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Abstract. Usability evaluation methods are a battery of techniques for
assessing the usability of interactive systems or of proposed interactive
systems. This paper describes a new evaluation method, particularly
appropriate for evaluating safety critical and high quality user interfaces.
The method can also be used for informing HCI research. The method
is applied when a specification is available of an interactive system, or
when a system (or prototype) is working.

1 Introduction

Human computer interaction is the science and practice of effective interactive
systems, most often involving people and computers. Usability, more specifically,
is the theory and application of methods to improve the processes and products
of interactive system design. Humans are an object of study (for example, to
advance the science of psychology), and interaction is an object of study (for
example, using usability evaluation methods); interaction can also be arranged
to present users with controlled, novel situations, and hence generate phenom-
ena that demand psychological accounts. The conventional view, then, is that
evaluation of interactive systems focuses on the user.

Less obvious is that the computer (or embedded computer), not just the
human, is a useful object of study in its own right. Despite interactive systems
being fully defined by program, their behaviour is often not fully understood,
particularly when coupled with human use.

One might make an analogy from the well-known story of the Tacoma Nar-
rows bridge. Human sciences are very interested in the experience, behaviour and
performance of humans, for instance, drivers who use bridges — indeed, drivers
on the Tacoma Narrows bridge reported motion sickness that could perhaps have
stimulated new research. On the other hand, one might think that the engineer-
ing of a finished bridge is not an interesting object for study; after all, it has
been built from specifications, so its design and properties are surely known in
principle. Unfortunately, the Tacoma Narrows bridge experienced catastrophic
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failure in 1940 due to wind-induced vibration [15]. In other words, its engineer-
ing was not fully understood, and moreover, unknown engineering issues had a
direct impact on its usability.

This paper proposes and demonstrates a new ‘usability evaluation method’
but uniquely focussing on the device engineering rather than on the user. The
benefits of this method are discussed, particularly for the safety critical domain.
Analysis of the Tacoma Narrows bridge led to advances in dynamical systems,
aerodynamics and so on; one may likewise hope that the methods proposed here
for analysing interactive devices will lead in a similar way to advances in the
theory and science of interactive devices.

1.1 Background

There are many usability evaluation methods, each appropriate to one or more
stages of the design lifecycle. It is conventional to divide methods into three
groups: test, inspection and inquiry. Test methods use representative users to
work on typical tasks, and their performance is measured or otherwise assessed;
testing requires a working system, or a prototype. Inspection methods instead
use experts (typically HCI experts, but possibly software engineers or domain
experts) to inspect a design; inspection can be done at any stage of design, from
prototype to marketplace. Inquiry methods inquire into the users’ preferences,
desires, and behaviour, and try to establish the requirements of a design.

To this list should now be added device methods, such as this paper will
describe below.

Conventional usability evaluation methods (UEMs) can be adjusted to need.
For example think aloud can be used in at least three ways: introspection, nor-
mal think aloud, and cooperative evaluation. A UEM may be applied to the
interactive system, the training material, the user manuals, or to the environ-
ment the user operates in. UEMs can be used in laboratories, in focus groups
(perhaps with no system present), or in the wild. One can further run a UEM
in anything from a purely informal way to an experimentally rigorous way —
depending on whether one wants basic information to help a practical design, or
whether one wants experimentally and statistically respectable information for,
say, a scientific paper.

All UEMs are concerned primarily with the user experience, though they
should be distinguished from user acceptance models [27], which are intended
more to inform management or procurement questions than to improve design.
On the other hand, system evaluation methods focus on the technical system
design and are typically concerned with the reliability, integrity and safety of
the system; such methods range from formal mathematical work (theorem prov-
ing, model checking) to informal procedures such as code walkthrough. There
are many schools of software engineering (e.g., extreme programming, agile de-
velopment), and many advocate different overall approaches. Nevertheless, soft-
ware engineering methods assume the usability requirements are otherwise estab-
lished, and evaluate conformance of the implemented system to its requirements.
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UEMs are not without controversy. For example, Wixon [26] believes pub-
lished papers on evaluations have failed the needs of usability professionals. Gray
and Salzman [5, 6] compared many experiments with UEMs and found the stan-
dards of experimental work questionable, in some cases leading to erroneous
claims.

