
dup 0 le{pop 1}if
{
dup setflat 3 index stopped
{1.3 mul dup 3 index gt{pop setflat pop pop stop}if}
{exit}
ifelse
}loop
pop setflat pop pop
}bdf
/fp{100 currentflat fps}bdf
/clipper{clip}bdf
/W{/clipper load 100 clipflatness dup setflat fps}bdf

userdict begin /BDFontDict 29 dict def end
BDFontDict begin
/bu{}def
/bn{}def
/setTxMode{av 70 ge{pop}if pop}def
/gm{m}def
/show{pop}def
/gr{pop}def
/fnt{pop pop pop}def
/fs{pop}def
/fz{pop}def
/lin{pop pop}def
/:M {pop pop} def
/sf {pop} def
/S {pop} def
/@b {pop pop pop pop pop pop pop pop} def
/_bdsave /save load def
/_bdrestore /restore load def
/save { dup /fontsave eq {null} {_bdsave} ifelse } def
/restore { dup null eq { pop } { _bdrestore } ifelse } def
/fontsave null def
end
/MacVec 256 array def
MacVec 0 /Helvetica findfont
/Encoding get 0 128 getinterval putinterval
MacVec 127 /DEL put MacVec 16#27 /quotesingle put MacVec 16#60 /grave put
/NUL/SOH/STX/ETX/EOT/ENQ/ACK/BEL/BS/HT/LF/VT/FF/CR/SO/SI
/DLE/DC1/DC2/DC3/DC4/NAK/SYN/ETB/CAN/EM/SUB/ESC/FS/GS/RS/US
MacVec 0 32 getinterval astore pop
/Adieresis/Aring/Ccedilla/Eacute/Ntilde/Odieresis/Udieresis/aacute
/agrave/acircumflex/adieresis/atilde/aring/ccedilla/eacute/egrave
/ecircumflex/edieresis/iacute/igrave/icircumflex/idieresis/ntilde/oacute
/ograve/ocircumflex/odieresis/otilde/uacute/ugrave/ucircumflex/udieresis
/dagger/degree/cent/sterling/section/bullet/paragraph/germandbls
/registered/copyright/trademark/acute/dieresis/notequal/AE/Oslash
/infinity/plusminus/lessequal/greaterequal/yen/mu/partialdiff/summation
/product/pi/integral/ordfeminine/ordmasculine/Omega/ae/oslash
/questiondown/exclamdown/logicalnot/radical/florin/approxequal/Delta/guillemotleft
/guillemotright/ellipsis/nbspace/Agrave/Atilde/Otilde/OE/oe
/endash/emdash/quotedblleft/quotedblright/quoteleft/quoteright/divide/lozenge
/ydieresis/Ydieresis/fraction/currency/guilsinglleft/guilsinglright/fi/fl
/daggerdbl/periodcentered/quotesinglbase/quotedblbase
/perthousand/Acircumflex/Ecircumflex/Aacute
/Edieresis/Egrave/Iacute/Icircumflex/Idieresis/Igrave/Oacute/Ocircumflex
/apple/Ograve/Uacute/Ucircumflex/Ugrave/dotlessi/circumflex/tilde
/macron/breve/dotaccent/ring/cedilla/hungarumlaut/ogonek/caron
MacVec 128 128 getinterval astore pop
/findheaderfont {
/Helvetica findfont
} def
end %. AltsysDict
%%EndResource
%%EndProlog

%%BeginSetup

AltsysDict begin
_bfh
%%IncludeResource: font Palatino-Italic

MacVec 256 array copy

dup 128 /Adieresis put

dup 129 /Aring put

dup 130 /Ccedilla put

dup 131 /Eacute put

dup 132 /Ntilde put

dup 133 /Odieresis put

dup 134 /Udieresis put

dup 135 /aacute put

dup 136 /agrave put

dup 137 /acircumflex put

dup 138 /adieresis put

dup 139 /atilde put

dup 140 /aring put

dup 141 /ccedilla put

dup 142 /eacute put

dup 143 /egrave put

dup 144 /ecircumflex put

dup 145 /edieresis put

dup 146 /iacute put

dup 147 /igrave put

dup 148 /icircumflex put

dup 149 /idieresis put

dup 150 /ntilde put

dup 151 /oacute put

dup 152 /ograve put

dup 153 /ocircumflex put

dup 154 /odieresis put

dup 155 /otilde put

dup 156 /uacute put

dup 157 /ugrave put

dup 158 /ucircumflex put

dup 159 /udieresis put

dup 160 /dagger put

dup 161 /degree put

dup 162 /cent put

dup 163 /sterling put

dup 164 /section put

dup 165 /bullet put

dup 166 /paragraph put

dup 167 /germandbls put

dup 168 /registered put

dup 169 /copyright put

dup 170 /trademark put

dup 171 /acute put

dup 172 /dieresis put

dup 173 /notequal put

dup 174 /AE put

dup 175 /Oslash put

dup 176 /infinity put

dup 177 /plusminus put

dup 178 /lessequal put

dup 179 /greaterequal put

dup 180 /yen put

dup 181 /mu put

dup 182 /partialdiff put

dup 183 /summation put

dup 184 /product put

dup 185 /pi put

dup 186 /integral put

dup 187 /ordfeminine put

dup 188 /ordmasculine put

dup 189 /Omega put

dup 190 /ae put

dup 191 /oslash put

dup 192 /questiondown put

dup 193 /exclamdown put

dup 194 /logicalnot put

dup 195 /radical put

dup 196 /florin put

dup 197 /approxequal put

dup 198 /Delta put

dup 199 /guillemotleft put

dup 200 /guillemotright put

dup 201 /ellipsis put

dup 202 /nobreakspace put

dup 203 /Agrave put

dup 204 /Atilde put

dup 205 /Otilde put

dup 206 /OE put

dup 207 /oe put

dup 208 /endash put

dup 209 /emdash put

dup 210 /quotedblleft put

dup 211 /quotedblright put

dup 212 /quoteleft put

dup 213 /quoteright put

dup 214 /divide put

dup 215 /lozenge put

dup 216 /ydieresis put

dup 217 /Ydieresis put

dup 218 /fraction put

dup 219 /Euro put

dup 220 /guilsinglleft put

dup 221 /guilsinglright put

dup 222 /fi put

dup 223 /fl put

dup 224 /daggerdbl put

dup 225 /periodcentered put

dup 226 /quotesinglbase put

dup 227 /quotedblbase put

dup 228 /perthousand put

dup 229 /Acircumflex put

dup 230 /Ecircumflex put

dup 231 /Aacute put

dup 232 /Edieresis put

dup 233 /Egrave put

dup 234 /Iacute put

dup 235 /Icircumflex put

dup 236 /Idieresis put

dup 237 /Igrave put

dup 238 /Oacute put

dup 239 /Ocircumflex put

dup 240 /apple put

dup 241 /Ograve put

dup 242 /Uacute put

dup 243 /Ucircumflex put

dup 244 /Ugrave put

dup 245 /dotlessi put

dup 246 /circumflex put

dup 247 /tilde put

dup 248 /macron put

dup 249 /breve put

dup 250 /dotaccent put