All evaluation methods take stands on the questions of sampling, satisfic-
ing, frequency, severity and realism. There are other issues: such as obtaining
quantitative or qualitative data. Generally, interactive systems and their use are
complex; a UEM cannot hope to sample all of a system or all of its and its
users’ space of interactive behaviour (nor all users and all user personalities,
etc). UEMs therefore sample a restricted space of the design — typically there-
fore taking some arbitrary or trying, on the other hand, to take some statistically
valid sample of the space. This is of course difficult to do for interfaces intended
to be culturally sensitive, enlarging the space again. Furthermore, the results
of a UEM may be sensitive to the people doing the evaluation; some studies
show little overlap in results when undertaken by different assessors [11] — in-
terestingly, this paper ([11]) expresses surprise at assessor sensitivity, but it is
more likely a consequence of the difficulty of sampling a large, unknown space
uniformly.

A UEM may uncover problems in a design (e.g., there is no undo), but may
not know how frequently this problem arises in use; that is, many UEMs cannot
distinguish between risk and hazard. A UEM may identify a potential problem,
but not be clear how severe a problem it is for users. For example, a system
may have no undo, which is a potential problem, but users may have other work
arounds — the user interface without undo may then be usefully simpler than
one with extra features.

The more effort put into using a UEM, in principle the higher quality results
that can be expected; different UEMs have different cost/benefit curves, and
one may thus choose a break-off point, once encountering diminishing returns
on effort. However, there is no guarantee that if a UEM identifies a problem that
it can be fixed, or worse, that fixing it does not introduce other problems (which
of course, at the time of fixing will be unknown and unevaluated problems).

Finally, there may be questions about realism. A device may be evaluated in
a laboratory, but the conditions of actual use may be very different — this is a
particularly tricky question with safety critical devices, which may be very hard
and often unethical to evaluate under realistic conditions of use (e.g., where the
user is in a state of stress).

1.2 Wider issues

Any review of UEMs, however brief, would not be complete without mentioning
politics. Designs have many stakeholders, and UEMs generally attempt to pro-
mote the needs and values of users. These values may not be the values intended
to be assessed or optimised by deploying the UEM. For example, in a safety
critical environment, one may be more concerned with political fallout or public
safety than the welfare of the actual operator, or one may be concerned with
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legal liability issues (hence, ironically, perhaps wanting an obfuscated design, so
the user rather than the hardware seem to be at fault).

2 A UEM for safety critical systems

We now introduce a new UEM, primarily intended for safety critical systems. It
can of course be used for any interactive system, but the sorts of safety insight
obtained in terms of effort may be too costly for other domains — though the
UEM can be used on parts of systems with less effort, and may thus provide
insight into those parts of the system at reduced cost.

We call the method Interaction Walkthrough (IW) and it may most conve-
niently be contrasted with Cognitive Walkthrough (CW) and Program Walk-
through (PW)1 — it ‘fills the gap’ between these two approaches.

Cognitive Walkthrough (CW) is a psychological inspection method that can
be used at any stage using a prototype or real system; it does not require a fully
functioning prototype; it does not require the involvement of users. CW is based
on a certain psychological learning theory, and assumes the user sets a goal to
be accomplished with the system. The user searches the interface for currently
available action to achieve their goal and selects the action that seems likely
to make progress toward the goal. It is assumed the user performs the selected
action and evaluates the system’s feedback for evidence that progress is being
made toward the goal.

Assessors start with a general description of who the users will be and what
relevant knowledge they possess, as well as a specific description of representative
tasks to be performed and a list of the actions required to complete each of these
tasks with the interface being evaluated.