dup 251 /ring put

dup 252 /cedilla put

dup 253 /hungarumlaut put

dup 254 /ogonek put

dup 255 /caron put

/f0 /|______Palatino-Italic dup RF findfont def

_efh
end %. AltsysDict

%%EndSetup
AltsysDict begin

/onlyk4{false}ndf
/ccmyk{dup 5 -1 roll sub 0 max exch}ndf
/cmyk2gray{
4 -1 roll 0.3 mul 4 -1 roll 0.59 mul 4 -1 roll 0.11 mul
add add add 1 min neg 1 add
}bdf
/setcmykcolor{1 exch sub ccmyk ccmyk ccmyk pop setrgbcolor}ndf
/maxcolor {
max max max
} ndf
/maxspot {
pop
} ndf
/setcmykcoloroverprint{4{dup -1 eq{pop 0}if 4 1 roll}repeat setcmykcolor}ndf
/findcmykcustomcolor{5 packedarray}ndf
/setcustomcolor{exch aload pop pop 4{4 index mul 4 1 roll}repeat setcmykcolor pop}ndf
/setseparationgray{setgray}ndf
/setoverprint{pop}ndf
/currentoverprint false ndf
/cmykbufs2gray{
0 1 2 index length 1 sub
{
4 index 1 index get 0.3 mul
4 index 2 index get 0.59 mul
4 index 3 index get 0.11 mul
4 index 4 index get
add add add cvi 255 min
255 exch sub
2 index 3 1 roll put
}for
4 1 roll pop pop pop
}bdf
/colorimage{
pop pop
[
5 -1 roll/exec cvx
6 -1 roll/exec cvx
7 -1 roll/exec cvx
8 -1 roll/exec cvx
/cmykbufs2gray cvx
]cvx
image
}
%. version 47.1 on Linotronic of Postscript defines colorimage incorrectly (rgb model only)
version cvr 47.1 le
statusdict /product get (Lino) anchorsearch{pop pop true}{pop false}ifelse
and{userdict begin bdf end}{ndf}ifelse
fhnumcolors 1 ne {/yt save def} if
/customcolorimage{
aload pop
(_vc_Registration) eq
{
pop pop pop pop separationimage
}
{
/ik xdf /iy xdf /im xdf /ic xdf
ic im iy ik cmyk2gray /xt xdf
currenttransfer
{dup 1.0 exch sub xt mul add}concatprocs
st
image
}
ifelse
}ndf
fhnumcolors 1 ne {yt restore} if
fhnumcolors 3 ne {/yt save def} if
/customcolorimage{
aload pop
(_vc_Registration) eq
{
pop pop pop pop separationimage
}
{
/ik xdf /iy xdf /im xdf /ic xdf
1.0 dup ic ik add min sub
1.0 dup im ik add min sub
1.0 dup iy ik add min sub
/ic xdf /iy xdf /im xdf
currentcolortransfer
4 1 roll
{dup 1.0 exch sub ic mul add}concatprocs 4 1 roll
{dup 1.0 exch sub iy mul add}concatprocs 4 1 roll
{dup 1.0 exch sub im mul add}concatprocs 4 1 roll
setcolortransfer
{/dummy xdf dummy}concatprocs{dummy}{dummy}true 3 colorimage
}
ifelse
}ndf
fhnumcolors 3 ne {yt restore} if
fhnumcolors 4 ne {/yt save def} if
/customcolorimage{
aload pop
(_vc_Registration) eq
{
pop pop pop pop separationimage
}
{
/ik xdf /iy xdf /im xdf /ic xdf
currentcolortransfer
{1.0 exch sub ik mul ik sub 1 add}concatprocs 4 1 roll
{1.0 exch sub iy mul iy sub 1 add}concatprocs 4 1 roll
{1.0 exch sub im mul im sub 1 add}concatprocs 4 1 roll
{1.0 exch sub ic mul ic sub 1 add}concatprocs 4 1 roll
setcolortransfer
{/dummy xdf dummy}concatprocs{dummy}{dummy}{dummy}
true 4 colorimage
}
ifelse
}ndf
fhnumcolors 4 ne {yt restore} if
/separationimage{image}ndf
/spotascmyk false ndf
/newcmykcustomcolor{6 packedarray}ndf
/inkoverprint false ndf
/setinkoverprint{pop}ndf
/setspotcolor {
spots exch get
dup 4 get (_vc_Registration) eq
{pop 1 exch sub setseparationgray}
{0 5 getinterval exch setcustomcolor}
ifelse
}ndf
/currentcolortransfer{currenttransfer dup dup dup}ndf
/setcolortransfer{st pop pop pop}ndf
/fas{}ndf
/sas{}ndf
/fhsetspreadsize{pop}ndf
/filler{fill}bdf
/F{gsave {filler}fp grestore}bdf
/f{closepath F}bdf
/S{gsave {stroke}fp grestore}bdf
/s{closepath S}bdf
userdict /islevel2
systemdict /languagelevel known dup
{
pop systemdict /languagelevel get 2 ge
} if
put
islevel2 not
{
/currentcmykcolor
{
0 0 0 1 currentgray sub
} ndf
} if
/tc
{
gsave
setcmykcolor currentcmykcolor
grestore
} bind def
/testCMYKColorThrough
{
tc add add add 0 ne
} bind def
/fhiscomposite where not {
userdict /fhiscomposite
islevel2
{
gsave 1 1 1 1 setcmykcolor currentcmykcolor grestore
add add add 4 eq
}
{
1 0 0 0 testCMYKColorThrough
0 1 0 0 testCMYKColorThrough
0 0 1 0 testCMYKColorThrough
0 0 0 1 testCMYKColorThrough
and and and
} ifelse
put
}
{ pop }
ifelse
/bc4 [0 0 0 0] def
/_lfp4 {
1 pop
/yt xdf
/xt xdf
/ang xdf
storerect
/taperfcn xdf
/k2 xdf /y2 xdf /m2 xdf /c2 xdf
/k1 xdf /y1 xdf /m1 xdf /c1 xdf
c1 c2 sub abs
m1 m2 sub abs
y1 y2 sub abs
k1 k2 sub abs
maxcolor
calcgraysteps mul abs round
height abs adjnumsteps
dup 1 lt {pop 1} if
1 sub /numsteps1 xdf
currentflat mark
currentflat clipflatness
/delta top bottom sub numsteps1 1 add div def
/right right left sub def
/botsv top delta sub def
{
{
W
xt yt translate
ang rotate
xt neg yt neg translate
dup setflat
/bottom botsv def
0 1 numsteps1
{
numsteps1 dup 0 eq {pop pop 0.5} {div} ifelse
taperfcn /frac xdf
bc4 0 c2 c1 sub frac mul c1 add put
bc4 1 m2 m1 sub frac mul m1 add put
bc4 2 y2 y1 sub frac mul y1 add put
bc4 3 k2 k1 sub frac mul k1 add put
bc4 vc
1 index setflat
{
mark {newpath left bottom right delta rectfill}stopped
{cleartomark exch 1.3 mul dup setflat exch 2 copy gt{stop}if}
{cleartomark exit}ifelse
}loop
/bottom bottom delta sub def
}for
}
gsave stopped grestore
{exch pop 2 index exch 1.3 mul dup 100 gt{cleartomark setflat stop}if}
{exit}ifelse
}loop
cleartomark setflat
}bdf
/bcs [0 0] def
/_lfs4 {
/yt xdf
/xt xdf
/ang xdf
storerect
/taperfcn xdf
/tint2 xdf
/tint1 xdf
bcs exch 1 exch put
tint1 tint2 sub abs
bcs 1 get maxspot
calcgraysteps mul abs round
height abs adjnumsteps
dup 2 lt {pop 2} if
1 sub /numsteps1 xdf
currentflat mark
currentflat clipflatness
/delta top bottom sub numsteps1 1 add div def
/right right left sub def
/botsv top delta sub def
{
{
W
xt yt translate
ang rotate
xt neg yt neg translate
dup setflat
/bottom botsv def
0 1 numsteps1
{
numsteps1 div taperfcn /frac xdf
bcs 0
1.0 tint2 tint1 sub frac mul tint1 add sub
put bcs vc
1 index setflat
{
mark {newpath left bottom right delta rectfill}stopped
{cleartomark exch 1.3 mul dup setflat exch 2 copy gt{stop}if}
{cleartomark exit}ifelse
}loop
/bottom bottom delta sub def
}for
}
gsave stopped grestore