The assessors then step through the tasks, taking notes in a structured way:
evaluating at each step how difficult it is for the user to identify and operate the
element relevant to their current goals, and evaluating how clearly the system
provides feedback to that action. Each such step is classified a success or failure.

To classify each step, CW takes into consideration the user’s (assumed)
thought processes that contribute to decision making, such as memory load and
ability to reason.

CW has been described well in the literature (e.g., [25]), and need not be
reviewed further here, except to note that CW has many variants (e.g., [16]).
The gist is that a psychologically informed evaluation is based on the user’s
behaviour.

In contrast, Program Walkthrough (PW) evaluates a design based on the
computer’s behaviour. Instead of psychological models or theories and user tasks
and goals, the PW assessor has programming language theory and walks through
program code to work out what the computer would do. In a sense, then, CW
and PW are duals.
1 In the context of this paper, the alternative name Code Walkthrough might be

confused with CW as Cognitive Walkthrough!



5

In PW the programmer (more often working in a team) works through pro-
gram code, to convince themselves that the program does what it is supposed
to do, and that all paths are executed under the right conditions. Often a pro-
gram walkthrough will result in improved testing regimes, and of course better
debugged code. Usually, PW is seen as a quality control process rather than an
evaluation method per se; the assumption is that there is an ‘ideal’ program, that
the current one should aspire to. Various techniques, including PW, are recruited
to move the current implementation towards the ideal ‘bug free’ program.

Neither CW nor PW are concerned with the interaction itself, in the fol-
lowing sense. In CW, the concern is on the user, and in PW the concern is on
the execution paths of the program — which may well have little to do with
the interaction. That is, interaction is a side effect of running a program. The
program does input and output, with lots of stuff in-between, but the interaction
appears to the user as continuous (except when the computation is slow). If one
looks at a fragment of code, one has to work out what the input and output
relation is. In the worst case, there is a non-computable step from doing PW to
knowing what the interaction is.

Consider the following trivial-looking Java method, which is not even inter-
active in any interesting sense:

void star(long n)
{ while( n > 1 ) n = n%2 == 0? n/2: 3*n+1;
System.out.println("*");

}

If the user provides a value for n, does the method print a star? The code
fragment runs the Collatz problem, and whether it always prints a star is an
unsolved question (though it will always print a star if n is a Java int). This
example makes a clear, if abstract, demonstration that a program walkthrough
cannot in principle fully determine what the user will see the program doing.
Indeed, real programs are far more complex: they are concurrent, event driven,
and their behaviour is dependent on internal state, and so on.

Instead, we need to start outside the program . . .

3 Interaction Walkthrough, IW

Many interactive devices are developed in a process roughly conforming to
ISO13407: a prototype is built, tested and then refined, and then the final sys-
tem is built (which may have further refinements). Typically, the prototype is
developed in an informal way, in some convenient prototyping tool, and then
the final system is developed in a programming language that is efficient on
the target hardware. Sometimes documentation and other training material will
be written, based on the same prototype, and developed concurrently with the
target system development.

Interaction Walkthrough works analogously, but with different goals. From
a working system, whether a prototype or target system, another system is
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developed. Thus, a parallel system is developed from the interaction behaviour
of the system being evaluated.

Developing the parallel system requires the assessor to ask numerous ques-
tions, and to go over in detail many of the original design decisions — and
perhaps make some decisions explicit for the first time. To reprogram a system,
the assessor needs to know whether features are instances of a common form,
are different, or are identical . . . and so on.

As the parallel system is built, the assessor will program in a new way, and
therefore make independent decisions on the structure of the parallel program.
The assessor makes notes of design questions and issues. Since the assessor is
working independently of the original developers and programmers, new ques-
tions will be raised. For example: why are these two features nearly the same?
Why weren’t they programmed to be identical?

Inevitably, some (but by no means all) of the design issues raised by this
phase of the IW will cover similar ground to a conventional heuristic evaluation
[12] (e.g., noticing, if it is the case, that there is no undo).