{exch pop 2 index exch 1.3 mul dup 100 gt{cleartomark setflat stop}if}
{exit}ifelse
}loop
cleartomark setflat
}bdf
/_rfs6 {
/tint2 xdf
/tint1 xdf
bcs exch 1 exch put
/inrad xdf
/radius xdf
/yt xdf
/xt xdf
tint1 tint2 sub abs
bcs 1 get maxspot
calcgraysteps mul abs round
radius inrad sub abs
adjnumsteps
dup 1 lt {pop 1} if
1 sub /numsteps1 xdf
radius inrad sub numsteps1 dup 0 eq {pop} {div} ifelse
2 div /halfstep xdf
currentflat mark
currentflat clipflatness
{
{
dup setflat
W
0 1 numsteps1
{
dup /radindex xdf
numsteps1 dup 0 eq {pop pop 0.5} {div} ifelse
/frac xdf
bcs 0
tint2 tint1 sub frac mul tint1 add
put bcs vc
1 index setflat
{
newpath mark
xt yt radius inrad sub 1 frac sub mul halfstep add inrad add 0 360
{ arc
radindex numsteps1 ne
inrad 0 gt or
{
xt yt
numsteps1 0 eq
{ inrad }
{
radindex 1 add numsteps1 div 1 exch sub
radius inrad sub mul halfstep add inrad add
}ifelse
dup xt add yt moveto
360 0 arcn
} if
fill
}stopped
{cleartomark exch 1.3 mul dup setflat exch 2 copy gt{stop}if}
{cleartomark exit}ifelse
}loop
}for
}
gsave stopped grestore
{exch pop 2 index exch 1.3 mul dup 100 gt{cleartomark setflat stop}if}
{exit}ifelse
}loop
cleartomark setflat
}bdf
/_rfp6 {
1 pop
/k2 xdf /y2 xdf /m2 xdf /c2 xdf
/k1 xdf /y1 xdf /m1 xdf /c1 xdf
/inrad xdf
/radius xdf
/yt xdf
/xt xdf
c1 c2 sub abs
m1 m2 sub abs
y1 y2 sub abs
k1 k2 sub abs
maxcolor
calcgraysteps mul abs round
radius inrad sub abs
adjnumsteps
dup 1 lt {pop 1} if
1 sub /numsteps1 xdf
radius inrad sub numsteps1 dup 0 eq {pop} {div} ifelse
2 div /halfstep xdf
currentflat mark
currentflat clipflatness
{
{
dup setflat
W
0 1 numsteps1
{
dup /radindex xdf
numsteps1 dup 0 eq {pop pop 0.5} {div} ifelse
/frac xdf
bc4 0 c2 c1 sub frac mul c1 add put
bc4 1 m2 m1 sub frac mul m1 add put
bc4 2 y2 y1 sub frac mul y1 add put
bc4 3 k2 k1 sub frac mul k1 add put
bc4 vc
1 index setflat
{
newpath mark
xt yt radius inrad sub 1 frac sub mul halfstep add inrad add 0 360
{ arc
radindex numsteps1 ne
inrad 0 gt or
{
xt yt
numsteps1 0 eq
{ inrad }
{
radindex 1 add numsteps1 div 1 exch sub
radius inrad sub mul halfstep add inrad add
}ifelse
dup xt add yt moveto
360 0 arcn
} if
fill
}stopped
{cleartomark exch 1.3 mul dup setflat exch 2 copy gt{stop}if}
{cleartomark exit}ifelse
}loop
}for
}
gsave stopped grestore
{exch pop 2 index exch 1.3 mul dup 100 gt{cleartomark setflat stop}if}
{exit}ifelse
}loop
cleartomark setflat
}bdf
/lfp4{_lfp4}ndf
/lfs4{_lfs4}ndf
/rfs6{_rfs6}ndf
/rfp6{_rfp6}ndf
/cvc [0 0 0 1] def
/vc{
AltsysDict /cvc 2 index put
aload length dup 4 eq
{pop dup -1 eq{pop setrgbcolor}{setcmykcolor}ifelse}
{6 eq {sethexcolor} {setspotcolor} ifelse }
ifelse
}bdf
0 setseparationgray
/imgr {1743 1838 2052 2083 } def
/bleed 0 def
/clpr {1743 1838 2052 2083 } def
/xs 1 def
/ys 1 def
/botx 0 def
/overlap 0 def
/wdist 18 def
0 2 mul fhsetspreadsize
0 0 ne {/df 0 def /clipflatness 0 def} if
/maxsteps 256 def
/forcemaxsteps false def
/minsteps 0 def

userdict begin /AGDOrigMtx matrix currentmatrix def end
vms
-1743 -1838 translate

/currentpacking defed{false setpacking}if
/spots[

1 0 0 0 (Process Cyan) false newcmykcustomcolor

0 1 0 0 (Process Magenta) false newcmykcustomcolor

0 0 1 0 (Process Yellow) false newcmykcustomcolor

0 0 0 1 (Process Black) false newcmykcustomcolor
]def

/textopf false def
/curtextmtx{}def
/otw .25 def
/msf{dup/curtextmtx xdf makefont setfont}bdf
/makesetfont/msf load def
/curtextheight{.707104 .707104 curtextmtx dtransform
dup mul exch dup mul add sqrt}bdf
/ta2{
tempstr 2 index gsave exec grestore
cwidth cheight rmoveto
4 index eq{5 index 5 index rmoveto}if
2 index 2 index rmoveto
}bdf
/ta{exch systemdict/cshow known
{{/cheight xdf/cwidth xdf tempstr 0 2 index put ta2}exch cshow}
{{tempstr 0 2 index put tempstr stringwidth/cheight xdf/cwidth xdf ta2}forall}
ifelse 6{pop}repeat}bdf
/sts{/textopf currentoverprint def vc setoverprint
/ts{awidthshow}def exec textopf setoverprint}bdf
/stol{/xt currentlinewidth def
setlinewidth vc newpath
/ts{{false charpath stroke}ta}def exec
xt setlinewidth}bdf
/strk{/textopf currentoverprint def vc setoverprint
/ts{{false charpath stroke}ta}def exec
textopf setoverprint
}bdf
n
[] 0 d
3.863708 M
1 w
0 j
0 J
false setoverprint
0 i
false eomode
[0 0 0 1]vc
vms
1975.3876 2009.1968 m
1819.5591 2009.1968 L
1.5 w
2 J
3.863693 M
[0 0 0 1]vc
S
n
1975.4646 2009.1968 m
1975.4646 2017.0246 1981.81 2023.3701 1989.6378 2023.3701 C
1997.4655 2023.3701 2003.811 2017.0246 2003.811 2009.1968 C
2003.811 2001.3691 1997.4655 1995.0236 1989.6378 1995.0236 C
1981.81 1995.0236 1975.4646 2001.3691 1975.4646 2009.1968 C
[0 0 0 0]vc
f
[0 0 0 1]vc
S
n
1978.5591 2018.9213 m
2000.0591 1999.6713 L
S
n
2000.0591 2019.4213 m
1979.0591 1999.1713 L
S
n
1976.7781 1966.6772 m
1819.5591 1966.6772 L
S
n
1786.0394 1981.031 m
1814.3858 1995.2042 L
S
n
1814.6142 1967.0802 m
1814.6142 1968.4457 1815.7211 1969.5526 1817.0866 1969.5526 C
1818.4521 1969.5526 1819.5591 1968.4457 1819.5591 1967.0802 C
1819.5591 1965.7147 1818.4521 1964.6077 1817.0866 1964.6077 C
1815.7211 1964.6077 1814.6142 1965.7147 1814.6142 1967.0802 C
s
n
1814.5824 1995.2047 m
1814.5824 1996.5702 1815.6893 1997.6772 1817.0548 1997.6772 C
1818.4203 1997.6772 1819.5273 1996.5702 1819.5273 1995.2047 C
1819.5273 1993.8392 1818.4203 1992.7323 1817.0548 1992.7323 C
1815.6893 1992.7323 1814.5824 1993.8392 1814.5824 1995.2047 C
s
n
1786.0394 2023.5506 m
1814.3858 2037.7239 L
S
n
1814.6142 2009.5999 m
1814.6142 2010.9654 1815.7211 2012.0723 1817.0866 2012.0723 C
1818.4521 2012.0723 1819.5591 2010.9654 1819.5591 2009.5999 C
1819.5591 2008.2343 1818.4521 2007.1274 1817.0866 2007.1274 C
1815.7211 2007.1274 1814.6142 2008.2343 1814.6142 2009.5999 C
s
n
1814.5824 2037.7244 m
1814.5824 2039.0899 1815.6893 2040.1968 1817.0548 2040.1968 C