The assessor will stop this phase of IW when either sufficient questions, or any
‘killer’ questions, have been raised, or when the rate of discovery has diminished
and the rate of return is insufficient for the purposes of the evaluation. Generally,
such discovery processes follow a Poisson distribution, and modelling the rate of
discovery can inform a rational cut-off point [13].

Reprogramming a system or even a partial system, as required by IW, is
not such a large undertaking as the original programming, since impossible and
impractical features have already been eliminated. However reprogramming is
still a considerable effort, and the assessor may choose to do a partial implemen-
tation, concentrating on certain features of interest. The assessor may use RAD
tools, such as compiler-compilers, as well as ad hoc tools to both speed up the
process and to ensure consistency.

Typically, it is not possible to determine exactly what the device’s actual
behaviour is merely by experimenting on it. The user manual and help material
must also be used. Thus the assessor will discover discrepancies between the
documentation and the target system. Moreover, the assessor will be using the
user manual material with a keener eye than any user! Typically, user manuals
have definitional problems that IW will expose.

At the end of the reimplementation phase of IW, the assessor has three
products: a realistic simulation, a list of questions and/or critiques, and a deep
understanding of the system (typically including a list of formal properties) —
achieved more rapidly that other people on the design team. It is also worthwhile
writing a new user manual for the simulation as well as documentation; writing
manuals forces the assessor to work to a higher standard, and may also provide
further insights into the design as a side-effect. It is also standard practice; if a
safety critical device is being evaluated, the success of the evaluation should not
depend on a particular member of staff.
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Next the assessor involves users through cooperative evaluation [28]. Are the
issues raised of significance to users in actual practice? Thus the list of questions
and critiques is refined to a prioritised list.

The prioritised list can then be fed back into the iterative design process in
the usual way. The IW implementation may also be iterated and made more
realistic or more useful, for instance, for further cooperative evaluation.

3.1 Key steps of IW

In summary, IW is an UEM based on the following steps:

1. Clean reverse engineering, generally ignoring non-interaction issues, using a
device, its user manual and training material.

2. Development of an accurate simulation.

3. Recording design questions and queries, arising from Steps 1 & 2.

4. Review with domain experts using the original device and/or simulation.

Steps 1–3 iterate until ‘showstopper’ or ‘killer queries’ are found, or the rate of
discovery becomes insufficient. The whole process may be iterated; for example,
working with end users may reveal short-comings in the simulation.

3.2 Variations and extensions

Once a simulation is available, it can be used for many purposes, such as train-
ing tests, collecting use data (which perhaps is too complex to collect from a
real system), for random simulation, and so on. Other possibilities are to embed
automatic UEMs [8] inside the system built for the IW exercise — many auto-
mated UEMs would interfere with the target system’s operation, and so would
be inappropriate to deploy without a different (in this case, IW) implementa-
tion. We do not consider these additional benefits strictly part of a UEM itself,
but the ‘added value’ implies IW should be viewed as playing a wider part of
the quality control and inquiry methods than merely finding certain types of
usability problem.

An IW simulation can easily be built to generate a formal specification of
the device in question, which can be used for model checking and other rigorous
analyses. Indeed, if methods such as the Chinese Postman [2, 22] are used for
reverse engineering, they in any case require an explicit graph of the device.
Figure 2 shows an automatically drawn transition diagram, drawn from the
specification generated by the IW program; the transition network has been
checked for strong connectivity (as it happens, by one of the internal checks
in the program itself, although the analysis could have been done by external
programs). For example, the connectivity analysis in this example makes one
node automatically highlighted as not being in the main component of the graph
— thus showing either the device has a problem, or (as is the case here) the
reverse engineering of it is not complete.
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3.3 Relation of IW to software engineering

In typical software engineering processes, there is a progression (e.g., the spiral
model or waterfall) from requirements to product. IW creates a parallel path,
which does not start from the explicit specifications used in standard refinement.
Instead, the idea is effectively to ‘rationally reconstruct’ such specifications, in-
sofar as they relate to user interaction, and to do so independently, without the
implementation bias that would inevitably have crept into the original process.

Normal software engineering is concerned with validation and verification
(V&V) of the product, with caveats that normally there are leaps of imagina-
tion connecting what can be formally established and what is actually imple-
mented.For example, a model checking language like SMV does not lend itself
to efficient implementation, so the target system is actually informally imple-
mented, however rigorous its specification might have been. Instead, IW works
from what has actually been implemented (not what should have been imple-
mented), and works out its (interaction) specification, in fact, sufficient to reim-
plement some or all of its user interface. Thus it is likely that IW will bring
rigour into interaction evaluation that, very likely, will have been omitted in the
standard software development process.

4 Worked example

As an exercise in IW, a Graseby 3400 syringe pump and its user manual [4] was
reverse engineered as a Java program. This worked example raises interesting
design questions that were uncovered by IW — and on the whole, ones that
were very unlikely to have been uncovered by other UEMs — and hence this
example illustrates IW well. The Graseby 3400 is an extremely popular and
established product (hence of some interest to evaluate by a new method) but
this paper does not assess the risks, if any, of the issues mentioned.

This IW exercise developed three products:

– A photorealistic simulation; see Figure 1. The simulation only shows LEDs
and the behaviour of the LCD panel; it does not show syringe activity.

– An automatically generated specification, used in particular to draw a tran-
sition diagram (which in fact is animated as the Java simulation is used); see
Figure 2. This was developed to ensure the completeness of the simulation
for the purposes of IW. In fact, not all of the 3400 was simulated, as it is a
complex device.

– A list of 38 detailed design questions. The list of questions was generated
as the reverse engineering proceeded. The reverse engineering phase was
stopped when the rate of new question generation slowed and the process
appeared unproductive. As will be seen, compared to a typical UEM, the
questions are very detailed and technical, although presenting the full list is
not the purpose of this paper.
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Fig. 1. Screen shot of the Graseby simulation in bolus mode, with the ‘start’ LED flashing,
indicating that the device is infusing. The image was made by holding the Graseby 3400
over a scanner.

Twelve anæsthetists and an NHS Pump Trainer (the person who trains pump
operators) were interviewed, based on the list of 38 design questions generated
during the reverse engineering phase. For reasons of space in this paper, we do
not review all questions here; the paper is introducing IW, not reviewing any
particular device except insofar as it helps illustrate IW.

The IW assessor then worked with a consultant anæsthetist in a detailed
cooperative evaluation of the 3400, undertaken during a routine 3 hour operation.

Two incidents during the operation had been anticipated by some of the
design questions. We now briefly summarise the design questions, then briefly
summarise the use (in this case, clinical) perspective.

– The user manual states that the numeric keys are set up like a calculator.
In fact, numbers have a slightly different syntax to an ordinary calculator,
notably: (i) there is a silent timeout; (ii) decimal points zero the decimal
fraction (whereas on a calculator, pressing the decimal point does not lose
significant digits). See Table 1.

– Inaccurate entry of numeric data produces no error warnings (no beeps) and
might (potentially) lead to adverse effects; see Table 1 for a summary.

– Numeric entry has a CANCEL button (which would be called AC or CE on a
calculator), but there is no undo.

– The bolus feature has no explicit method of exit, but has a 10 second time-
out. There are, however, ‘spare’ soft keys which might have been used for
explicitly exiting bolus mode.

– Although there is a CANCEL button, there is no consistent escape from any
mode.

The last case in Table 1 deserves further explanation. Conventional calcula-
tors do not ignore underflow unless a number already has more than (typically)
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Fig. 2. Partial screen shot of the Graseby transition diagram, drawn by Dot. The diagram
is updated after each user action, and it is coloured: the current state is green; transitions
that have been tested are green; states that have been visited are yellow; undefined states
and transitions are red — note that the simulation does not yet define the actions for
changing the infusion rate.