1818.4203 2040.1968 1819.5273 2039.0899 1819.5273 2037.7244 C
1819.5273 2036.3589 1818.4203 2035.252 1817.0548 2035.252 C
1815.6893 2035.252 1814.5824 2036.3589 1814.5824 2037.7244 C
s
n
1786 2023.5 m
1749 2023.5 L
S
n
1786 1981 m
1749 1981 L
S
n
1748.6929 2023.3701 m
1748.6929 1867.4646 L
S
n
1748.6929 1867.4646 m
1862.0787 1867.4646 L
S
n
1862.0787 1895.811 m
1862.0787 1839.1181 L
2 w
S
n
1876.252 1881.6378 m
1876.252 1853.2913 L
6 w
S
n
vmrs
1890.4252 1895.811 m
1890.4252 1839.1181 L
2 w
2 J
3.863693 M
[0 0 0 1]vc
S
n
1904.5984 1881.6378 m
1904.5984 1853.2913 L
6 w
S
n
1904.5984 1867.4646 m
2046.3307 1867.4646 L
1.5 w
S
n
2046.3307 1867.4646 m
2046.3307 2009.1968 L
S
n
2046.3307 2009.1968 m
2003.811 2009.1968 L
S
n
2003.811 1966.6772 m
2046.3307 1966.6772 L
S
n
1975.4646 1966.6771 m
1975.4646 1974.5049 1981.81 1980.8504 1989.6378 1980.8504 C
1997.4655 1980.8504 2003.811 1974.5049 2003.811 1966.6771 C
2003.811 1958.8494 1997.4655 1952.5039 1989.6378 1952.5039 C
1981.81 1952.5039 1975.4646 1958.8494 1975.4646 1966.6771 C
[0 0 0 0]vc
f
[0 0 0 1]vc
S
n
1978.5591 1976.4016 m
2000.0591 1957.1516 L
S
n
2000.0591 1976.9016 m
1979.0591 1956.6516 L
S
n
1744.6929 1981.0236 m
1744.6929 1983.2328 1746.4837 1985.0236 1748.6929 1985.0236 C
1750.9021 1985.0236 1752.6929 1983.2328 1752.6929 1981.0236 C
1752.6929 1978.8145 1750.9021 1977.0236 1748.6929 1977.0236 C
1746.4837 1977.0236 1744.6929 1978.8145 1744.6929 1981.0236 C
[0.6941 0.5765 0.5765 0.949]vc
f
0 J
[0 0 0 1]vc
S
n
2042.3156 1966.2387 m
2042.3156 1968.4479 2044.1065 1970.2387 2046.3156 1970.2387 C
2048.5248 1970.2387 2050.3156 1968.4479 2050.3156 1966.2387 C
2050.3156 1964.0295 2048.5248 1962.2387 2046.3156 1962.2387 C
2044.1065 1962.2387 2042.3156 1964.0295 2042.3156 1966.2387 C
[0.6941 0.5765 0.5765 0.949]vc
f
[0 0 0 1]vc
S
n
1847.9055 2051.7165 m
1932.9449 2051.7165 L
1932.9449 1924.1575 L
1847.9055 1924.1575 L
1847.9055 2051.7165 L
[0 0 0 0]vc
f
[0 0 0 1]vc
S
n
1926.1031 2080.063 m
1862.0787 2080.063 L
1862.0787 2054.8633 L
1926.1031 2054.8633 L
1926.1031 2080.063 L
n
q
%%IncludeResource: font Palatino-Italic
{
f0 [24 0 0 24 0 0] makesetfont
1862.0787 2060.8633 m
0 0 32 0 0 (Rotors) ts
}
true
[0 0 0 1]
sts
Q
false eomode
1876.252 2051.7165 m
1876.252 1924.1575 L
[0 0 0 1]vc
false setoverprint
S
n
1904.5984 2051.7165 m
1904.5984 1924.1575 L
S
n
1847.9055 2009.1968 m
1876.252 1966.6772 L
S
n
1847.9055 1966.6772 m
1876.252 2009.1968 L
S
n
1876.252 2009.1968 m
1904.5984 1966.6772 L
S
n
1876.252 1966.6772 m
1904.5984 2009.1968 L
S
n
vmrs
1904.5984 2009.1968 m
1932.9449 1966.6772 L
1.5 w
3.863693 M
[0 0 0 1]vc
S
n
1904.5984 1966.6772 m
1932.9449 2009.1968 L
S
n
vmr
vmr
end
%%Trailer
%%DocumentNeededResources: font Palatino-Italic
%%DocumentFonts: Palatino-Italic
%%DocumentNeededFonts: Palatino-Italic
�� �¿� �À�ÿ