8 significant figures; in particular entering 0.009 would be handled correctly on
all conventional calculators. Instead, the Graseby has a fixed number of deci-
mal digits (1 or 2 depending on the mode), and always ignores underflow. As
designed: underflow should be avoided by first choosing the correct units. For
example, if the anæsthetist wants to enter 0.009mg/ml, they should instead (as
the device is designed) enter 9µg/ml. This is an example of a design question,
revealed by IW, which can then be presented to users, to see whether it is an
actual (in this case, clinical) issue.

In a typical UEM these issues would easily be overlooked; in IW, they need
examining closely otherwise a program cannot be written.

During the operation, the consultant anæsthetist entered the patient’s weight
incorrectly, as 8kg rather than 80kg.This was caused by a decimal point error.

The patient was infused continuously with Remifentanil, and, because of the
length of the operation, the syringe needed to be changed. After the delay caused
by a syringe change, the anæsthetist used the bolus feature, however he assumed
switching the 3400 off and on again was the only way to get out of bolus mode
and resume the infusion — switching off and on would of course have caused a
further delay. He tried leaving the bolus mode by pressing various buttons, but
of course this activity merely postponed the effect of the timeout which would
have exited the bolus mode.

Neither of these incidents had any clinical significance (and they were not
reported); in fact, they were quite routine issues. The anæsthetist noticed both,
and had work-arounds. Nevertheless redesign of the 3400, along the lines an-
ticipated in the IW, would have avoided both incidents. Interestingly, such a
redesign would not require any changes to any training material or the user
manual; fixing the cases considered here would just make erroneous use simpler.
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Key sequence Effect Comment

9999.42 999.42 Numeric overflow loses digits
• Causes no error report (e.g., no beep)
• Does not stop fraction entry
• The number may seem correct to a quick glance

1.[pause]9 9.00 Timeouts reset number entry
• No indication to user (e.g., no beep)
• Number may be bigger than expected

111.[pause]9 9.00 Timeouts reset number entry
• No indication to user (e.g., no beep)
• Number may be smaller than expected

1.2.3 1.30 Repeated decimals lose digits
• No indication to user (e.g., no beep)

0.009 0.00 Numeric underflow is not rounded
• No indication to user (e.g., no beep)

Table 1. Partial list of potential issues to do with number entry. Column 2 shows
the number displayed if a user presses the sequence of buttons indicated in Column 1
(provided there were no previous numeric buttons pressed in the current state).

In the larger context of improving the design, an open question is how the
anæsthetist noticed his errors. For instance, an eye tracking experiment would
help establish the relative effects of the LCD display’s feedback to the tactile
feedback of button pressing. Would improving the sound feedback help (in an
already noisy operating theatre)? These are certainly worthwhile questions to
investigate further, beyond the scope of IW, but questions raised by the process
of IW.

5 Other examples

Several devices have previously been evaluated in methods approximating IW:
microwave cooker [17]; video recorder [18]; fax [19]; mobile phone [20]; ticket
machine [21]; calculator [23].

One might thus argue that IW (or an approximation thereof) gave or sup-
ported useful HCI design insights, of sufficient standard to contribute to these
refereed publications.

There are numerous papers in the literature promoting new UEM or HCI
methods using examples that are based on reverse engineered systems, that
is, they are interpretable as ‘hindsight-IW’ case studies; however, these papers
generally wish to make the claim that their methods should be used from spec-
ifications, not from reverse engineering, which may have been forced on them
because their method was invented after the example product was build, or be-
cause the relevant form of specification was not available. The Palanque and
Paternò edited book [14] is a case in point: it applies many formal HCI methods
to existing browsers and browser features. For IW, the reverse engineering is
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integral to the process; it adds value, as explained above; whereas for most of
these papers reverse engineering was used only incidentally, to ensure the pro-
posed method could manage realistic cases (a detailed argument for this point
of view is made in [24]).

6 Further work

There are several ways to develop the work proposed here.
The simulation was written in Java, but a more structured framework would

be extremely beneficial (e.g., in VEG, Z, SMV etc), particularly for providing
direct support for reverse engineering and output of specification texts for further
analysis in standard tools; on the other hand, the Java included code for checking,
generating Dot diagrams, and the Chinese Postman — in an ideal world, these
would be features in interactive development frameworks.

To what extent are the insights of IW the investigator’s insights, as opposed
to insights derived from the IW process? The IW process should be tested and
used with more analysts. Having a structured framework (as proposed above)
would make IW more accessible to more people.

The recording of design queries should be integrated into the IW framework.
Currently, the issues and questions were simply recorded in a textfile (for the
worked example in this paper, we used LATEX) and in comments in the Java
program, but there was no tool-based management of them. In particular there
was no explicit connection between the list of problems and the state space of
the device — for example, had there been, diagrams like Figure 2 could be very
helpfully annotated with actual and suspected problems.

7 Conclusions

As pointed out by Paul Cairns, IW is a programmer’s version of Grounded The-
ory. Grounded Theory is, briefly, an inductive approach to build social theories
grounded in systematically analysed empirical data [3]. In IW, the ‘theory’ is
the resultant program (or, more precisely, the program is an implementation of
the theory), and the empirical data is derived not from social data but from
program behaviour.

There are six key reasons why IW reveals useful evaluation information that
was unlikely to have been known without it:

1. The assessor is discovering a new specification by reverse engineering. This
is more useful than re-examining the original specification (if there is one!)
because the original specification and program inevitably contain traces of
their development and the sequence of design decisions. For a user of the
final system, the design rationale and its working out is irrelevant: the user
is interested in the working product. Thus the IW assessor works from that
product, and constructs a clean specification, without the ‘historical taints’
that CW would be enmeshed with.
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2. Second, IW starts with a system that works. Many UEM inspection — CW
amongst them — can work from prototypes, even non-functional prototypes
such as story boards, which very likely will not have worked out details of
how the real system is going to work, creating the problem Holmquist calls
cargo cult design [7]. In safety critical areas it is crucial that the details get
evaluated and that nothing crucial is left to the imagination of the evaluators,
who may be tempted to gloss details that have not been worked out for a
prototype.

3. A third reason for the effectiveness of IW is that the assessor can choose
any programming language or approach to construct the simulation — thus
allowing them to work in a much more suitable programming environment
than perhaps the implementors of the actual target system were able to.
For example, the implementors of the target system may have had to use
assembler or PIC code, whereas the IW assessor can use Java, SMV [9, 10],
or Promela — or any special purpuse GUI languages, such as VEG [1] — as
they wish. Using a ‘nice’ language with powerful abstraction features, par-
ticularly one with model checking, appropriate for the interactive simulation
will highlight inconsistencies in the target design in a way that cannot be
done on the target system.

4. Fourth, the simulation can embed arbitrary test, diagnostic and debugging
information to help the assessor. For example, it can generate transition
diagrams, diagnostic logs, and so forth: to help the assessor assess how much
of the device has been simulated and tested, but also to give formal insight
into the design, for instance to check properties. Algorithms such as the
Chinese Postman [2, 22] can be used to ensure a complete coverage of the
state space is achieved.

5. Fifth, the assessor can use a full range of modern model checking and the-
orem proving techniques to check the interface against desirable interaction
properties. Loer and Harrison give persuasive examples [9, 10] of the effec-
tiveness of this approach — indeed, their work is essentially IW, as they
had to reverse engineer systems (though their approach is suited to early
use in software production, on the assumption that formal specifications are
available), and their systems do not have the performance to be production
systems.

6. Finally, the real success of any UEM lies in its recommendations being
adopted either in the product being evaluated or in some future product
(or perhaps in persuasive argument in published papers — which will, in
turn, affect future products). IW has the advantage over other UEMs that it
is driven by reverse engineering software, and therefore is already half-way
towards offering ideas that can contribute to changing the software of the
product, such as how to refactor it. Other UEMs risk making suggestions
that are superficially appealing (even based on empirical evidence) but which
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are too hard to implement and are therefore resisted by the very people who
must make the intended changes.