 In the original Enigma, rotors were wired connecting their input terminals 1–26 to their output terminals 1–26. The only restriction was that the wiring had to be one-to-one, so that each input terminal was connected to a different output terminal. In the modified wiring, the rotors must additionally be reciprocal, so that if input terminal x goes to output terminal y, there must also be a connection from input terminal y to output terminal x. In the special case that x goes to x, no additional wire is required, since x–x is already reciprocal. If each rotor is reciprocal, any series of rotors will also provide a reciprocal permutation, so the rotors can be connected (and rotated) exactly as on the original Enigma. With this restriction on the wiring of the rotors, and using the circuit above, we achieve all the Enigma advantages (exchangeable rotors, plugboards, long key lengths, etc) with a reciprocal code but without the limitation that letters cannot code as themselves.

Figure 14. Alternative rotor wiring.

The restriction on the wiring of the rotors reduces the number of possible rotors from 26!=4(1026 to 5(1014, but this isn’t the problem it seems. The reflector in the original Enigma makes many rotor wirings equivalent (because it shorts pairs of terminals) and reduces the effective number to 8(1012. This number is less than 5(1014 because it excludes all reciprocal codes (x–x). The reciprocal wiring does not require an even number of buttons: the revised Enigma could have had a space button (rather than using a convention such as X represents space).

This modified Enigma can have a standard plugboard circuit without problem, though it would suffer from the limitations discussed in the body of the paper. Alternatively, since any rotor behaves as a (movable) plugboard, simply increasing the number of rotors would achieve the same effect.

Finally, a weakness of the original Enigma is that while one rotor rotates on every button press, the others turn slowly. For about 26 button presses, the rest of the wiring is essentially fixed. (The German Secret Police used a more complex rotor scheme, but their Engima did not have a plugboard; it was broken by Knox in 1941/2.) A better approach would be to rotate all rotors, but at every, every other, every third, every fifth… every prime number (or, better, randomly, since everybody knows about primes!) of button presses. This could easily be arranged by suitably sized cogs, which might be replaced by the operator to change the periods.

* Address for correspondence: UCLIC, UCL Interaction Centre, 26 Bedford Way, LONDON, WC1.

� High resolution pictures are available from the author.

� 	The Scherbius patent also describes a simpler, but still complex, Enigma design that used 10 digits rather than 26 letters. His patent also illustrates using multiple rotors, up to 10.

14

_1076070491.doc
[image: image1.png]

_1076090541.unknown

_1076262499.doc
[image: image1.png]

A E S T

_1075976932.unknown

_1075984265.unknown

_1075897456.unknown