Arguably, the greatest use of IW would be the software engineering insights
it provides a system developer. Rather than rely on UEMs to identify usability
problems that then need fixing, surely it is better to adopt a system development
process that avoids as many problems as possible? To do so requires using suit-
able quality and quality assurance processes, which of course are often skipped
under the pressures of industrial design. An IW process exploits best software
engineering practice to build an accurate simulation of the system being eval-
uated; it is likely that the IW assessor is an expert programmer, and therefore
brings to their evaluation practices that might be applied in normal design. If so,
then IW can be an agent of change in improving work practice to avoid usability
problems in future devices by encouraging the use of better processes. Indeed,
in a typical industrial environment, identifying problems with today’s product,
which has already shipped, is of less interest than improving future products by
learning from problems with today’s product.

Further work that would be desirable is to compare the efficiency (significant
problems identified per unit effort) of IW with other methods, as well as the
organisational impact of IW (e.g., process improvements) against the impact of
other methods.
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14. Palanque, P. & Paternò, F., eds, Formal Methods in Human Computer Interaction,
London, Springer-Verlag, 1997.

15. H. Petroski, To Engineer is Human: The Role of Failure in Successful Design,
Vintage Books, 1992.

16. D. E. Rowley & D. G. Rhoades, “The Cognitive Jogthrough: A Fast-Paced User
Interface Evaluation Procedure.” ACM CHI’92 Proceedings, 389–395, 1992.

17. H. Thimbleby & I. H. Witten, “User Modelling as Machine Identification: New
Design Methods for HCI,” Advances in Human Computer Interaction, IV, D. Hix
& H. R. Hartson, eds, 58–86, Ablex, 1993.

18. H. Thimbleby & with M. A. Addison, “Intelligent Adaptive Assistance and Its
Automatic Generation,” Interacting with Computers, 8(1):51–68, 1996.

19. H. Thimbleby, “Specification-led Design for Interface Simulation, Collecting Use-
data, Interactive Help, Writing Manuals, Analysis, Comparing Alternative Designs,
etc,” Personal Technologies, 4(2):241–254, 1999.

20. H. Thimbleby, “Analysis and Simulation of User Interfaces,” Human Computer
Interaction 2000, BCS Conference on Human-Computer Interaction, S. McDonald,
Y. Waern & G. Cockton, eds., XIV, 221–237, 2000.

21. H. Thimbleby, A. Blandford, P. Cairns, P. Curzon and M. Jones, “User Interface
Design as Systems Design,” Proceedings People and Computers, XVI, X. Faulkner,
J. Finlay & F. Détienne, eds., 281–301, Springer, 2002.

22. H. Thimbleby, “The Directed Chinese Postman Problem,” Software — Practice &
Experience, 33(11):1081–1096, 2003.

23. H. Thimbleby, “Computer Algebra in User Interface Design Analysis,” Proceedings
BCS HCI Conference, 2, edited by A. Dearden and L. Watts, Research Press
International, pp121–124, 2004.

24. H. Thimbleby, “User Interface Design with Matrix Algebra,” ACM Transactions
on Computer-Human Interaction, 11(2):181–236, 2004.

25. C. Wharton, J. Rieman, C. Lewis & P. Polson, “The Cognitive Walkthrough
Method: A Practictioner’s Guide,” in J. Nielsen & R. L. Mack, eds, Usability
Inspection Methods, John Wiley and Sons, 1994.

26. D. R. Wixon, “Evaluating usability methods: why the current literature fails the
practitioner,” Interactions, 10(4):28-34, 2003.



16

27. V. Venkatesh, M. G. Morris, G. B. Davis & F. D. Davis, “User acceptance of
information technology: Toward a unified view,” MIS Quarterly, 27(3):425–478,
2003.

28. P. C. Wright & A. F. Monk, “The use of think-aloud evaluation methods in design,”
ACM SIGCHI Bulletin, 23(1):55–57, 1991.


